restore old version
Browse files
main.py
CHANGED
@@ -24,7 +24,6 @@ try:
|
|
24 |
import sys
|
25 |
sys.path.append('../submodules/RoMa') # Ajusta esta ruta si es necesario
|
26 |
from romatch import roma_indoor
|
27 |
-
import trimesh # <-- A脩ADIDO: Importaci贸n necesaria para la conversi贸n
|
28 |
except ImportError as e:
|
29 |
print(f"Error: No se pudieron importar los m贸dulos del proyecto EDGS. Aseg煤rate de que las rutas y la instalaci贸n son correctas. {e}")
|
30 |
sys.exit(1)
|
@@ -33,12 +32,15 @@ except ImportError as e:
|
|
33 |
# 1. Inicializaci贸n de la App FastAPI
|
34 |
app = FastAPI(
|
35 |
title="EDGS Training API",
|
36 |
-
description="Una API para preprocesar videos
|
37 |
-
version="1.
|
38 |
)
|
39 |
|
40 |
# 2. Variables Globales y Almacenamiento de Estado
|
|
|
41 |
roma_model = None
|
|
|
|
|
42 |
tasks_db = {}
|
43 |
|
44 |
# 3. Modelos Pydantic para la validaci贸n de datos
|
@@ -50,20 +52,11 @@ class PreprocessResponse(BaseModel):
|
|
50 |
task_id: str
|
51 |
message: str
|
52 |
selected_frames_count: int
|
|
|
|
|
53 |
|
54 |
# --- L贸gica de Negocio (Adaptada del script de Gradio) ---
|
55 |
|
56 |
-
def convert_ply_to_glb(ply_path: str) -> str:
|
57 |
-
"""
|
58 |
-
Carga el PLY con trimesh y lo exporta como GLB (glTF binario).
|
59 |
-
"""
|
60 |
-
# Generar ruta .glb basada en .ply
|
61 |
-
glb_path = os.path.splitext(ply_path)[0] + ".glb"
|
62 |
-
# Cargar y exportar
|
63 |
-
mesh = trimesh.load(ply_path, force='mesh')
|
64 |
-
mesh.export(glb_path)
|
65 |
-
return glb_path
|
66 |
-
|
67 |
# Esta funci贸n se ejecutar谩 en un hilo separado para no bloquear el servidor
|
68 |
def run_preprocessing_sync(input_path: str, num_ref_views: int):
|
69 |
"""
|
@@ -87,10 +80,12 @@ def run_preprocessing_sync(input_path: str, num_ref_views: int):
|
|
87 |
|
88 |
async def training_log_generator(scene_dir: str, num_ref_views: int, params: TrainParams, task_id: str):
|
89 |
"""
|
90 |
-
Un generador as铆ncrono que ejecuta el entrenamiento
|
|
|
91 |
"""
|
92 |
def training_pipeline():
|
93 |
try:
|
|
|
94 |
with initialize(config_path="./configs", version_base="1.1"):
|
95 |
cfg = compose(config_name="train")
|
96 |
|
@@ -123,30 +118,32 @@ async def training_log_generator(scene_dir: str, num_ref_views: int, params: Tra
|
|
123 |
trainer.evaluate_iterations = []
|
124 |
trainer.timer.start()
|
125 |
|
|
|
126 |
yield "data: Inicializando modelo...\n\n"
|
127 |
trainer.init_with_corr(cfg.init_wC, roma_model=roma_model)
|
128 |
|
|
|
129 |
for step in range(int(params.num_steps // 10)):
|
130 |
cfg.train.gs_epochs = 10
|
|
|
131 |
trainer.train(cfg.train)
|
|
|
|
|
|
|
132 |
yield f"data: Progreso: {step*10+10}/{params.num_steps} pasos completados.\n\n"
|
133 |
|
134 |
trainer.save_model()
|
135 |
ply_path = os.path.join(cfg.gs.dataset.model_path, f"point_cloud/iteration_{trainer.gs_step}/point_cloud.ply")
|
136 |
|
137 |
-
# --- CAMBIO CLAVE: Conversi贸n a GLB y almacenamiento de ambas rutas ---
|
138 |
-
yield "data: Convirtiendo modelo a formato GLB...\n\n"
|
139 |
-
glb_path = convert_ply_to_glb(ply_path)
|
140 |
-
|
141 |
tasks_db[task_id]['result_ply_path'] = ply_path
|
142 |
-
|
143 |
-
|
144 |
-
final_message = "Entrenamiento y conversi贸n completados. El modelo est谩 listo para descargar."
|
145 |
yield f"data: {final_message}\n\n"
|
146 |
|
147 |
except Exception as e:
|
148 |
yield f"data: ERROR: {repr(e)}\n\n"
|
149 |
|
|
|
150 |
training_gen = training_pipeline()
|
151 |
for log_message in training_gen:
|
152 |
yield log_message
|
@@ -186,22 +183,24 @@ async def preprocess_video(
|
|
186 |
if not video.filename.lower().endswith(('.mp4', '.avi', '.mov')):
|
187 |
raise HTTPException(status_code=400, detail="Formato de archivo no soportado. Usa .mp4, .avi, o .mov.")
|
188 |
|
|
|
189 |
with tempfile.NamedTemporaryFile(delete=False, suffix=video.filename) as tmp_video:
|
190 |
shutil.copyfileobj(video.file, tmp_video)
|
191 |
tmp_video_path = tmp_video.name
|
192 |
|
193 |
try:
|
194 |
loop = asyncio.get_running_loop()
|
|
|
195 |
scene_dir, selected_frames = await loop.run_in_executor(
|
196 |
None, run_preprocessing_sync, tmp_video_path, num_ref_views
|
197 |
)
|
198 |
|
|
|
199 |
task_id = str(uuid.uuid4())
|
200 |
tasks_db[task_id] = {
|
201 |
"scene_dir": scene_dir,
|
202 |
"num_ref_views": len(selected_frames),
|
203 |
-
"result_ply_path": None
|
204 |
-
"result_glb_path": None # <-- A脩ADIDO: Inicializar ruta GLB
|
205 |
}
|
206 |
|
207 |
return JSONResponse(
|
@@ -215,15 +214,17 @@ async def preprocess_video(
|
|
215 |
except Exception as e:
|
216 |
raise HTTPException(status_code=500, detail=f"Error durante el preprocesamiento: {e}")
|
217 |
finally:
|
218 |
-
os.unlink(tmp_video_path)
|
|
|
219 |
|
220 |
@app.post("/train/{task_id}")
|
221 |
async def train_model(task_id: str, params: TrainParams):
|
222 |
"""
|
223 |
-
Inicia el entrenamiento para una tarea preprocesada.
|
|
|
224 |
"""
|
225 |
if task_id not in tasks_db:
|
226 |
-
raise HTTPException(status_code=404, detail="Task ID no encontrado.
|
227 |
|
228 |
task_info = tasks_db[task_id]
|
229 |
scene_dir = task_info["scene_dir"]
|
@@ -234,7 +235,7 @@ async def train_model(task_id: str, params: TrainParams):
|
|
234 |
media_type="text/event-stream"
|
235 |
)
|
236 |
|
237 |
-
@app.get("/download
|
238 |
async def download_ply_file(task_id: str):
|
239 |
"""
|
240 |
Permite descargar el archivo .ply resultante de un entrenamiento completado.
|
@@ -246,42 +247,20 @@ async def download_ply_file(task_id: str):
|
|
246 |
ply_path = task_info.get("result_ply_path")
|
247 |
|
248 |
if not ply_path:
|
249 |
-
raise HTTPException(status_code=404, detail="El entrenamiento no ha finalizado o el archivo
|
250 |
|
251 |
if not os.path.exists(ply_path):
|
252 |
-
raise HTTPException(status_code=500, detail="Error: El archivo del modelo
|
253 |
|
|
|
254 |
file_name = f"model_{task_id[:8]}.ply"
|
|
|
255 |
return FileResponse(
|
256 |
path=ply_path,
|
257 |
media_type='application/octet-stream',
|
258 |
filename=file_name
|
259 |
)
|
260 |
|
261 |
-
@app.get("/download-glb/{task_id}")
|
262 |
-
async def download_glb_file(task_id: str):
|
263 |
-
"""
|
264 |
-
Permite descargar el archivo .glb resultante de un entrenamiento completado.
|
265 |
-
"""
|
266 |
-
if task_id not in tasks_db:
|
267 |
-
raise HTTPException(status_code=404, detail="Task ID no encontrado.")
|
268 |
-
|
269 |
-
task_info = tasks_db[task_id]
|
270 |
-
glb_path = task_info.get("result_glb_path")
|
271 |
-
|
272 |
-
if not glb_path:
|
273 |
-
raise HTTPException(status_code=404, detail="El entrenamiento no ha finalizado o el archivo GLB a煤n no est谩 disponible.")
|
274 |
-
|
275 |
-
if not os.path.exists(glb_path):
|
276 |
-
raise HTTPException(status_code=500, detail="Error: El archivo del modelo GLB no se encuentra en el servidor.")
|
277 |
-
|
278 |
-
file_name = f"model_{task_id[:8]}.glb"
|
279 |
-
return FileResponse(
|
280 |
-
path=glb_path,
|
281 |
-
media_type='model/gltf-binary',
|
282 |
-
filename=file_name
|
283 |
-
)
|
284 |
-
|
285 |
if __name__ == "__main__":
|
286 |
import uvicorn
|
287 |
# Para ejecutar: uvicorn main:app --reload
|
|
|
24 |
import sys
|
25 |
sys.path.append('../submodules/RoMa') # Ajusta esta ruta si es necesario
|
26 |
from romatch import roma_indoor
|
|
|
27 |
except ImportError as e:
|
28 |
print(f"Error: No se pudieron importar los m贸dulos del proyecto EDGS. Aseg煤rate de que las rutas y la instalaci贸n son correctas. {e}")
|
29 |
sys.exit(1)
|
|
|
32 |
# 1. Inicializaci贸n de la App FastAPI
|
33 |
app = FastAPI(
|
34 |
title="EDGS Training API",
|
35 |
+
description="Una API para preprocesar videos y entrenar modelos 3DGS con EDGS.",
|
36 |
+
version="1.0.0"
|
37 |
)
|
38 |
|
39 |
# 2. Variables Globales y Almacenamiento de Estado
|
40 |
+
# El modelo se cargar谩 en el evento 'startup'
|
41 |
roma_model = None
|
42 |
+
|
43 |
+
# Base de datos en memoria para gestionar el estado de las tareas entre endpoints
|
44 |
tasks_db = {}
|
45 |
|
46 |
# 3. Modelos Pydantic para la validaci贸n de datos
|
|
|
52 |
task_id: str
|
53 |
message: str
|
54 |
selected_frames_count: int
|
55 |
+
# Opcional: podr铆as devolver las im谩genes en base64 si el cliente las necesita visualizar
|
56 |
+
# frames: list[str]
|
57 |
|
58 |
# --- L贸gica de Negocio (Adaptada del script de Gradio) ---
|
59 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
# Esta funci贸n se ejecutar谩 en un hilo separado para no bloquear el servidor
|
61 |
def run_preprocessing_sync(input_path: str, num_ref_views: int):
|
62 |
"""
|
|
|
80 |
|
81 |
async def training_log_generator(scene_dir: str, num_ref_views: int, params: TrainParams, task_id: str):
|
82 |
"""
|
83 |
+
Un generador as铆ncrono que ejecuta el entrenamiento. Los logs detallados se muestran
|
84 |
+
en la terminal del servidor, mientras que el cliente recibe un stream de progreso simple.
|
85 |
"""
|
86 |
def training_pipeline():
|
87 |
try:
|
88 |
+
# La inicializaci贸n y configuraci贸n de Hydra se mantienen igual
|
89 |
with initialize(config_path="./configs", version_base="1.1"):
|
90 |
cfg = compose(config_name="train")
|
91 |
|
|
|
118 |
trainer.evaluate_iterations = []
|
119 |
trainer.timer.start()
|
120 |
|
121 |
+
# Mensaje de progreso para el cliente antes de la inicializaci贸n
|
122 |
yield "data: Inicializando modelo...\n\n"
|
123 |
trainer.init_with_corr(cfg.init_wC, roma_model=roma_model)
|
124 |
|
125 |
+
# El bucle de entrenamiento principal
|
126 |
for step in range(int(params.num_steps // 10)):
|
127 |
cfg.train.gs_epochs = 10
|
128 |
+
# trainer.train() ahora imprimir谩 sus logs detallados directamente en la terminal
|
129 |
trainer.train(cfg.train)
|
130 |
+
|
131 |
+
# --- CAMBIO CLAVE ---
|
132 |
+
# Env铆a un mensaje de progreso simple al cliente en lugar de los logs capturados.
|
133 |
yield f"data: Progreso: {step*10+10}/{params.num_steps} pasos completados.\n\n"
|
134 |
|
135 |
trainer.save_model()
|
136 |
ply_path = os.path.join(cfg.gs.dataset.model_path, f"point_cloud/iteration_{trainer.gs_step}/point_cloud.ply")
|
137 |
|
|
|
|
|
|
|
|
|
138 |
tasks_db[task_id]['result_ply_path'] = ply_path
|
139 |
+
|
140 |
+
final_message = "Entrenamiento completado. El modelo est谩 listo para descargar."
|
|
|
141 |
yield f"data: {final_message}\n\n"
|
142 |
|
143 |
except Exception as e:
|
144 |
yield f"data: ERROR: {repr(e)}\n\n"
|
145 |
|
146 |
+
# El bucle que llama a la pipeline se mantiene igual
|
147 |
training_gen = training_pipeline()
|
148 |
for log_message in training_gen:
|
149 |
yield log_message
|
|
|
183 |
if not video.filename.lower().endswith(('.mp4', '.avi', '.mov')):
|
184 |
raise HTTPException(status_code=400, detail="Formato de archivo no soportado. Usa .mp4, .avi, o .mov.")
|
185 |
|
186 |
+
# Guarda el video temporalmente para que la librer铆a pueda procesarlo
|
187 |
with tempfile.NamedTemporaryFile(delete=False, suffix=video.filename) as tmp_video:
|
188 |
shutil.copyfileobj(video.file, tmp_video)
|
189 |
tmp_video_path = tmp_video.name
|
190 |
|
191 |
try:
|
192 |
loop = asyncio.get_running_loop()
|
193 |
+
# Ejecuta la funci贸n s铆ncrona y bloqueante en un executor para no bloquear el servidor
|
194 |
scene_dir, selected_frames = await loop.run_in_executor(
|
195 |
None, run_preprocessing_sync, tmp_video_path, num_ref_views
|
196 |
)
|
197 |
|
198 |
+
# Genera un ID 煤nico para esta tarea y guarda la ruta
|
199 |
task_id = str(uuid.uuid4())
|
200 |
tasks_db[task_id] = {
|
201 |
"scene_dir": scene_dir,
|
202 |
"num_ref_views": len(selected_frames),
|
203 |
+
"result_ply_path": None
|
|
|
204 |
}
|
205 |
|
206 |
return JSONResponse(
|
|
|
214 |
except Exception as e:
|
215 |
raise HTTPException(status_code=500, detail=f"Error durante el preprocesamiento: {e}")
|
216 |
finally:
|
217 |
+
os.unlink(tmp_video_path) # Limpia el archivo de video temporal
|
218 |
+
|
219 |
|
220 |
@app.post("/train/{task_id}")
|
221 |
async def train_model(task_id: str, params: TrainParams):
|
222 |
"""
|
223 |
+
Inicia el entrenamiento para una tarea preprocesada.
|
224 |
+
Devuelve un stream de logs en tiempo real.
|
225 |
"""
|
226 |
if task_id not in tasks_db:
|
227 |
+
raise HTTPException(status_code=404, detail="Task ID no encontrado. Por favor, ejecuta el preprocesamiento primero.")
|
228 |
|
229 |
task_info = tasks_db[task_id]
|
230 |
scene_dir = task_info["scene_dir"]
|
|
|
235 |
media_type="text/event-stream"
|
236 |
)
|
237 |
|
238 |
+
@app.get("/download/{task_id}")
|
239 |
async def download_ply_file(task_id: str):
|
240 |
"""
|
241 |
Permite descargar el archivo .ply resultante de un entrenamiento completado.
|
|
|
247 |
ply_path = task_info.get("result_ply_path")
|
248 |
|
249 |
if not ply_path:
|
250 |
+
raise HTTPException(status_code=404, detail="El entrenamiento no ha finalizado o el archivo a煤n no est谩 disponible.")
|
251 |
|
252 |
if not os.path.exists(ply_path):
|
253 |
+
raise HTTPException(status_code=500, detail="Error: El archivo del modelo no se encuentra en el servidor.")
|
254 |
|
255 |
+
# Generamos un nombre de archivo amigable para el usuario
|
256 |
file_name = f"model_{task_id[:8]}.ply"
|
257 |
+
|
258 |
return FileResponse(
|
259 |
path=ply_path,
|
260 |
media_type='application/octet-stream',
|
261 |
filename=file_name
|
262 |
)
|
263 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
264 |
if __name__ == "__main__":
|
265 |
import uvicorn
|
266 |
# Para ejecutar: uvicorn main:app --reload
|