Spaces:
Configuration error
Configuration error
| from typing import Callable, Union | |
| import math | |
| import torch | |
| from torch import Tensor | |
| import comfy.sample | |
| import comfy.model_patcher | |
| import comfy.utils | |
| from comfy.controlnet import ControlBase | |
| from comfy.model_patcher import ModelPatcher | |
| from comfy.ldm.modules.attention import BasicTransformerBlock | |
| from comfy.ldm.modules.diffusionmodules import openaimodel | |
| from .logger import logger | |
| from .utils import (AdvancedControlBase, ControlWeights, TimestepKeyframeGroup, AbstractPreprocWrapper, | |
| deepcopy_with_sharing, prepare_mask_batch, broadcast_image_to_full) | |
| def refcn_sample_factory(orig_comfy_sample: Callable, is_custom=False) -> Callable: | |
| def get_refcn(control: ControlBase, order: int=-1): | |
| ref_set: set[ReferenceAdvanced] = set() | |
| if control is None: | |
| return ref_set | |
| if type(control) == ReferenceAdvanced: | |
| control.order = order | |
| order -= 1 | |
| ref_set.add(control) | |
| ref_set.update(get_refcn(control.previous_controlnet, order=order)) | |
| return ref_set | |
| def refcn_sample(model: ModelPatcher, *args, **kwargs): | |
| # check if positive or negative conds contain ref cn | |
| positive = args[-3] | |
| negative = args[-2] | |
| ref_set = set() | |
| if positive is not None: | |
| for cond in positive: | |
| if "control" in cond[1]: | |
| ref_set.update(get_refcn(cond[1]["control"])) | |
| if negative is not None: | |
| for cond in negative: | |
| if "control" in cond[1]: | |
| ref_set.update(get_refcn(cond[1]["control"])) | |
| # if no ref cn found, do original function immediately | |
| if len(ref_set) == 0: | |
| return orig_comfy_sample(model, *args, **kwargs) | |
| # otherwise, injection time | |
| try: | |
| # inject | |
| # storage for all Reference-related injections | |
| reference_injections = ReferenceInjections() | |
| # first, handle attn module injection | |
| all_modules = torch_dfs(model.model) | |
| attn_modules: list[RefBasicTransformerBlock] = [] | |
| for module in all_modules: | |
| if isinstance(module, BasicTransformerBlock): | |
| attn_modules.append(module) | |
| attn_modules = [module for module in all_modules if isinstance(module, BasicTransformerBlock)] | |
| attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0]) | |
| for i, module in enumerate(attn_modules): | |
| injection_holder = InjectionBasicTransformerBlockHolder(block=module, idx=i) | |
| injection_holder.attn_weight = float(i) / float(len(attn_modules)) | |
| if hasattr(module, "_forward"): # backward compatibility | |
| module._forward = _forward_inject_BasicTransformerBlock.__get__(module, type(module)) | |
| else: | |
| module.forward = _forward_inject_BasicTransformerBlock.__get__(module, type(module)) | |
| module.injection_holder = injection_holder | |
| reference_injections.attn_modules.append(module) | |
| # figure out which module is middle block | |
| if hasattr(model.model.diffusion_model, "middle_block"): | |
| mid_modules = torch_dfs(model.model.diffusion_model.middle_block) | |
| mid_attn_modules: list[RefBasicTransformerBlock] = [module for module in mid_modules if isinstance(module, BasicTransformerBlock)] | |
| for module in mid_attn_modules: | |
| module.injection_holder.is_middle = True | |
| # next, handle gn module injection (TimestepEmbedSequential) | |
| # TODO: figure out the logic behind these hardcoded indexes | |
| if type(model.model).__name__ == "SDXL": | |
| input_block_indices = [4, 5, 7, 8] | |
| output_block_indices = [0, 1, 2, 3, 4, 5] | |
| else: | |
| input_block_indices = [4, 5, 7, 8, 10, 11] | |
| output_block_indices = [0, 1, 2, 3, 4, 5, 6, 7] | |
| if hasattr(model.model.diffusion_model, "middle_block"): | |
| module = model.model.diffusion_model.middle_block | |
| injection_holder = InjectionTimestepEmbedSequentialHolder(block=module, idx=0, is_middle=True) | |
| injection_holder.gn_weight = 0.0 | |
| module.injection_holder = injection_holder | |
| reference_injections.gn_modules.append(module) | |
| for w, i in enumerate(input_block_indices): | |
| module = model.model.diffusion_model.input_blocks[i] | |
| injection_holder = InjectionTimestepEmbedSequentialHolder(block=module, idx=i, is_input=True) | |
| injection_holder.gn_weight = 1.0 - float(w) / float(len(input_block_indices)) | |
| module.injection_holder = injection_holder | |
| reference_injections.gn_modules.append(module) | |
| for w, i in enumerate(output_block_indices): | |
| module = model.model.diffusion_model.output_blocks[i] | |
| injection_holder = InjectionTimestepEmbedSequentialHolder(block=module, idx=i, is_output=True) | |
| injection_holder.gn_weight = float(w) / float(len(output_block_indices)) | |
| module.injection_holder = injection_holder | |
| reference_injections.gn_modules.append(module) | |
| # hack gn_module forwards and update weights | |
| for i, module in enumerate(reference_injections.gn_modules): | |
| module.injection_holder.gn_weight *= 2 | |
| # handle diffusion_model forward injection | |
| reference_injections.diffusion_model_orig_forward = model.model.diffusion_model.forward | |
| model.model.diffusion_model.forward = factory_forward_inject_UNetModel(reference_injections).__get__(model.model.diffusion_model, type(model.model.diffusion_model)) | |
| # store ordered ref cns in model's transformer options | |
| orig_model_options = model.model_options | |
| new_model_options = model.model_options.copy() | |
| new_model_options["transformer_options"] = model.model_options["transformer_options"].copy() | |
| ref_list: list[ReferenceAdvanced] = list(ref_set) | |
| new_model_options["transformer_options"][REF_CONTROL_LIST_ALL] = sorted(ref_list, key=lambda x: x.order) | |
| model.model_options = new_model_options | |
| # continue with original function | |
| return orig_comfy_sample(model, *args, **kwargs) | |
| finally: | |
| # cleanup injections | |
| # restore attn modules | |
| attn_modules: list[RefBasicTransformerBlock] = reference_injections.attn_modules | |
| for module in attn_modules: | |
| module.injection_holder.restore(module) | |
| module.injection_holder.clean() | |
| del module.injection_holder | |
| del attn_modules | |
| # restore gn modules | |
| gn_modules: list[RefTimestepEmbedSequential] = reference_injections.gn_modules | |
| for module in gn_modules: | |
| module.injection_holder.restore(module) | |
| module.injection_holder.clean() | |
| del module.injection_holder | |
| del gn_modules | |
| # restore diffusion_model forward function | |
| model.model.diffusion_model.forward = reference_injections.diffusion_model_orig_forward.__get__(model.model.diffusion_model, type(model.model.diffusion_model)) | |
| # restore model_options | |
| model.model_options = orig_model_options | |
| # cleanup | |
| reference_injections.cleanup() | |
| return refcn_sample | |
| # inject sample functions | |
| comfy.sample.sample = refcn_sample_factory(comfy.sample.sample) | |
| comfy.sample.sample_custom = refcn_sample_factory(comfy.sample.sample_custom, is_custom=True) | |
| REF_ATTN_CONTROL_LIST = "ref_attn_control_list" | |
| REF_ADAIN_CONTROL_LIST = "ref_adain_control_list" | |
| REF_CONTROL_LIST_ALL = "ref_control_list_all" | |
| REF_CONTROL_INFO = "ref_control_info" | |
| REF_ATTN_MACHINE_STATE = "ref_attn_machine_state" | |
| REF_ADAIN_MACHINE_STATE = "ref_adain_machine_state" | |
| REF_COND_IDXS = "ref_cond_idxs" | |
| REF_UNCOND_IDXS = "ref_uncond_idxs" | |
| class MachineState: | |
| WRITE = "write" | |
| READ = "read" | |
| STYLEALIGN = "stylealign" | |
| OFF = "off" | |
| class ReferenceType: | |
| ATTN = "reference_attn" | |
| ADAIN = "reference_adain" | |
| ATTN_ADAIN = "reference_attn+adain" | |
| STYLE_ALIGN = "StyleAlign" | |
| _LIST = [ATTN, ADAIN, ATTN_ADAIN] | |
| _LIST_ATTN = [ATTN, ATTN_ADAIN] | |
| _LIST_ADAIN = [ADAIN, ATTN_ADAIN] | |
| def is_attn(cls, ref_type: str): | |
| return ref_type in cls._LIST_ATTN | |
| def is_adain(cls, ref_type: str): | |
| return ref_type in cls._LIST_ADAIN | |
| class ReferenceOptions: | |
| def __init__(self, reference_type: str, | |
| attn_style_fidelity: float, adain_style_fidelity: float, | |
| attn_ref_weight: float, adain_ref_weight: float, | |
| attn_strength: float=1.0, adain_strength: float=1.0, | |
| ref_with_other_cns: bool=False): | |
| self.reference_type = reference_type | |
| # attn | |
| self.original_attn_style_fidelity = attn_style_fidelity | |
| self.attn_style_fidelity = attn_style_fidelity | |
| self.attn_ref_weight = attn_ref_weight | |
| self.attn_strength = attn_strength | |
| # adain | |
| self.original_adain_style_fidelity = adain_style_fidelity | |
| self.adain_style_fidelity = adain_style_fidelity | |
| self.adain_ref_weight = adain_ref_weight | |
| self.adain_strength = adain_strength | |
| # other | |
| self.ref_with_other_cns = ref_with_other_cns | |
| def clone(self): | |
| return ReferenceOptions(reference_type=self.reference_type, | |
| attn_style_fidelity=self.original_attn_style_fidelity, adain_style_fidelity=self.original_adain_style_fidelity, | |
| attn_ref_weight=self.attn_ref_weight, adain_ref_weight=self.adain_ref_weight, | |
| attn_strength=self.attn_strength, adain_strength=self.adain_strength, | |
| ref_with_other_cns=self.ref_with_other_cns) | |
| def create_combo(reference_type: str, style_fidelity: float, ref_weight: float, ref_with_other_cns: bool=False): | |
| return ReferenceOptions(reference_type=reference_type, | |
| attn_style_fidelity=style_fidelity, adain_style_fidelity=style_fidelity, | |
| attn_ref_weight=ref_weight, adain_ref_weight=ref_weight, | |
| ref_with_other_cns=ref_with_other_cns) | |
| class ReferencePreprocWrapper(AbstractPreprocWrapper): | |
| error_msg = error_msg = "Invalid use of Reference Preprocess output. The output of RGB SparseCtrl preprocessor is NOT a usual image, but a latent pretending to be an image - you must connect the output directly to an Apply Advanced ControlNet node. It cannot be used for anything else that accepts IMAGE input." | |
| def __init__(self, condhint: Tensor): | |
| super().__init__(condhint) | |
| class ReferenceAdvanced(ControlBase, AdvancedControlBase): | |
| CHANNEL_TO_MULT = {320: 1, 640: 2, 1280: 4} | |
| def __init__(self, ref_opts: ReferenceOptions, timestep_keyframes: TimestepKeyframeGroup, device=None): | |
| super().__init__(device) | |
| AdvancedControlBase.__init__(self, super(), timestep_keyframes=timestep_keyframes, weights_default=ControlWeights.controllllite()) | |
| self.ref_opts = ref_opts | |
| self.order = 0 | |
| self.latent_format = None | |
| self.model_sampling_current = None | |
| self.should_apply_attn_effective_strength = False | |
| self.should_apply_adain_effective_strength = False | |
| self.should_apply_effective_masks = False | |
| self.latent_shape = None | |
| def any_attn_strength_to_apply(self): | |
| return self.should_apply_attn_effective_strength or self.should_apply_effective_masks | |
| def any_adain_strength_to_apply(self): | |
| return self.should_apply_adain_effective_strength or self.should_apply_effective_masks | |
| def get_effective_strength(self): | |
| effective_strength = self.strength | |
| if self._current_timestep_keyframe is not None: | |
| effective_strength = effective_strength * self._current_timestep_keyframe.strength | |
| return effective_strength | |
| def get_effective_attn_mask_or_float(self, x: Tensor, channels: int, is_mid: bool): | |
| if not self.should_apply_effective_masks: | |
| return self.get_effective_strength() * self.ref_opts.attn_strength | |
| if is_mid: | |
| div = 8 | |
| else: | |
| div = self.CHANNEL_TO_MULT[channels] | |
| real_mask = torch.ones([self.latent_shape[0], 1, self.latent_shape[2]//div, self.latent_shape[3]//div]).to(dtype=x.dtype, device=x.device) * self.strength * self.ref_opts.attn_strength | |
| self.apply_advanced_strengths_and_masks(x=real_mask, batched_number=self.batched_number) | |
| # mask is now shape [b, 1, h ,w]; need to turn into [b, h*w, 1] | |
| b, c, h, w = real_mask.shape | |
| real_mask = real_mask.permute(0, 2, 3, 1).reshape(b, h*w, c) | |
| return real_mask | |
| def get_effective_adain_mask_or_float(self, x: Tensor): | |
| if not self.should_apply_effective_masks: | |
| return self.get_effective_strength() * self.ref_opts.adain_strength | |
| b, c, h, w = x.shape | |
| real_mask = torch.ones([b, 1, h, w]).to(dtype=x.dtype, device=x.device) * self.strength * self.ref_opts.adain_strength | |
| self.apply_advanced_strengths_and_masks(x=real_mask, batched_number=self.batched_number) | |
| return real_mask | |
| def should_run(self): | |
| running = super().should_run() | |
| if not running: | |
| return running | |
| attn_run = False | |
| adain_run = False | |
| if ReferenceType.is_attn(self.ref_opts.reference_type): | |
| # attn will run as long as neither weight or strength is zero | |
| attn_run = not (math.isclose(self.ref_opts.attn_ref_weight, 0.0) or math.isclose(self.ref_opts.attn_strength, 0.0)) | |
| if ReferenceType.is_adain(self.ref_opts.reference_type): | |
| # adain will run as long as neither weight or strength is zero | |
| adain_run = not (math.isclose(self.ref_opts.adain_ref_weight, 0.0) or math.isclose(self.ref_opts.adain_strength, 0.0)) | |
| return attn_run or adain_run | |
| def pre_run_advanced(self, model, percent_to_timestep_function): | |
| AdvancedControlBase.pre_run_advanced(self, model, percent_to_timestep_function) | |
| if type(self.cond_hint_original) == ReferencePreprocWrapper: | |
| self.cond_hint_original = self.cond_hint_original.condhint | |
| self.latent_format = model.latent_format # LatentFormat object, used to process_in latent cond_hint | |
| self.model_sampling_current = model.model_sampling | |
| # SDXL is more sensitive to style_fidelity according to sd-webui-controlnet comments | |
| if type(model).__name__ == "SDXL": | |
| self.ref_opts.attn_style_fidelity = self.ref_opts.original_attn_style_fidelity ** 3.0 | |
| self.ref_opts.adain_style_fidelity = self.ref_opts.original_adain_style_fidelity ** 3.0 | |
| else: | |
| self.ref_opts.attn_style_fidelity = self.ref_opts.original_attn_style_fidelity | |
| self.ref_opts.adain_style_fidelity = self.ref_opts.original_adain_style_fidelity | |
| def get_control_advanced(self, x_noisy: Tensor, t, cond, batched_number: int): | |
| # normal ControlNet stuff | |
| control_prev = None | |
| if self.previous_controlnet is not None: | |
| control_prev = self.previous_controlnet.get_control(x_noisy, t, cond, batched_number) | |
| if self.timestep_range is not None: | |
| if t[0] > self.timestep_range[0] or t[0] < self.timestep_range[1]: | |
| return control_prev | |
| dtype = x_noisy.dtype | |
| # prepare cond_hint - it is a latent, NOT an image | |
| #if self.sub_idxs is not None or self.cond_hint is None or x_noisy.shape[2] != self.cond_hint.shape[2] or x_noisy.shape[3] != self.cond_hint.shape[3]: | |
| if self.cond_hint is not None: | |
| del self.cond_hint | |
| self.cond_hint = None | |
| # if self.cond_hint_original length greater or equal to real latent count, subdivide it before scaling | |
| if self.sub_idxs is not None and self.cond_hint_original.size(0) >= self.full_latent_length: | |
| self.cond_hint = comfy.utils.common_upscale( | |
| self.cond_hint_original[self.sub_idxs], | |
| x_noisy.shape[3], x_noisy.shape[2], 'nearest-exact', "center").to(dtype).to(self.device) | |
| else: | |
| self.cond_hint = comfy.utils.common_upscale( | |
| self.cond_hint_original, | |
| x_noisy.shape[3], x_noisy.shape[2], 'nearest-exact', "center").to(dtype).to(self.device) | |
| if x_noisy.shape[0] != self.cond_hint.shape[0]: | |
| self.cond_hint = broadcast_image_to_full(self.cond_hint, x_noisy.shape[0], batched_number, except_one=False) | |
| # noise cond_hint based on sigma (current step) | |
| self.cond_hint = self.latent_format.process_in(self.cond_hint) | |
| self.cond_hint = ref_noise_latents(self.cond_hint, sigma=t, noise=None) | |
| timestep = self.model_sampling_current.timestep(t) | |
| self.should_apply_attn_effective_strength = not (math.isclose(self.strength, 1.0) and math.isclose(self._current_timestep_keyframe.strength, 1.0) and math.isclose(self.ref_opts.attn_strength, 1.0)) | |
| self.should_apply_adain_effective_strength = not (math.isclose(self.strength, 1.0) and math.isclose(self._current_timestep_keyframe.strength, 1.0) and math.isclose(self.ref_opts.adain_strength, 1.0)) | |
| # prepare mask - use direct_attn, so the mask dims will match source latents (and be smaller) | |
| self.prepare_mask_cond_hint(x_noisy=x_noisy, t=t, cond=cond, batched_number=batched_number, direct_attn=True) | |
| self.should_apply_effective_masks = self.latent_keyframes is not None or self.mask_cond_hint is not None or self.tk_mask_cond_hint is not None | |
| self.latent_shape = list(x_noisy.shape) | |
| # done preparing; model patches will take care of everything now. | |
| # return normal controlnet stuff | |
| return control_prev | |
| def cleanup_advanced(self): | |
| super().cleanup_advanced() | |
| del self.latent_format | |
| self.latent_format = None | |
| del self.model_sampling_current | |
| self.model_sampling_current = None | |
| self.should_apply_attn_effective_strength = False | |
| self.should_apply_adain_effective_strength = False | |
| self.should_apply_effective_masks = False | |
| def copy(self): | |
| c = ReferenceAdvanced(self.ref_opts, self.timestep_keyframes) | |
| c.order = self.order | |
| self.copy_to(c) | |
| self.copy_to_advanced(c) | |
| return c | |
| # avoid deepcopy shenanigans by making deepcopy not do anything to the reference | |
| # TODO: do the bookkeeping to do this in a proper way for all Adv-ControlNets | |
| def __deepcopy__(self, memo): | |
| return self | |
| def ref_noise_latents(latents: Tensor, sigma: Tensor, noise: Tensor=None): | |
| sigma = sigma.unsqueeze(-1).unsqueeze(-1).unsqueeze(-1) | |
| alpha_cumprod = 1 / ((sigma * sigma) + 1) | |
| sqrt_alpha_prod = alpha_cumprod ** 0.5 | |
| sqrt_one_minus_alpha_prod = (1. - alpha_cumprod) ** 0.5 | |
| if noise is None: | |
| # generator = torch.Generator(device="cuda") | |
| # generator.manual_seed(0) | |
| # noise = torch.empty_like(latents).normal_(generator=generator) | |
| # generator = torch.Generator() | |
| # generator.manual_seed(0) | |
| # noise = torch.randn(latents.size(), generator=generator).to(latents.device) | |
| noise = torch.randn_like(latents).to(latents.device) | |
| return sqrt_alpha_prod * latents + sqrt_one_minus_alpha_prod * noise | |
| def simple_noise_latents(latents: Tensor, sigma: float, noise: Tensor=None): | |
| if noise is None: | |
| noise = torch.rand_like(latents) | |
| return latents + noise * sigma | |
| class BankStylesBasicTransformerBlock: | |
| def __init__(self): | |
| self.bank = [] | |
| self.style_cfgs = [] | |
| self.cn_idx: list[int] = [] | |
| def get_avg_style_fidelity(self): | |
| return sum(self.style_cfgs) / float(len(self.style_cfgs)) | |
| def clean(self): | |
| del self.bank | |
| self.bank = [] | |
| del self.style_cfgs | |
| self.style_cfgs = [] | |
| del self.cn_idx | |
| self.cn_idx = [] | |
| class BankStylesTimestepEmbedSequential: | |
| def __init__(self): | |
| self.var_bank = [] | |
| self.mean_bank = [] | |
| self.style_cfgs = [] | |
| self.cn_idx: list[int] = [] | |
| def get_avg_var_bank(self): | |
| return sum(self.var_bank) / float(len(self.var_bank)) | |
| def get_avg_mean_bank(self): | |
| return sum(self.mean_bank) / float(len(self.mean_bank)) | |
| def get_avg_style_fidelity(self): | |
| return sum(self.style_cfgs) / float(len(self.style_cfgs)) | |
| def clean(self): | |
| del self.mean_bank | |
| self.mean_bank = [] | |
| del self.var_bank | |
| self.var_bank = [] | |
| del self.style_cfgs | |
| self.style_cfgs = [] | |
| del self.cn_idx | |
| self.cn_idx = [] | |
| class InjectionBasicTransformerBlockHolder: | |
| def __init__(self, block: BasicTransformerBlock, idx=None): | |
| if hasattr(block, "_forward"): # backward compatibility | |
| self.original_forward = block._forward | |
| else: | |
| self.original_forward = block.forward | |
| self.idx = idx | |
| self.attn_weight = 1.0 | |
| self.is_middle = False | |
| self.bank_styles = BankStylesBasicTransformerBlock() | |
| def restore(self, block: BasicTransformerBlock): | |
| if hasattr(block, "_forward"): # backward compatibility | |
| block._forward = self.original_forward | |
| else: | |
| block.forward = self.original_forward | |
| def clean(self): | |
| self.bank_styles.clean() | |
| class InjectionTimestepEmbedSequentialHolder: | |
| def __init__(self, block: openaimodel.TimestepEmbedSequential, idx=None, is_middle=False, is_input=False, is_output=False): | |
| self.original_forward = block.forward | |
| self.idx = idx | |
| self.gn_weight = 1.0 | |
| self.is_middle = is_middle | |
| self.is_input = is_input | |
| self.is_output = is_output | |
| self.bank_styles = BankStylesTimestepEmbedSequential() | |
| def restore(self, block: openaimodel.TimestepEmbedSequential): | |
| block.forward = self.original_forward | |
| def clean(self): | |
| self.bank_styles.clean() | |
| class ReferenceInjections: | |
| def __init__(self, attn_modules: list['RefBasicTransformerBlock']=None, gn_modules: list['RefTimestepEmbedSequential']=None): | |
| self.attn_modules = attn_modules if attn_modules else [] | |
| self.gn_modules = gn_modules if gn_modules else [] | |
| self.diffusion_model_orig_forward: Callable = None | |
| def clean_module_mem(self): | |
| for attn_module in self.attn_modules: | |
| try: | |
| attn_module.injection_holder.clean() | |
| except Exception: | |
| pass | |
| for gn_module in self.gn_modules: | |
| try: | |
| gn_module.injection_holder.clean() | |
| except Exception: | |
| pass | |
| def cleanup(self): | |
| self.clean_module_mem() | |
| del self.attn_modules | |
| self.attn_modules = [] | |
| del self.gn_modules | |
| self.gn_modules = [] | |
| self.diffusion_model_orig_forward = None | |
| def factory_forward_inject_UNetModel(reference_injections: ReferenceInjections): | |
| def forward_inject_UNetModel(self, x: Tensor, *args, **kwargs): | |
| # get control and transformer_options from kwargs | |
| real_args = list(args) | |
| real_kwargs = list(kwargs.keys()) | |
| control = kwargs.get("control", None) | |
| transformer_options = kwargs.get("transformer_options", None) | |
| # look for ReferenceAttnPatch objects to get ReferenceAdvanced objects | |
| ref_controlnets: list[ReferenceAdvanced] = transformer_options[REF_CONTROL_LIST_ALL] | |
| # discard any controlnets that should not run | |
| ref_controlnets = [x for x in ref_controlnets if x.should_run()] | |
| # if nothing related to reference controlnets, do nothing special | |
| if len(ref_controlnets) == 0: | |
| return reference_injections.diffusion_model_orig_forward(x, *args, **kwargs) | |
| try: | |
| # assign cond and uncond idxs | |
| batched_number = len(transformer_options["cond_or_uncond"]) | |
| per_batch = x.shape[0] // batched_number | |
| indiv_conds = [] | |
| for cond_type in transformer_options["cond_or_uncond"]: | |
| indiv_conds.extend([cond_type] * per_batch) | |
| transformer_options[REF_UNCOND_IDXS] = [i for i, x in enumerate(indiv_conds) if x == 1] | |
| transformer_options[REF_COND_IDXS] = [i for i, x in enumerate(indiv_conds) if x == 0] | |
| # check which controlnets do which thing | |
| attn_controlnets = [] | |
| adain_controlnets = [] | |
| for control in ref_controlnets: | |
| if ReferenceType.is_attn(control.ref_opts.reference_type): | |
| attn_controlnets.append(control) | |
| if ReferenceType.is_adain(control.ref_opts.reference_type): | |
| adain_controlnets.append(control) | |
| if len(adain_controlnets) > 0: | |
| # ComfyUI uses forward_timestep_embed with the TimestepEmbedSequential passed into it | |
| orig_forward_timestep_embed = openaimodel.forward_timestep_embed | |
| openaimodel.forward_timestep_embed = forward_timestep_embed_ref_inject_factory(orig_forward_timestep_embed) | |
| # handle running diffusion with ref cond hints | |
| for control in ref_controlnets: | |
| if ReferenceType.is_attn(control.ref_opts.reference_type): | |
| transformer_options[REF_ATTN_MACHINE_STATE] = MachineState.WRITE | |
| else: | |
| transformer_options[REF_ATTN_MACHINE_STATE] = MachineState.OFF | |
| if ReferenceType.is_adain(control.ref_opts.reference_type): | |
| transformer_options[REF_ADAIN_MACHINE_STATE] = MachineState.WRITE | |
| else: | |
| transformer_options[REF_ADAIN_MACHINE_STATE] = MachineState.OFF | |
| transformer_options[REF_ATTN_CONTROL_LIST] = [control] | |
| transformer_options[REF_ADAIN_CONTROL_LIST] = [control] | |
| orig_kwargs = kwargs | |
| if not control.ref_opts.ref_with_other_cns: | |
| kwargs = kwargs.copy() | |
| kwargs["control"] = None | |
| reference_injections.diffusion_model_orig_forward(control.cond_hint.to(dtype=x.dtype).to(device=x.device), *args, **kwargs) | |
| kwargs = orig_kwargs | |
| # run diffusion for real now | |
| transformer_options[REF_ATTN_MACHINE_STATE] = MachineState.READ | |
| transformer_options[REF_ADAIN_MACHINE_STATE] = MachineState.READ | |
| transformer_options[REF_ATTN_CONTROL_LIST] = attn_controlnets | |
| transformer_options[REF_ADAIN_CONTROL_LIST] = adain_controlnets | |
| return reference_injections.diffusion_model_orig_forward(x, *args, **kwargs) | |
| finally: | |
| # make sure banks are cleared no matter what happens - otherwise, RIP VRAM | |
| reference_injections.clean_module_mem() | |
| if len(adain_controlnets) > 0: | |
| openaimodel.forward_timestep_embed = orig_forward_timestep_embed | |
| return forward_inject_UNetModel | |
| # dummy class just to help IDE keep track of injected variables | |
| class RefBasicTransformerBlock(BasicTransformerBlock): | |
| injection_holder: InjectionBasicTransformerBlockHolder = None | |
| def _forward_inject_BasicTransformerBlock(self: RefBasicTransformerBlock, x: Tensor, context: Tensor=None, transformer_options: dict[str]={}): | |
| extra_options = {} | |
| block = transformer_options.get("block", None) | |
| block_index = transformer_options.get("block_index", 0) | |
| transformer_patches = {} | |
| transformer_patches_replace = {} | |
| for k in transformer_options: | |
| if k == "patches": | |
| transformer_patches = transformer_options[k] | |
| elif k == "patches_replace": | |
| transformer_patches_replace = transformer_options[k] | |
| else: | |
| extra_options[k] = transformer_options[k] | |
| extra_options["n_heads"] = self.n_heads | |
| extra_options["dim_head"] = self.d_head | |
| if self.ff_in: | |
| x_skip = x | |
| x = self.ff_in(self.norm_in(x)) | |
| if self.is_res: | |
| x += x_skip | |
| n: Tensor = self.norm1(x) | |
| if self.disable_self_attn: | |
| context_attn1 = context | |
| else: | |
| context_attn1 = None | |
| value_attn1 = None | |
| # Reference CN stuff | |
| uc_idx_mask = transformer_options.get(REF_UNCOND_IDXS, []) | |
| c_idx_mask = transformer_options.get(REF_COND_IDXS, []) | |
| # WRITE mode will only have one ReferenceAdvanced, other modes will have all ReferenceAdvanced | |
| ref_controlnets: list[ReferenceAdvanced] = transformer_options.get(REF_ATTN_CONTROL_LIST, None) | |
| ref_machine_state: str = transformer_options.get(REF_ATTN_MACHINE_STATE, None) | |
| # if in WRITE mode, save n and style_fidelity | |
| if ref_controlnets and ref_machine_state == MachineState.WRITE: | |
| if ref_controlnets[0].ref_opts.attn_ref_weight > self.injection_holder.attn_weight: | |
| self.injection_holder.bank_styles.bank.append(n.detach().clone()) | |
| self.injection_holder.bank_styles.style_cfgs.append(ref_controlnets[0].ref_opts.attn_style_fidelity) | |
| self.injection_holder.bank_styles.cn_idx.append(ref_controlnets[0].order) | |
| if "attn1_patch" in transformer_patches: | |
| patch = transformer_patches["attn1_patch"] | |
| if context_attn1 is None: | |
| context_attn1 = n | |
| value_attn1 = context_attn1 | |
| for p in patch: | |
| n, context_attn1, value_attn1 = p(n, context_attn1, value_attn1, extra_options) | |
| if block is not None: | |
| transformer_block = (block[0], block[1], block_index) | |
| else: | |
| transformer_block = None | |
| attn1_replace_patch = transformer_patches_replace.get("attn1", {}) | |
| block_attn1 = transformer_block | |
| if block_attn1 not in attn1_replace_patch: | |
| block_attn1 = block | |
| if block_attn1 in attn1_replace_patch: | |
| if context_attn1 is None: | |
| context_attn1 = n | |
| value_attn1 = n | |
| n = self.attn1.to_q(n) | |
| # Reference CN READ - use attn1_replace_patch appropriately | |
| if ref_machine_state == MachineState.READ and len(self.injection_holder.bank_styles.bank) > 0: | |
| bank_styles = self.injection_holder.bank_styles | |
| style_fidelity = bank_styles.get_avg_style_fidelity() | |
| real_bank = bank_styles.bank.copy() | |
| cn_idx = 0 | |
| for idx, order in enumerate(bank_styles.cn_idx): | |
| # make sure matching ref cn is selected | |
| for i in range(cn_idx, len(ref_controlnets)): | |
| if ref_controlnets[i].order == order: | |
| cn_idx = i | |
| break | |
| assert order == ref_controlnets[cn_idx].order | |
| if ref_controlnets[cn_idx].any_attn_strength_to_apply(): | |
| effective_strength = ref_controlnets[cn_idx].get_effective_attn_mask_or_float(x=n, channels=n.shape[2], is_mid=self.injection_holder.is_middle) | |
| real_bank[idx] = real_bank[idx] * effective_strength + context_attn1 * (1-effective_strength) | |
| n_uc = self.attn1.to_out(attn1_replace_patch[block_attn1]( | |
| n, | |
| self.attn1.to_k(torch.cat([context_attn1] + real_bank, dim=1)), | |
| self.attn1.to_v(torch.cat([value_attn1] + real_bank, dim=1)), | |
| extra_options)) | |
| n_c = n_uc.clone() | |
| if len(uc_idx_mask) > 0 and not math.isclose(style_fidelity, 0.0): | |
| n_c[uc_idx_mask] = self.attn1.to_out(attn1_replace_patch[block_attn1]( | |
| n[uc_idx_mask], | |
| self.attn1.to_k(context_attn1[uc_idx_mask]), | |
| self.attn1.to_v(value_attn1[uc_idx_mask]), | |
| extra_options)) | |
| n = style_fidelity * n_c + (1.0-style_fidelity) * n_uc | |
| bank_styles.clean() | |
| else: | |
| context_attn1 = self.attn1.to_k(context_attn1) | |
| value_attn1 = self.attn1.to_v(value_attn1) | |
| n = attn1_replace_patch[block_attn1](n, context_attn1, value_attn1, extra_options) | |
| n = self.attn1.to_out(n) | |
| else: | |
| # Reference CN READ - no attn1_replace_patch | |
| if ref_machine_state == MachineState.READ and len(self.injection_holder.bank_styles.bank) > 0: | |
| if context_attn1 is None: | |
| context_attn1 = n | |
| bank_styles = self.injection_holder.bank_styles | |
| style_fidelity = bank_styles.get_avg_style_fidelity() | |
| real_bank = bank_styles.bank.copy() | |
| cn_idx = 0 | |
| for idx, order in enumerate(bank_styles.cn_idx): | |
| # make sure matching ref cn is selected | |
| for i in range(cn_idx, len(ref_controlnets)): | |
| if ref_controlnets[i].order == order: | |
| cn_idx = i | |
| break | |
| assert order == ref_controlnets[cn_idx].order | |
| if ref_controlnets[cn_idx].any_attn_strength_to_apply(): | |
| effective_strength = ref_controlnets[cn_idx].get_effective_attn_mask_or_float(x=n, channels=n.shape[2], is_mid=self.injection_holder.is_middle) | |
| real_bank[idx] = real_bank[idx] * effective_strength + context_attn1 * (1-effective_strength) | |
| n_uc: Tensor = self.attn1( | |
| n, | |
| context=torch.cat([context_attn1] + real_bank, dim=1), | |
| value=torch.cat([value_attn1] + real_bank, dim=1) if value_attn1 is not None else value_attn1) | |
| n_c = n_uc.clone() | |
| if len(uc_idx_mask) > 0 and not math.isclose(style_fidelity, 0.0): | |
| n_c[uc_idx_mask] = self.attn1( | |
| n[uc_idx_mask], | |
| context=context_attn1[uc_idx_mask], | |
| value=value_attn1[uc_idx_mask] if value_attn1 is not None else value_attn1) | |
| n = style_fidelity * n_c + (1.0-style_fidelity) * n_uc | |
| bank_styles.clean() | |
| else: | |
| n = self.attn1(n, context=context_attn1, value=value_attn1) | |
| if "attn1_output_patch" in transformer_patches: | |
| patch = transformer_patches["attn1_output_patch"] | |
| for p in patch: | |
| n = p(n, extra_options) | |
| x += n | |
| if "middle_patch" in transformer_patches: | |
| patch = transformer_patches["middle_patch"] | |
| for p in patch: | |
| x = p(x, extra_options) | |
| if self.attn2 is not None: | |
| n = self.norm2(x) | |
| if self.switch_temporal_ca_to_sa: | |
| context_attn2 = n | |
| else: | |
| context_attn2 = context | |
| value_attn2 = None | |
| if "attn2_patch" in transformer_patches: | |
| patch = transformer_patches["attn2_patch"] | |
| value_attn2 = context_attn2 | |
| for p in patch: | |
| n, context_attn2, value_attn2 = p(n, context_attn2, value_attn2, extra_options) | |
| attn2_replace_patch = transformer_patches_replace.get("attn2", {}) | |
| block_attn2 = transformer_block | |
| if block_attn2 not in attn2_replace_patch: | |
| block_attn2 = block | |
| if block_attn2 in attn2_replace_patch: | |
| if value_attn2 is None: | |
| value_attn2 = context_attn2 | |
| n = self.attn2.to_q(n) | |
| context_attn2 = self.attn2.to_k(context_attn2) | |
| value_attn2 = self.attn2.to_v(value_attn2) | |
| n = attn2_replace_patch[block_attn2](n, context_attn2, value_attn2, extra_options) | |
| n = self.attn2.to_out(n) | |
| else: | |
| n = self.attn2(n, context=context_attn2, value=value_attn2) | |
| if "attn2_output_patch" in transformer_patches: | |
| patch = transformer_patches["attn2_output_patch"] | |
| for p in patch: | |
| n = p(n, extra_options) | |
| x += n | |
| if self.is_res: | |
| x_skip = x | |
| x = self.ff(self.norm3(x)) | |
| if self.is_res: | |
| x += x_skip | |
| return x | |
| class RefTimestepEmbedSequential(openaimodel.TimestepEmbedSequential): | |
| injection_holder: InjectionTimestepEmbedSequentialHolder = None | |
| def forward_timestep_embed_ref_inject_factory(orig_timestep_embed_inject_factory: Callable): | |
| def forward_timestep_embed_ref_inject(*args, **kwargs): | |
| ts: RefTimestepEmbedSequential = args[0] | |
| if not hasattr(ts, "injection_holder"): | |
| return orig_timestep_embed_inject_factory(*args, **kwargs) | |
| eps = 1e-6 | |
| x: Tensor = orig_timestep_embed_inject_factory(*args, **kwargs) | |
| y: Tensor = None | |
| transformer_options: dict[str] = args[4] | |
| # Reference CN stuff | |
| uc_idx_mask = transformer_options.get(REF_UNCOND_IDXS, []) | |
| c_idx_mask = transformer_options.get(REF_COND_IDXS, []) | |
| # WRITE mode will only have one ReferenceAdvanced, other modes will have all ReferenceAdvanced | |
| ref_controlnets: list[ReferenceAdvanced] = transformer_options.get(REF_ADAIN_CONTROL_LIST, None) | |
| ref_machine_state: str = transformer_options.get(REF_ADAIN_MACHINE_STATE, None) | |
| # if in WRITE mode, save var, mean, and style_cfg | |
| if ref_machine_state == MachineState.WRITE: | |
| if ref_controlnets[0].ref_opts.adain_ref_weight > ts.injection_holder.gn_weight: | |
| var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) | |
| ts.injection_holder.bank_styles.var_bank.append(var) | |
| ts.injection_holder.bank_styles.mean_bank.append(mean) | |
| ts.injection_holder.bank_styles.style_cfgs.append(ref_controlnets[0].ref_opts.adain_style_fidelity) | |
| ts.injection_holder.bank_styles.cn_idx.append(ref_controlnets[0].order) | |
| # if in READ mode, do math with saved var, mean, and style_cfg | |
| if ref_machine_state == MachineState.READ: | |
| if len(ts.injection_holder.bank_styles.var_bank) > 0: | |
| bank_styles = ts.injection_holder.bank_styles | |
| var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) | |
| std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
| y_uc = torch.zeros_like(x) | |
| cn_idx = 0 | |
| for idx, order in enumerate(bank_styles.cn_idx): | |
| # make sure matching ref cn is selected | |
| for i in range(cn_idx, len(ref_controlnets)): | |
| if ref_controlnets[i].order == order: | |
| cn_idx = i | |
| break | |
| assert order == ref_controlnets[cn_idx].order | |
| style_fidelity = bank_styles.style_cfgs[idx] | |
| var_acc = bank_styles.var_bank[idx] | |
| mean_acc = bank_styles.mean_bank[idx] | |
| std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
| sub_y_uc = (((x - mean) / std) * std_acc) + mean_acc | |
| if ref_controlnets[cn_idx].any_adain_strength_to_apply(): | |
| effective_strength = ref_controlnets[cn_idx].get_effective_adain_mask_or_float(x=x) | |
| sub_y_uc = sub_y_uc * effective_strength + x * (1-effective_strength) | |
| y_uc += sub_y_uc | |
| # get average, if more than one | |
| if len(bank_styles.cn_idx) > 1: | |
| y_uc /= len(bank_styles.cn_idx) | |
| y_c = y_uc.clone() | |
| if len(uc_idx_mask) > 0 and not math.isclose(style_fidelity, 0.0): | |
| y_c[uc_idx_mask] = x.to(y_c.dtype)[uc_idx_mask] | |
| y = style_fidelity * y_c + (1.0 - style_fidelity) * y_uc | |
| ts.injection_holder.bank_styles.clean() | |
| if y is None: | |
| y = x | |
| return y.to(x.dtype) | |
| return forward_timestep_embed_ref_inject | |
| # DFS Search for Torch.nn.Module, Written by Lvmin | |
| def torch_dfs(model: torch.nn.Module): | |
| result = [model] | |
| for child in model.children(): | |
| result += torch_dfs(child) | |
| return result | |