JasonSmithSO's picture
Upload 211 files
af12fb4 verified
{
"MarigoldModelLoader": {
"title": "Marigold模型加载器",
"widgets": {
"model": "模型"
},
"outputs": {
"marigold_model": "Marigold模型"
},
"description": "\n基于扩散的单目深度推算: \nhttps://github.com/prs-eth/Marigold  \n  \n使用 Diffusers 0.28.0 Marigold 管线。模型会自动下载到 ComfyUI/Models/diffusers 文件夹内"
},
"MarigoldDepthEstimation_v2": {
"title": "Marigold_v2深度推算",
"inputs": {
"marigold_model": "模型",
"image": "图像"
},
"widgets": {
"seed": "随机种",
"control_before_generate": "运行前操作",
"denoise_steps": "步数",
"n_repeat": "重复次数",
"ensemble_size": "整体尺寸",
"processing_resolution": "处理分辨率",
"scheduler": "调度器",
"use_taesd_vae": "使用TAESD_VAE"
},
"outputs": {
"image": "图像"
},
"description": "\n基于扩散的单目深度推算: \nhttps://github.com/prs-eth/Marigold  \n  \n使用 Diffusers 0.28.0 Marigold 管线。"
},
"MarigoldDepthEstimation_v2_Video": {
"title": "Marigold_v2深度推算视频",
"inputs": {
"marigold_model": "Marigold模型",
"image": "图像"
},
"widgets": {
"seed": "随机种",
"control_before_generate": "运行前操作",
"denoise_steps": "步数",
"processing_resolution": "处理分辨率",
"scheduler": "调度器",
"blend_factor": "混合系数",
"use_taesd_vae": "使用TAESD_VAE"
},
"outputs": {
"image": "图像"
},
"description": "\n基于扩散的单目深度推算: \nhttps://github.com/prs-eth/Marigold  \n  \n使用 Diffusers 0.28.0 Marigold 管线。\n这个节点使用上一帧作为初始Latent,用以平滑视频。"
},
"MarigoldDepthEstimation": {
"title": "Marigold深度推算",
"inputs": {
"image": "图像"
},
"widgets": {
"seed": "随机种",
"control_before_generate": "运行前操作",
"denoise_steps": "步数",
"n_repeat": "重复次数",
"regularizer_strength": "规格化强度",
"reduction_method": "限制方法",
"max_iter": "最大迭代数",
"tol": "容错值",
"invert": "反转",
"keep_model_loaded": "保持模型加载",
"n_repeat_batch_size": "重复次数批次",
"use_fp16": "使用fp16",
"scheduler": "调度器",
"normalize": "规格化",
"model": "模型"
},
"outputs": {
"ensembled_image": "图像"
},
"description": "\n基于扩散的单目深度推算: https://github.com/prs-eth/Marigold  \n  \n- 步数:每个深度图的步数,提升该值会用时间换取准确度\n- 重复次数:每个深度图的迭代次数\n- 重复次数批次:每个批次中的重复次数值, 如果你有足够的VRAM可以将该值设为与重复次数相同以提升速度  \n- 模型:Marigold 或它的 LCM 版本 marigold-lcm-v1-0,LCM模型需要约 4 步数并使用LCM调度器  \n- 调度器:不同的调度算法会得出不同结果  \n- 反转:marigold默认以黑色为近景,使用ControlNet或其他工具时需要反转  \n- 规格化强度,限制方法,最大迭代数,容错值 是用于整体流程的设置,通常情况下不要更改 \n- 使用fp16:设置为真时使用 fp16,设置为否时使用 fp32,fp16 需求VRAM更少但可能会降低图像质量 \n"
},
"MarigoldDepthEstimationVideo": {
"title": "Marigold深度推算视频",
"inputs": {
"image": "图像"
},
"widgets": {
"seed": "随机种",
"control_before_generate": "运行前操作",
"denoise_steps": "步数",
"first_frame_denoise_steps": "第一帧降噪步数",
"first_frame_n_repeat": "第一帧重复次数",
"n_repeat": "重复次数",
"regularizer_strength": "规格化强度",
"reduction_method": "限制方法",
"max_iter": "最大迭代数",
"tol": "容错值",
"invert": "反转",
"keep_model_loaded": "保持模型加载",
"n_repeat_batch_size": "重复次数批次",
"use_fp16": "使用fp16",
"scheduler": "调度器",
"normalize": "规格化",
"model": "模型"
},
"outputs": {
"ensembled_image": "图像"
},
"description": "\n基于扩散的单目深度推算: https://github.com/prs-eth/Marigold \n\n这个节点是用于维持序列帧一致性包含光流的实验性节点。 \n\n- 步数:每个深度图的步数,提升该值会用时间换取准确度\n- 重复次数:每个深度图的迭代次数\n- 重复次数批次:每个批次中的重复次数值, 如果你有足够的VRAM可以将该值设为与重复次数相同以提升速度 \n- 模型:Marigold 或它的 LCM 版本 marigold-lcm-v1-0,LCM模型需要约 4 步数并使用LCM调度器 \n- 调度器:不同的调度算法会得出不同结果 \n- 反转:marigold默认以黑色为近景,使用ControlNet或其他工具时需要反转 \n- 规格化强度,限制方法,最大迭代数,容错值 是用于整体流程的设置,通常情况下不要更改 \n"
},
"ColorizeDepthmap": {
"title": "深度图上色",
"inputs": {
"image": "图像"
},
"widgets": {
"colorize_method": "上色方法"
},
"outputs": {
"image": "图像"
}
},
"SaveImageOpenEXR": {
"title": "保存图像为EXR",
"inputs": {
"images": "图像"
},
"widgets": {
"filename_prefix": "文件名前缀"
},
"outputs": {
"file_url": "文件URL"
}
},
"RemapDepth": {
"title": "重映射深度",
"inputs": {
"image": "图像"
},
"widgets": {
"min": "最小值",
"max": "最大值",
"clamp": "钳制"
},
"outputs": {
"IMAGE": "图像"
}
}
}