Spaces:
Configuration error
Configuration error
| import os | |
| import warnings | |
| import cv2 | |
| import numpy as np | |
| import torch | |
| from PIL import Image | |
| from custom_controlnet_aux.util import HWC3, common_input_validate, resize_image_with_pad, custom_hf_download, HF_MODEL_NAME | |
| from .models.mbv2_mlsd_large import MobileV2_MLSD_Large | |
| from .utils import pred_lines | |
| class MLSDdetector: | |
| def __init__(self, model): | |
| self.model = model | |
| def from_pretrained(cls, pretrained_model_or_path=HF_MODEL_NAME, filename="mlsd_large_512_fp32.pth"): | |
| subfolder = "annotator/ckpts" if pretrained_model_or_path == "lllyasviel/ControlNet" else '' | |
| model_path = custom_hf_download(pretrained_model_or_path, filename, subfolder=subfolder) | |
| model = MobileV2_MLSD_Large() | |
| model.load_state_dict(torch.load(model_path), strict=True) | |
| model.eval() | |
| return cls(model) | |
| def to(self, device): | |
| self.model.to(device) | |
| return self | |
| def __call__(self, input_image, thr_v=0.1, thr_d=0.1, detect_resolution=512, output_type="pil", upscale_method="INTER_AREA", **kwargs): | |
| input_image, output_type = common_input_validate(input_image, output_type, **kwargs) | |
| detected_map, remove_pad = resize_image_with_pad(input_image, detect_resolution, upscale_method) | |
| img = detected_map | |
| img_output = np.zeros_like(img) | |
| try: | |
| with torch.no_grad(): | |
| lines = pred_lines(img, self.model, [img.shape[0], img.shape[1]], thr_v, thr_d) | |
| for line in lines: | |
| x_start, y_start, x_end, y_end = [int(val) for val in line] | |
| cv2.line(img_output, (x_start, y_start), (x_end, y_end), [255, 255, 255], 1) | |
| except Exception as e: | |
| pass | |
| detected_map = remove_pad(HWC3(img_output[:, :, 0])) | |
| if output_type == "pil": | |
| detected_map = Image.fromarray(detected_map) | |
| return detected_map | |