|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import torch |
|
import numpy as np |
|
from utils.general_utils import inverse_sigmoid, get_expon_lr_func, build_rotation |
|
from torch import nn |
|
import os |
|
import json |
|
from utils.system_utils import mkdir_p |
|
from plyfile import PlyData, PlyElement |
|
from utils.sh_utils import RGB2SH |
|
from simple_knn._C import distCUDA2 |
|
from utils.graphics_utils import BasicPointCloud |
|
from utils.general_utils import strip_symmetric, build_scaling_rotation |
|
|
|
try: |
|
from diff_gaussian_rasterization import SparseGaussianAdam |
|
except: |
|
pass |
|
|
|
class GaussianModel: |
|
|
|
def setup_functions(self): |
|
def build_covariance_from_scaling_rotation(scaling, scaling_modifier, rotation): |
|
L = build_scaling_rotation(scaling_modifier * scaling, rotation) |
|
actual_covariance = L @ L.transpose(1, 2) |
|
symm = strip_symmetric(actual_covariance) |
|
return symm |
|
|
|
self.scaling_activation = torch.exp |
|
self.scaling_inverse_activation = torch.log |
|
|
|
self.covariance_activation = build_covariance_from_scaling_rotation |
|
|
|
self.opacity_activation = torch.sigmoid |
|
self.inverse_opacity_activation = inverse_sigmoid |
|
|
|
self.rotation_activation = torch.nn.functional.normalize |
|
|
|
|
|
def __init__(self, sh_degree, optimizer_type="default"): |
|
self.active_sh_degree = 0 |
|
self.optimizer_type = optimizer_type |
|
self.max_sh_degree = sh_degree |
|
self._xyz = torch.empty(0) |
|
self._features_dc = torch.empty(0) |
|
self._features_rest = torch.empty(0) |
|
self._scaling = torch.empty(0) |
|
self._rotation = torch.empty(0) |
|
self._opacity = torch.empty(0) |
|
self.max_radii2D = torch.empty(0) |
|
self.xyz_gradient_accum = torch.empty(0) |
|
self.denom = torch.empty(0) |
|
self.optimizer = None |
|
self.percent_dense = 0 |
|
self.spatial_lr_scale = 0 |
|
self.setup_functions() |
|
|
|
def capture(self): |
|
return ( |
|
self.active_sh_degree, |
|
self._xyz, |
|
self._features_dc, |
|
self._features_rest, |
|
self._scaling, |
|
self._rotation, |
|
self._opacity, |
|
self.max_radii2D, |
|
self.xyz_gradient_accum, |
|
self.denom, |
|
self.optimizer.state_dict(), |
|
self.spatial_lr_scale, |
|
) |
|
|
|
def restore(self, model_args, training_args): |
|
(self.active_sh_degree, |
|
self._xyz, |
|
self._features_dc, |
|
self._features_rest, |
|
self._scaling, |
|
self._rotation, |
|
self._opacity, |
|
self.max_radii2D, |
|
xyz_gradient_accum, |
|
denom, |
|
opt_dict, |
|
self.spatial_lr_scale) = model_args |
|
self.training_setup(training_args) |
|
self.xyz_gradient_accum = xyz_gradient_accum |
|
self.denom = denom |
|
self.optimizer.load_state_dict(opt_dict) |
|
|
|
@property |
|
def get_scaling(self): |
|
return self.scaling_activation(self._scaling) |
|
|
|
@property |
|
def get_rotation(self): |
|
return self.rotation_activation(self._rotation) |
|
|
|
@property |
|
def get_xyz(self): |
|
return self._xyz |
|
|
|
@property |
|
def get_features(self): |
|
features_dc = self._features_dc |
|
features_rest = self._features_rest |
|
return torch.cat((features_dc, features_rest), dim=1) |
|
|
|
@property |
|
def get_features_dc(self): |
|
return self._features_dc |
|
|
|
@property |
|
def get_features_rest(self): |
|
return self._features_rest |
|
|
|
@property |
|
def get_opacity(self): |
|
return self.opacity_activation(self._opacity) |
|
|
|
@property |
|
def get_exposure(self): |
|
return self._exposure |
|
|
|
def get_exposure_from_name(self, image_name): |
|
if self.pretrained_exposures is None: |
|
return self._exposure[self.exposure_mapping[image_name]] |
|
else: |
|
return self.pretrained_exposures[image_name] |
|
|
|
def get_covariance(self, scaling_modifier = 1): |
|
return self.covariance_activation(self.get_scaling, scaling_modifier, self._rotation) |
|
|
|
def oneupSHdegree(self): |
|
if self.active_sh_degree < self.max_sh_degree: |
|
self.active_sh_degree += 1 |
|
|
|
def create_from_pcd(self, pcd : BasicPointCloud, cam_infos : int, spatial_lr_scale : float): |
|
self.spatial_lr_scale = spatial_lr_scale |
|
fused_point_cloud = torch.tensor(np.asarray(pcd.points)).float().cuda() |
|
fused_color = RGB2SH(torch.tensor(np.asarray(pcd.colors)).float().cuda()) |
|
features = torch.zeros((fused_color.shape[0], 3, (self.max_sh_degree + 1) ** 2)).float().cuda() |
|
features[:, :3, 0 ] = fused_color |
|
features[:, 3:, 1:] = 0.0 |
|
|
|
print("Number of points at initialisation : ", fused_point_cloud.shape[0]) |
|
|
|
dist2 = torch.clamp_min(distCUDA2(torch.from_numpy(np.asarray(pcd.points)).float().cuda()), 0.0000001) |
|
scales = torch.log(torch.sqrt(dist2))[...,None].repeat(1, 3) |
|
rots = torch.zeros((fused_point_cloud.shape[0], 4), device="cuda") |
|
rots[:, 0] = 1 |
|
|
|
opacities = self.inverse_opacity_activation(0.1 * torch.ones((fused_point_cloud.shape[0], 1), dtype=torch.float, device="cuda")) |
|
|
|
self._xyz = nn.Parameter(fused_point_cloud.requires_grad_(True)) |
|
self._features_dc = nn.Parameter(features[:,:,0:1].transpose(1, 2).contiguous().requires_grad_(True)) |
|
self._features_rest = nn.Parameter(features[:,:,1:].transpose(1, 2).contiguous().requires_grad_(True)) |
|
self._scaling = nn.Parameter(scales.requires_grad_(True)) |
|
self._rotation = nn.Parameter(rots.requires_grad_(True)) |
|
self._opacity = nn.Parameter(opacities.requires_grad_(True)) |
|
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") |
|
self.exposure_mapping = {cam_info.image_name: idx for idx, cam_info in enumerate(cam_infos)} |
|
self.pretrained_exposures = None |
|
exposure = torch.eye(3, 4, device="cuda")[None].repeat(len(cam_infos), 1, 1) |
|
self._exposure = nn.Parameter(exposure.requires_grad_(True)) |
|
|
|
def training_setup(self, training_args): |
|
self.percent_dense = training_args.percent_dense |
|
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") |
|
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") |
|
|
|
l = [ |
|
{'params': [self._xyz], 'lr': training_args.position_lr_init * self.spatial_lr_scale, "name": "xyz"}, |
|
{'params': [self._features_dc], 'lr': training_args.feature_lr, "name": "f_dc"}, |
|
{'params': [self._features_rest], 'lr': training_args.feature_lr / 20.0, "name": "f_rest"}, |
|
{'params': [self._opacity], 'lr': training_args.opacity_lr, "name": "opacity"}, |
|
{'params': [self._scaling], 'lr': training_args.scaling_lr, "name": "scaling"}, |
|
{'params': [self._rotation], 'lr': training_args.rotation_lr, "name": "rotation"} |
|
] |
|
|
|
if self.optimizer_type == "default": |
|
self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15) |
|
elif self.optimizer_type == "sparse_adam": |
|
try: |
|
self.optimizer = SparseGaussianAdam(l, lr=0.0, eps=1e-15) |
|
except: |
|
|
|
self.optimizer = torch.optim.Adam(l, lr=0.0, eps=1e-15) |
|
|
|
self.exposure_optimizer = torch.optim.Adam([self._exposure]) |
|
|
|
self.xyz_scheduler_args = get_expon_lr_func(lr_init=training_args.position_lr_init*self.spatial_lr_scale, |
|
lr_final=training_args.position_lr_final*self.spatial_lr_scale, |
|
lr_delay_mult=training_args.position_lr_delay_mult, |
|
max_steps=training_args.position_lr_max_steps) |
|
|
|
self.exposure_scheduler_args = get_expon_lr_func(training_args.exposure_lr_init, training_args.exposure_lr_final, |
|
lr_delay_steps=training_args.exposure_lr_delay_steps, |
|
lr_delay_mult=training_args.exposure_lr_delay_mult, |
|
max_steps=training_args.iterations) |
|
|
|
def update_learning_rate(self, iteration): |
|
''' Learning rate scheduling per step ''' |
|
if self.pretrained_exposures is None: |
|
for param_group in self.exposure_optimizer.param_groups: |
|
param_group['lr'] = self.exposure_scheduler_args(iteration) |
|
|
|
for param_group in self.optimizer.param_groups: |
|
if param_group["name"] == "xyz": |
|
lr = self.xyz_scheduler_args(iteration) |
|
param_group['lr'] = lr |
|
return lr |
|
|
|
def construct_list_of_attributes(self): |
|
l = ['x', 'y', 'z', 'nx', 'ny', 'nz'] |
|
|
|
for i in range(self._features_dc.shape[1]*self._features_dc.shape[2]): |
|
l.append('f_dc_{}'.format(i)) |
|
for i in range(self._features_rest.shape[1]*self._features_rest.shape[2]): |
|
l.append('f_rest_{}'.format(i)) |
|
l.append('opacity') |
|
for i in range(self._scaling.shape[1]): |
|
l.append('scale_{}'.format(i)) |
|
for i in range(self._rotation.shape[1]): |
|
l.append('rot_{}'.format(i)) |
|
return l |
|
|
|
def save_ply(self, path): |
|
mkdir_p(os.path.dirname(path)) |
|
|
|
xyz = self._xyz.detach().cpu().numpy() |
|
normals = np.zeros_like(xyz) |
|
f_dc = self._features_dc.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() |
|
f_rest = self._features_rest.detach().transpose(1, 2).flatten(start_dim=1).contiguous().cpu().numpy() |
|
opacities = self._opacity.detach().cpu().numpy() |
|
scale = self._scaling.detach().cpu().numpy() |
|
rotation = self._rotation.detach().cpu().numpy() |
|
|
|
dtype_full = [(attribute, 'f4') for attribute in self.construct_list_of_attributes()] |
|
|
|
elements = np.empty(xyz.shape[0], dtype=dtype_full) |
|
attributes = np.concatenate((xyz, normals, f_dc, f_rest, opacities, scale, rotation), axis=1) |
|
elements[:] = list(map(tuple, attributes)) |
|
el = PlyElement.describe(elements, 'vertex') |
|
PlyData([el]).write(path) |
|
|
|
def reset_opacity(self): |
|
opacities_new = self.inverse_opacity_activation(torch.min(self.get_opacity, torch.ones_like(self.get_opacity)*0.01)) |
|
optimizable_tensors = self.replace_tensor_to_optimizer(opacities_new, "opacity") |
|
self._opacity = optimizable_tensors["opacity"] |
|
|
|
def load_ply(self, path, use_train_test_exp = False): |
|
plydata = PlyData.read(path) |
|
if use_train_test_exp: |
|
exposure_file = os.path.join(os.path.dirname(path), os.pardir, os.pardir, "exposure.json") |
|
if os.path.exists(exposure_file): |
|
with open(exposure_file, "r") as f: |
|
exposures = json.load(f) |
|
self.pretrained_exposures = {image_name: torch.FloatTensor(exposures[image_name]).requires_grad_(False).cuda() for image_name in exposures} |
|
print(f"Pretrained exposures loaded.") |
|
else: |
|
print(f"No exposure to be loaded at {exposure_file}") |
|
self.pretrained_exposures = None |
|
|
|
xyz = np.stack((np.asarray(plydata.elements[0]["x"]), |
|
np.asarray(plydata.elements[0]["y"]), |
|
np.asarray(plydata.elements[0]["z"])), axis=1) |
|
opacities = np.asarray(plydata.elements[0]["opacity"])[..., np.newaxis] |
|
|
|
features_dc = np.zeros((xyz.shape[0], 3, 1)) |
|
features_dc[:, 0, 0] = np.asarray(plydata.elements[0]["f_dc_0"]) |
|
features_dc[:, 1, 0] = np.asarray(plydata.elements[0]["f_dc_1"]) |
|
features_dc[:, 2, 0] = np.asarray(plydata.elements[0]["f_dc_2"]) |
|
|
|
extra_f_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("f_rest_")] |
|
extra_f_names = sorted(extra_f_names, key = lambda x: int(x.split('_')[-1])) |
|
assert len(extra_f_names)==3*(self.max_sh_degree + 1) ** 2 - 3 |
|
features_extra = np.zeros((xyz.shape[0], len(extra_f_names))) |
|
for idx, attr_name in enumerate(extra_f_names): |
|
features_extra[:, idx] = np.asarray(plydata.elements[0][attr_name]) |
|
|
|
features_extra = features_extra.reshape((features_extra.shape[0], 3, (self.max_sh_degree + 1) ** 2 - 1)) |
|
|
|
scale_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("scale_")] |
|
scale_names = sorted(scale_names, key = lambda x: int(x.split('_')[-1])) |
|
scales = np.zeros((xyz.shape[0], len(scale_names))) |
|
for idx, attr_name in enumerate(scale_names): |
|
scales[:, idx] = np.asarray(plydata.elements[0][attr_name]) |
|
|
|
rot_names = [p.name for p in plydata.elements[0].properties if p.name.startswith("rot")] |
|
rot_names = sorted(rot_names, key = lambda x: int(x.split('_')[-1])) |
|
rots = np.zeros((xyz.shape[0], len(rot_names))) |
|
for idx, attr_name in enumerate(rot_names): |
|
rots[:, idx] = np.asarray(plydata.elements[0][attr_name]) |
|
|
|
self._xyz = nn.Parameter(torch.tensor(xyz, dtype=torch.float, device="cuda").requires_grad_(True)) |
|
self._features_dc = nn.Parameter(torch.tensor(features_dc, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) |
|
self._features_rest = nn.Parameter(torch.tensor(features_extra, dtype=torch.float, device="cuda").transpose(1, 2).contiguous().requires_grad_(True)) |
|
self._opacity = nn.Parameter(torch.tensor(opacities, dtype=torch.float, device="cuda").requires_grad_(True)) |
|
self._scaling = nn.Parameter(torch.tensor(scales, dtype=torch.float, device="cuda").requires_grad_(True)) |
|
self._rotation = nn.Parameter(torch.tensor(rots, dtype=torch.float, device="cuda").requires_grad_(True)) |
|
|
|
self.active_sh_degree = self.max_sh_degree |
|
|
|
def replace_tensor_to_optimizer(self, tensor, name): |
|
optimizable_tensors = {} |
|
for group in self.optimizer.param_groups: |
|
if group["name"] == name: |
|
stored_state = self.optimizer.state.get(group['params'][0], None) |
|
stored_state["exp_avg"] = torch.zeros_like(tensor) |
|
stored_state["exp_avg_sq"] = torch.zeros_like(tensor) |
|
|
|
del self.optimizer.state[group['params'][0]] |
|
group["params"][0] = nn.Parameter(tensor.requires_grad_(True)) |
|
self.optimizer.state[group['params'][0]] = stored_state |
|
|
|
optimizable_tensors[group["name"]] = group["params"][0] |
|
return optimizable_tensors |
|
|
|
def _prune_optimizer(self, mask): |
|
optimizable_tensors = {} |
|
for group in self.optimizer.param_groups: |
|
stored_state = self.optimizer.state.get(group['params'][0], None) |
|
if stored_state is not None: |
|
stored_state["exp_avg"] = stored_state["exp_avg"][mask] |
|
stored_state["exp_avg_sq"] = stored_state["exp_avg_sq"][mask] |
|
|
|
del self.optimizer.state[group['params'][0]] |
|
group["params"][0] = nn.Parameter((group["params"][0][mask].requires_grad_(True))) |
|
self.optimizer.state[group['params'][0]] = stored_state |
|
|
|
optimizable_tensors[group["name"]] = group["params"][0] |
|
else: |
|
group["params"][0] = nn.Parameter(group["params"][0][mask].requires_grad_(True)) |
|
optimizable_tensors[group["name"]] = group["params"][0] |
|
return optimizable_tensors |
|
|
|
def prune_points(self, mask): |
|
valid_points_mask = ~mask |
|
optimizable_tensors = self._prune_optimizer(valid_points_mask) |
|
|
|
self._xyz = optimizable_tensors["xyz"] |
|
self._features_dc = optimizable_tensors["f_dc"] |
|
self._features_rest = optimizable_tensors["f_rest"] |
|
self._opacity = optimizable_tensors["opacity"] |
|
self._scaling = optimizable_tensors["scaling"] |
|
self._rotation = optimizable_tensors["rotation"] |
|
|
|
self.xyz_gradient_accum = self.xyz_gradient_accum[valid_points_mask] |
|
|
|
self.denom = self.denom[valid_points_mask] |
|
self.max_radii2D = self.max_radii2D[valid_points_mask] |
|
self.tmp_radii = self.tmp_radii[valid_points_mask] |
|
|
|
def cat_tensors_to_optimizer(self, tensors_dict): |
|
optimizable_tensors = {} |
|
for group in self.optimizer.param_groups: |
|
assert len(group["params"]) == 1 |
|
extension_tensor = tensors_dict[group["name"]] |
|
stored_state = self.optimizer.state.get(group['params'][0], None) |
|
if stored_state is not None: |
|
|
|
stored_state["exp_avg"] = torch.cat((stored_state["exp_avg"], torch.zeros_like(extension_tensor)), dim=0) |
|
stored_state["exp_avg_sq"] = torch.cat((stored_state["exp_avg_sq"], torch.zeros_like(extension_tensor)), dim=0) |
|
|
|
del self.optimizer.state[group['params'][0]] |
|
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) |
|
self.optimizer.state[group['params'][0]] = stored_state |
|
|
|
optimizable_tensors[group["name"]] = group["params"][0] |
|
else: |
|
group["params"][0] = nn.Parameter(torch.cat((group["params"][0], extension_tensor), dim=0).requires_grad_(True)) |
|
optimizable_tensors[group["name"]] = group["params"][0] |
|
|
|
return optimizable_tensors |
|
|
|
def densification_postfix(self, new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation, new_tmp_radii): |
|
d = {"xyz": new_xyz, |
|
"f_dc": new_features_dc, |
|
"f_rest": new_features_rest, |
|
"opacity": new_opacities, |
|
"scaling" : new_scaling, |
|
"rotation" : new_rotation} |
|
|
|
optimizable_tensors = self.cat_tensors_to_optimizer(d) |
|
self._xyz = optimizable_tensors["xyz"] |
|
self._features_dc = optimizable_tensors["f_dc"] |
|
self._features_rest = optimizable_tensors["f_rest"] |
|
self._opacity = optimizable_tensors["opacity"] |
|
self._scaling = optimizable_tensors["scaling"] |
|
self._rotation = optimizable_tensors["rotation"] |
|
|
|
self.tmp_radii = torch.cat((self.tmp_radii, new_tmp_radii)) |
|
self.xyz_gradient_accum = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") |
|
self.denom = torch.zeros((self.get_xyz.shape[0], 1), device="cuda") |
|
self.max_radii2D = torch.zeros((self.get_xyz.shape[0]), device="cuda") |
|
|
|
def densify_and_split(self, grads, grad_threshold, scene_extent, N=2): |
|
n_init_points = self.get_xyz.shape[0] |
|
|
|
padded_grad = torch.zeros((n_init_points), device="cuda") |
|
padded_grad[:grads.shape[0]] = grads.squeeze() |
|
selected_pts_mask = torch.where(padded_grad >= grad_threshold, True, False) |
|
selected_pts_mask = torch.logical_and(selected_pts_mask, |
|
torch.max(self.get_scaling, dim=1).values > self.percent_dense*scene_extent) |
|
|
|
stds = self.get_scaling[selected_pts_mask].repeat(N,1) |
|
means =torch.zeros((stds.size(0), 3),device="cuda") |
|
samples = torch.normal(mean=means, std=stds) |
|
rots = build_rotation(self._rotation[selected_pts_mask]).repeat(N,1,1) |
|
new_xyz = torch.bmm(rots, samples.unsqueeze(-1)).squeeze(-1) + self.get_xyz[selected_pts_mask].repeat(N, 1) |
|
new_scaling = self.scaling_inverse_activation(self.get_scaling[selected_pts_mask].repeat(N,1) / (0.8*N)) |
|
new_rotation = self._rotation[selected_pts_mask].repeat(N,1) |
|
new_features_dc = self._features_dc[selected_pts_mask].repeat(N,1,1) |
|
new_features_rest = self._features_rest[selected_pts_mask].repeat(N,1,1) |
|
new_opacity = self._opacity[selected_pts_mask].repeat(N,1) |
|
new_tmp_radii = self.tmp_radii[selected_pts_mask].repeat(N) |
|
|
|
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacity, new_scaling, new_rotation, new_tmp_radii) |
|
|
|
prune_filter = torch.cat((selected_pts_mask, torch.zeros(N * selected_pts_mask.sum(), device="cuda", dtype=bool))) |
|
self.prune_points(prune_filter) |
|
|
|
def densify_and_clone(self, grads, grad_threshold, scene_extent): |
|
|
|
selected_pts_mask = torch.where(torch.norm(grads, dim=-1) >= grad_threshold, True, False) |
|
selected_pts_mask = torch.logical_and(selected_pts_mask, |
|
torch.max(self.get_scaling, dim=1).values <= self.percent_dense*scene_extent) |
|
|
|
new_xyz = self._xyz[selected_pts_mask] |
|
new_features_dc = self._features_dc[selected_pts_mask] |
|
new_features_rest = self._features_rest[selected_pts_mask] |
|
new_opacities = self._opacity[selected_pts_mask] |
|
new_scaling = self._scaling[selected_pts_mask] |
|
new_rotation = self._rotation[selected_pts_mask] |
|
|
|
new_tmp_radii = self.tmp_radii[selected_pts_mask] |
|
|
|
self.densification_postfix(new_xyz, new_features_dc, new_features_rest, new_opacities, new_scaling, new_rotation, new_tmp_radii) |
|
|
|
def densify_and_prune(self, max_grad, min_opacity, extent, max_screen_size, radii): |
|
grads = self.xyz_gradient_accum / self.denom |
|
grads[grads.isnan()] = 0.0 |
|
|
|
self.tmp_radii = radii |
|
self.densify_and_clone(grads, max_grad, extent) |
|
self.densify_and_split(grads, max_grad, extent) |
|
|
|
prune_mask = (self.get_opacity < min_opacity).squeeze() |
|
if max_screen_size: |
|
big_points_vs = self.max_radii2D > max_screen_size |
|
big_points_ws = self.get_scaling.max(dim=1).values > 0.1 * extent |
|
prune_mask = torch.logical_or(torch.logical_or(prune_mask, big_points_vs), big_points_ws) |
|
self.prune_points(prune_mask) |
|
tmp_radii = self.tmp_radii |
|
self.tmp_radii = None |
|
|
|
torch.cuda.empty_cache() |
|
|
|
def add_densification_stats(self, viewspace_point_tensor, update_filter): |
|
self.xyz_gradient_accum[update_filter] += torch.norm(viewspace_point_tensor.grad[update_filter,:2], dim=-1, keepdim=True) |
|
self.denom[update_filter] += 1 |
|
|