|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
from torch import nn |
|
import numpy as np |
|
from utils.graphics_utils import getWorld2View2, getProjectionMatrix |
|
from utils.general_utils import PILtoTorch |
|
import cv2 |
|
|
|
class Camera(nn.Module): |
|
def __init__(self, resolution, colmap_id, R, T, FoVx, FoVy, depth_params, image, invdepthmap, |
|
image_name, uid, |
|
trans=np.array([0.0, 0.0, 0.0]), scale=1.0, data_device = "cuda", |
|
train_test_exp = False, is_test_dataset = False, is_test_view = False |
|
): |
|
super(Camera, self).__init__() |
|
|
|
self.uid = uid |
|
self.colmap_id = colmap_id |
|
self.R = R |
|
self.T = T |
|
self.FoVx = FoVx |
|
self.FoVy = FoVy |
|
self.image_name = image_name |
|
|
|
try: |
|
self.data_device = torch.device(data_device) |
|
except Exception as e: |
|
print(e) |
|
print(f"[Warning] Custom device {data_device} failed, fallback to default cuda device" ) |
|
self.data_device = torch.device("cuda") |
|
|
|
resized_image_rgb = PILtoTorch(image, resolution) |
|
gt_image = resized_image_rgb[:3, ...] |
|
self.alpha_mask = None |
|
if resized_image_rgb.shape[0] == 4: |
|
self.alpha_mask = resized_image_rgb[3:4, ...].to(self.data_device) |
|
else: |
|
self.alpha_mask = torch.ones_like(resized_image_rgb[0:1, ...].to(self.data_device)) |
|
|
|
if train_test_exp and is_test_view: |
|
if is_test_dataset: |
|
self.alpha_mask[..., :self.alpha_mask.shape[-1] // 2] = 0 |
|
else: |
|
self.alpha_mask[..., self.alpha_mask.shape[-1] // 2:] = 0 |
|
|
|
self.original_image = gt_image.clamp(0.0, 1.0).to(self.data_device) |
|
self.image_width = self.original_image.shape[2] |
|
self.image_height = self.original_image.shape[1] |
|
|
|
self.invdepthmap = None |
|
self.depth_reliable = False |
|
if invdepthmap is not None: |
|
self.depth_mask = torch.ones_like(self.alpha_mask) |
|
self.invdepthmap = cv2.resize(invdepthmap, resolution) |
|
self.invdepthmap[self.invdepthmap < 0] = 0 |
|
self.depth_reliable = True |
|
|
|
if depth_params is not None: |
|
if depth_params["scale"] < 0.2 * depth_params["med_scale"] or depth_params["scale"] > 5 * depth_params["med_scale"]: |
|
self.depth_reliable = False |
|
self.depth_mask *= 0 |
|
|
|
if depth_params["scale"] > 0: |
|
self.invdepthmap = self.invdepthmap * depth_params["scale"] + depth_params["offset"] |
|
|
|
if self.invdepthmap.ndim != 2: |
|
self.invdepthmap = self.invdepthmap[..., 0] |
|
self.invdepthmap = torch.from_numpy(self.invdepthmap[None]).to(self.data_device) |
|
|
|
self.zfar = 100.0 |
|
self.znear = 0.01 |
|
|
|
self.trans = trans |
|
self.scale = scale |
|
|
|
self.world_view_transform = torch.tensor(getWorld2View2(R, T, trans, scale)).transpose(0, 1).cuda() |
|
self.projection_matrix = getProjectionMatrix(znear=self.znear, zfar=self.zfar, fovX=self.FoVx, fovY=self.FoVy).transpose(0,1).cuda() |
|
self.full_proj_transform = (self.world_view_transform.unsqueeze(0).bmm(self.projection_matrix.unsqueeze(0))).squeeze(0) |
|
self.camera_center = self.world_view_transform.inverse()[3, :3] |
|
|
|
class MiniCam: |
|
def __init__(self, width, height, fovy, fovx, znear, zfar, world_view_transform, full_proj_transform): |
|
self.image_width = width |
|
self.image_height = height |
|
self.FoVy = fovy |
|
self.FoVx = fovx |
|
self.znear = znear |
|
self.zfar = zfar |
|
self.world_view_transform = world_view_transform |
|
self.full_proj_transform = full_proj_transform |
|
view_inv = torch.inverse(self.world_view_transform) |
|
self.camera_center = view_inv[3][:3] |
|
|
|
|