Spaces:
Configuration error
Configuration error
| import math | |
| from typing import List, Optional, Sequence, Tuple, Union | |
| import cv2 | |
| import numpy as np | |
| import skimage.transform | |
| from scipy.ndimage import gaussian_filter | |
| from custom_albumentations.augmentations.utils import ( | |
| _maybe_process_in_chunks, | |
| angle_2pi_range, | |
| clipped, | |
| preserve_channel_dim, | |
| preserve_shape, | |
| ) | |
| from ... import random_utils | |
| from ...core.bbox_utils import denormalize_bbox, normalize_bbox | |
| from ...core.transforms_interface import ( | |
| BoxInternalType, | |
| FillValueType, | |
| ImageColorType, | |
| KeypointInternalType, | |
| ) | |
| __all__ = [ | |
| "optical_distortion", | |
| "elastic_transform_approx", | |
| "grid_distortion", | |
| "pad", | |
| "pad_with_params", | |
| "bbox_rot90", | |
| "keypoint_rot90", | |
| "rotate", | |
| "bbox_rotate", | |
| "keypoint_rotate", | |
| "shift_scale_rotate", | |
| "keypoint_shift_scale_rotate", | |
| "bbox_shift_scale_rotate", | |
| "elastic_transform", | |
| "resize", | |
| "scale", | |
| "keypoint_scale", | |
| "py3round", | |
| "_func_max_size", | |
| "longest_max_size", | |
| "smallest_max_size", | |
| "perspective", | |
| "perspective_bbox", | |
| "rotation2DMatrixToEulerAngles", | |
| "perspective_keypoint", | |
| "_is_identity_matrix", | |
| "warp_affine", | |
| "keypoint_affine", | |
| "bbox_affine", | |
| "safe_rotate", | |
| "bbox_safe_rotate", | |
| "keypoint_safe_rotate", | |
| "piecewise_affine", | |
| "to_distance_maps", | |
| "from_distance_maps", | |
| "keypoint_piecewise_affine", | |
| "bbox_piecewise_affine", | |
| "bbox_flip", | |
| "bbox_hflip", | |
| "bbox_transpose", | |
| "bbox_vflip", | |
| "hflip", | |
| "hflip_cv2", | |
| "transpose", | |
| "keypoint_flip", | |
| "keypoint_hflip", | |
| "keypoint_transpose", | |
| "keypoint_vflip", | |
| ] | |
| def bbox_rot90(bbox: BoxInternalType, factor: int, rows: int, cols: int) -> BoxInternalType: # skipcq: PYL-W0613 | |
| """Rotates a bounding box by 90 degrees CCW (see np.rot90) | |
| Args: | |
| bbox: A bounding box tuple (x_min, y_min, x_max, y_max). | |
| factor: Number of CCW rotations. Must be in set {0, 1, 2, 3} See np.rot90. | |
| rows: Image rows. | |
| cols: Image cols. | |
| Returns: | |
| tuple: A bounding box tuple (x_min, y_min, x_max, y_max). | |
| """ | |
| if factor not in {0, 1, 2, 3}: | |
| raise ValueError("Parameter n must be in set {0, 1, 2, 3}") | |
| x_min, y_min, x_max, y_max = bbox[:4] | |
| if factor == 1: | |
| bbox = y_min, 1 - x_max, y_max, 1 - x_min | |
| elif factor == 2: | |
| bbox = 1 - x_max, 1 - y_max, 1 - x_min, 1 - y_min | |
| elif factor == 3: | |
| bbox = 1 - y_max, x_min, 1 - y_min, x_max | |
| return bbox | |
| def keypoint_rot90(keypoint: KeypointInternalType, factor: int, rows: int, cols: int, **params) -> KeypointInternalType: | |
| """Rotates a keypoint by 90 degrees CCW (see np.rot90) | |
| Args: | |
| keypoint: A keypoint `(x, y, angle, scale)`. | |
| factor: Number of CCW rotations. Must be in range [0;3] See np.rot90. | |
| rows: Image height. | |
| cols: Image width. | |
| Returns: | |
| tuple: A keypoint `(x, y, angle, scale)`. | |
| Raises: | |
| ValueError: if factor not in set {0, 1, 2, 3} | |
| """ | |
| x, y, angle, scale = keypoint[:4] | |
| if factor not in {0, 1, 2, 3}: | |
| raise ValueError("Parameter n must be in set {0, 1, 2, 3}") | |
| if factor == 1: | |
| x, y, angle = y, (cols - 1) - x, angle - math.pi / 2 | |
| elif factor == 2: | |
| x, y, angle = (cols - 1) - x, (rows - 1) - y, angle - math.pi | |
| elif factor == 3: | |
| x, y, angle = (rows - 1) - y, x, angle + math.pi / 2 | |
| return x, y, angle, scale | |
| def rotate( | |
| img: np.ndarray, | |
| angle: float, | |
| interpolation: int = cv2.INTER_LINEAR, | |
| border_mode: int = cv2.BORDER_REFLECT_101, | |
| value: Optional[ImageColorType] = None, | |
| ): | |
| height, width = img.shape[:2] | |
| # for images we use additional shifts of (0.5, 0.5) as otherwise | |
| # we get an ugly black border for 90deg rotations | |
| matrix = cv2.getRotationMatrix2D((width / 2 - 0.5, height / 2 - 0.5), angle, 1.0) | |
| warp_fn = _maybe_process_in_chunks( | |
| cv2.warpAffine, M=matrix, dsize=(width, height), flags=interpolation, borderMode=border_mode, borderValue=value | |
| ) | |
| return warp_fn(img) | |
| def bbox_rotate(bbox: BoxInternalType, angle: float, method: str, rows: int, cols: int) -> BoxInternalType: | |
| """Rotates a bounding box by angle degrees. | |
| Args: | |
| bbox: A bounding box `(x_min, y_min, x_max, y_max)`. | |
| angle: Angle of rotation in degrees. | |
| method: Rotation method used. Should be one of: "largest_box", "ellipse". Default: "largest_box". | |
| rows: Image rows. | |
| cols: Image cols. | |
| Returns: | |
| A bounding box `(x_min, y_min, x_max, y_max)`. | |
| References: | |
| https://arxiv.org/abs/2109.13488 | |
| """ | |
| x_min, y_min, x_max, y_max = bbox[:4] | |
| scale = cols / float(rows) | |
| if method == "largest_box": | |
| x = np.array([x_min, x_max, x_max, x_min]) - 0.5 | |
| y = np.array([y_min, y_min, y_max, y_max]) - 0.5 | |
| elif method == "ellipse": | |
| w = (x_max - x_min) / 2 | |
| h = (y_max - y_min) / 2 | |
| data = np.arange(0, 360, dtype=np.float32) | |
| x = w * np.sin(np.radians(data)) + (w + x_min - 0.5) | |
| y = h * np.cos(np.radians(data)) + (h + y_min - 0.5) | |
| else: | |
| raise ValueError(f"Method {method} is not a valid rotation method.") | |
| angle = np.deg2rad(angle) | |
| x_t = (np.cos(angle) * x * scale + np.sin(angle) * y) / scale | |
| y_t = -np.sin(angle) * x * scale + np.cos(angle) * y | |
| x_t = x_t + 0.5 | |
| y_t = y_t + 0.5 | |
| x_min, x_max = min(x_t), max(x_t) | |
| y_min, y_max = min(y_t), max(y_t) | |
| return x_min, y_min, x_max, y_max | |
| def keypoint_rotate(keypoint, angle, rows, cols, **params): | |
| """Rotate a keypoint by angle. | |
| Args: | |
| keypoint (tuple): A keypoint `(x, y, angle, scale)`. | |
| angle (float): Rotation angle. | |
| rows (int): Image height. | |
| cols (int): Image width. | |
| Returns: | |
| tuple: A keypoint `(x, y, angle, scale)`. | |
| """ | |
| center = (cols - 1) * 0.5, (rows - 1) * 0.5 | |
| matrix = cv2.getRotationMatrix2D(center, angle, 1.0) | |
| x, y, a, s = keypoint[:4] | |
| x, y = cv2.transform(np.array([[[x, y]]]), matrix).squeeze() | |
| return x, y, a + math.radians(angle), s | |
| def shift_scale_rotate( | |
| img, angle, scale, dx, dy, interpolation=cv2.INTER_LINEAR, border_mode=cv2.BORDER_REFLECT_101, value=None | |
| ): | |
| height, width = img.shape[:2] | |
| # for images we use additional shifts of (0.5, 0.5) as otherwise | |
| # we get an ugly black border for 90deg rotations | |
| center = (width / 2 - 0.5, height / 2 - 0.5) | |
| matrix = cv2.getRotationMatrix2D(center, angle, scale) | |
| matrix[0, 2] += dx * width | |
| matrix[1, 2] += dy * height | |
| warp_affine_fn = _maybe_process_in_chunks( | |
| cv2.warpAffine, M=matrix, dsize=(width, height), flags=interpolation, borderMode=border_mode, borderValue=value | |
| ) | |
| return warp_affine_fn(img) | |
| def keypoint_shift_scale_rotate(keypoint, angle, scale, dx, dy, rows, cols, **params): | |
| ( | |
| x, | |
| y, | |
| a, | |
| s, | |
| ) = keypoint[:4] | |
| height, width = rows, cols | |
| center = (cols - 1) * 0.5, (rows - 1) * 0.5 | |
| matrix = cv2.getRotationMatrix2D(center, angle, scale) | |
| matrix[0, 2] += dx * width | |
| matrix[1, 2] += dy * height | |
| x, y = cv2.transform(np.array([[[x, y]]]), matrix).squeeze() | |
| angle = a + math.radians(angle) | |
| scale = s * scale | |
| return x, y, angle, scale | |
| def bbox_shift_scale_rotate(bbox, angle, scale, dx, dy, rotate_method, rows, cols, **kwargs): # skipcq: PYL-W0613 | |
| """Rotates, shifts and scales a bounding box. Rotation is made by angle degrees, | |
| scaling is made by scale factor and shifting is made by dx and dy. | |
| Args: | |
| bbox (tuple): A bounding box `(x_min, y_min, x_max, y_max)`. | |
| angle (int): Angle of rotation in degrees. | |
| scale (int): Scale factor. | |
| dx (int): Shift along x-axis in pixel units. | |
| dy (int): Shift along y-axis in pixel units. | |
| rotate_method(str): Rotation method used. Should be one of: "largest_box", "ellipse". | |
| Default: "largest_box". | |
| rows (int): Image rows. | |
| cols (int): Image cols. | |
| Returns: | |
| A bounding box `(x_min, y_min, x_max, y_max)`. | |
| """ | |
| height, width = rows, cols | |
| center = (width / 2, height / 2) | |
| if rotate_method == "ellipse": | |
| x_min, y_min, x_max, y_max = bbox_rotate(bbox, angle, rotate_method, rows, cols) | |
| matrix = cv2.getRotationMatrix2D(center, 0, scale) | |
| else: | |
| x_min, y_min, x_max, y_max = bbox[:4] | |
| matrix = cv2.getRotationMatrix2D(center, angle, scale) | |
| matrix[0, 2] += dx * width | |
| matrix[1, 2] += dy * height | |
| x = np.array([x_min, x_max, x_max, x_min]) | |
| y = np.array([y_min, y_min, y_max, y_max]) | |
| ones = np.ones(shape=(len(x))) | |
| points_ones = np.vstack([x, y, ones]).transpose() | |
| points_ones[:, 0] *= width | |
| points_ones[:, 1] *= height | |
| tr_points = matrix.dot(points_ones.T).T | |
| tr_points[:, 0] /= width | |
| tr_points[:, 1] /= height | |
| x_min, x_max = min(tr_points[:, 0]), max(tr_points[:, 0]) | |
| y_min, y_max = min(tr_points[:, 1]), max(tr_points[:, 1]) | |
| return x_min, y_min, x_max, y_max | |
| def elastic_transform( | |
| img: np.ndarray, | |
| alpha: float, | |
| sigma: float, | |
| alpha_affine: float, | |
| interpolation: int = cv2.INTER_LINEAR, | |
| border_mode: int = cv2.BORDER_REFLECT_101, | |
| value: Optional[ImageColorType] = None, | |
| random_state: Optional[np.random.RandomState] = None, | |
| approximate: bool = False, | |
| same_dxdy: bool = False, | |
| ): | |
| """Elastic deformation of images as described in [Simard2003]_ (with modifications). | |
| Based on https://gist.github.com/ernestum/601cdf56d2b424757de5 | |
| .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for | |
| Convolutional Neural Networks applied to Visual Document Analysis", in | |
| Proc. of the International Conference on Document Analysis and | |
| Recognition, 2003. | |
| """ | |
| height, width = img.shape[:2] | |
| # Random affine | |
| center_square = np.array((height, width), dtype=np.float32) // 2 | |
| square_size = min((height, width)) // 3 | |
| alpha = float(alpha) | |
| sigma = float(sigma) | |
| alpha_affine = float(alpha_affine) | |
| pts1 = np.array( | |
| [ | |
| center_square + square_size, | |
| [center_square[0] + square_size, center_square[1] - square_size], | |
| center_square - square_size, | |
| ], | |
| dtype=np.float32, | |
| ) | |
| pts2 = pts1 + random_utils.uniform(-alpha_affine, alpha_affine, size=pts1.shape, random_state=random_state).astype( | |
| np.float32 | |
| ) | |
| matrix = cv2.getAffineTransform(pts1, pts2) | |
| warp_fn = _maybe_process_in_chunks( | |
| cv2.warpAffine, M=matrix, dsize=(width, height), flags=interpolation, borderMode=border_mode, borderValue=value | |
| ) | |
| img = warp_fn(img) | |
| if approximate: | |
| # Approximate computation smooth displacement map with a large enough kernel. | |
| # On large images (512+) this is approximately 2X times faster | |
| dx = random_utils.rand(height, width, random_state=random_state).astype(np.float32) * 2 - 1 | |
| cv2.GaussianBlur(dx, (17, 17), sigma, dst=dx) | |
| dx *= alpha | |
| if same_dxdy: | |
| # Speed up even more | |
| dy = dx | |
| else: | |
| dy = random_utils.rand(height, width, random_state=random_state).astype(np.float32) * 2 - 1 | |
| cv2.GaussianBlur(dy, (17, 17), sigma, dst=dy) | |
| dy *= alpha | |
| else: | |
| dx = np.float32( | |
| gaussian_filter((random_utils.rand(height, width, random_state=random_state) * 2 - 1), sigma) * alpha | |
| ) | |
| if same_dxdy: | |
| # Speed up | |
| dy = dx | |
| else: | |
| dy = np.float32( | |
| gaussian_filter((random_utils.rand(height, width, random_state=random_state) * 2 - 1), sigma) * alpha | |
| ) | |
| x, y = np.meshgrid(np.arange(width), np.arange(height)) | |
| map_x = np.float32(x + dx) | |
| map_y = np.float32(y + dy) | |
| remap_fn = _maybe_process_in_chunks( | |
| cv2.remap, map1=map_x, map2=map_y, interpolation=interpolation, borderMode=border_mode, borderValue=value | |
| ) | |
| return remap_fn(img) | |
| def resize(img, height, width, interpolation=cv2.INTER_LINEAR): | |
| img_height, img_width = img.shape[:2] | |
| if height == img_height and width == img_width: | |
| return img | |
| resize_fn = _maybe_process_in_chunks(cv2.resize, dsize=(width, height), interpolation=interpolation) | |
| return resize_fn(img) | |
| def scale(img: np.ndarray, scale: float, interpolation: int = cv2.INTER_LINEAR) -> np.ndarray: | |
| height, width = img.shape[:2] | |
| new_height, new_width = int(height * scale), int(width * scale) | |
| return resize(img, new_height, new_width, interpolation) | |
| def keypoint_scale(keypoint: KeypointInternalType, scale_x: float, scale_y: float) -> KeypointInternalType: | |
| """Scales a keypoint by scale_x and scale_y. | |
| Args: | |
| keypoint: A keypoint `(x, y, angle, scale)`. | |
| scale_x: Scale coefficient x-axis. | |
| scale_y: Scale coefficient y-axis. | |
| Returns: | |
| A keypoint `(x, y, angle, scale)`. | |
| """ | |
| x, y, angle, scale = keypoint[:4] | |
| return x * scale_x, y * scale_y, angle, scale * max(scale_x, scale_y) | |
| def py3round(number): | |
| """Unified rounding in all python versions.""" | |
| if abs(round(number) - number) == 0.5: | |
| return int(2.0 * round(number / 2.0)) | |
| return int(round(number)) | |
| def _func_max_size(img, max_size, interpolation, func): | |
| height, width = img.shape[:2] | |
| scale = max_size / float(func(width, height)) | |
| if scale != 1.0: | |
| new_height, new_width = tuple(py3round(dim * scale) for dim in (height, width)) | |
| img = resize(img, height=new_height, width=new_width, interpolation=interpolation) | |
| return img | |
| def longest_max_size(img: np.ndarray, max_size: int, interpolation: int) -> np.ndarray: | |
| return _func_max_size(img, max_size, interpolation, max) | |
| def smallest_max_size(img: np.ndarray, max_size: int, interpolation: int) -> np.ndarray: | |
| return _func_max_size(img, max_size, interpolation, min) | |
| def perspective( | |
| img: np.ndarray, | |
| matrix: np.ndarray, | |
| max_width: int, | |
| max_height: int, | |
| border_val: Union[int, float, List[int], List[float], np.ndarray], | |
| border_mode: int, | |
| keep_size: bool, | |
| interpolation: int, | |
| ): | |
| h, w = img.shape[:2] | |
| perspective_func = _maybe_process_in_chunks( | |
| cv2.warpPerspective, | |
| M=matrix, | |
| dsize=(max_width, max_height), | |
| borderMode=border_mode, | |
| borderValue=border_val, | |
| flags=interpolation, | |
| ) | |
| warped = perspective_func(img) | |
| if keep_size: | |
| return resize(warped, h, w, interpolation=interpolation) | |
| return warped | |
| def perspective_bbox( | |
| bbox: BoxInternalType, | |
| height: int, | |
| width: int, | |
| matrix: np.ndarray, | |
| max_width: int, | |
| max_height: int, | |
| keep_size: bool, | |
| ) -> BoxInternalType: | |
| x1, y1, x2, y2 = denormalize_bbox(bbox, height, width)[:4] | |
| points = np.array([[x1, y1], [x2, y1], [x2, y2], [x1, y2]], dtype=np.float32) | |
| x1, y1, x2, y2 = float("inf"), float("inf"), 0, 0 | |
| for pt in points: | |
| pt = perspective_keypoint(pt.tolist() + [0, 0], height, width, matrix, max_width, max_height, keep_size) | |
| x, y = pt[:2] | |
| x1 = min(x1, x) | |
| x2 = max(x2, x) | |
| y1 = min(y1, y) | |
| y2 = max(y2, y) | |
| return normalize_bbox((x1, y1, x2, y2), height if keep_size else max_height, width if keep_size else max_width) | |
| def rotation2DMatrixToEulerAngles(matrix: np.ndarray, y_up: bool = False) -> float: | |
| """ | |
| Args: | |
| matrix (np.ndarray): Rotation matrix | |
| y_up (bool): is Y axis looks up or down | |
| """ | |
| if y_up: | |
| return np.arctan2(matrix[1, 0], matrix[0, 0]) | |
| return np.arctan2(-matrix[1, 0], matrix[0, 0]) | |
| def perspective_keypoint( | |
| keypoint: KeypointInternalType, | |
| height: int, | |
| width: int, | |
| matrix: np.ndarray, | |
| max_width: int, | |
| max_height: int, | |
| keep_size: bool, | |
| ) -> KeypointInternalType: | |
| x, y, angle, scale = keypoint | |
| keypoint_vector = np.array([x, y], dtype=np.float32).reshape([1, 1, 2]) | |
| x, y = cv2.perspectiveTransform(keypoint_vector, matrix)[0, 0] | |
| angle += rotation2DMatrixToEulerAngles(matrix[:2, :2], y_up=True) | |
| scale_x = np.sign(matrix[0, 0]) * np.sqrt(matrix[0, 0] ** 2 + matrix[0, 1] ** 2) | |
| scale_y = np.sign(matrix[1, 1]) * np.sqrt(matrix[1, 0] ** 2 + matrix[1, 1] ** 2) | |
| scale *= max(scale_x, scale_y) | |
| if keep_size: | |
| scale_x = width / max_width | |
| scale_y = height / max_height | |
| return keypoint_scale((x, y, angle, scale), scale_x, scale_y) | |
| return x, y, angle, scale | |
| def _is_identity_matrix(matrix: skimage.transform.ProjectiveTransform) -> bool: | |
| return np.allclose(matrix.params, np.eye(3, dtype=np.float32)) | |
| def warp_affine( | |
| image: np.ndarray, | |
| matrix: skimage.transform.ProjectiveTransform, | |
| interpolation: int, | |
| cval: Union[int, float, Sequence[int], Sequence[float]], | |
| mode: int, | |
| output_shape: Sequence[int], | |
| ) -> np.ndarray: | |
| if _is_identity_matrix(matrix): | |
| return image | |
| dsize = int(np.round(output_shape[1])), int(np.round(output_shape[0])) | |
| warp_fn = _maybe_process_in_chunks( | |
| cv2.warpAffine, M=matrix.params[:2], dsize=dsize, flags=interpolation, borderMode=mode, borderValue=cval | |
| ) | |
| tmp = warp_fn(image) | |
| return tmp | |
| def keypoint_affine( | |
| keypoint: KeypointInternalType, | |
| matrix: skimage.transform.ProjectiveTransform, | |
| scale: dict, | |
| ) -> KeypointInternalType: | |
| if _is_identity_matrix(matrix): | |
| return keypoint | |
| x, y, a, s = keypoint[:4] | |
| x, y = cv2.transform(np.array([[[x, y]]]), matrix.params[:2]).squeeze() | |
| a += rotation2DMatrixToEulerAngles(matrix.params[:2]) | |
| s *= np.max([scale["x"], scale["y"]]) | |
| return x, y, a, s | |
| def bbox_affine( | |
| bbox: BoxInternalType, | |
| matrix: skimage.transform.ProjectiveTransform, | |
| rotate_method: str, | |
| rows: int, | |
| cols: int, | |
| output_shape: Sequence[int], | |
| ) -> BoxInternalType: | |
| if _is_identity_matrix(matrix): | |
| return bbox | |
| x_min, y_min, x_max, y_max = denormalize_bbox(bbox, rows, cols)[:4] | |
| if rotate_method == "largest_box": | |
| points = np.array( | |
| [ | |
| [x_min, y_min], | |
| [x_max, y_min], | |
| [x_max, y_max], | |
| [x_min, y_max], | |
| ] | |
| ) | |
| elif rotate_method == "ellipse": | |
| w = (x_max - x_min) / 2 | |
| h = (y_max - y_min) / 2 | |
| data = np.arange(0, 360, dtype=np.float32) | |
| x = w * np.sin(np.radians(data)) + (w + x_min - 0.5) | |
| y = h * np.cos(np.radians(data)) + (h + y_min - 0.5) | |
| points = np.hstack([x.reshape(-1, 1), y.reshape(-1, 1)]) | |
| else: | |
| raise ValueError(f"Method {rotate_method} is not a valid rotation method.") | |
| points = skimage.transform.matrix_transform(points, matrix.params) | |
| x_min = np.min(points[:, 0]) | |
| x_max = np.max(points[:, 0]) | |
| y_min = np.min(points[:, 1]) | |
| y_max = np.max(points[:, 1]) | |
| return normalize_bbox((x_min, y_min, x_max, y_max), output_shape[0], output_shape[1]) | |
| def safe_rotate( | |
| img: np.ndarray, | |
| matrix: np.ndarray, | |
| interpolation: int, | |
| value: FillValueType = None, | |
| border_mode: int = cv2.BORDER_REFLECT_101, | |
| ) -> np.ndarray: | |
| h, w = img.shape[:2] | |
| warp_fn = _maybe_process_in_chunks( | |
| cv2.warpAffine, | |
| M=matrix, | |
| dsize=(w, h), | |
| flags=interpolation, | |
| borderMode=border_mode, | |
| borderValue=value, | |
| ) | |
| return warp_fn(img) | |
| def bbox_safe_rotate(bbox: BoxInternalType, matrix: np.ndarray, cols: int, rows: int) -> BoxInternalType: | |
| x1, y1, x2, y2 = denormalize_bbox(bbox, rows, cols)[:4] | |
| points = np.array( | |
| [ | |
| [x1, y1, 1], | |
| [x2, y1, 1], | |
| [x2, y2, 1], | |
| [x1, y2, 1], | |
| ] | |
| ) | |
| points = points @ matrix.T | |
| x1 = points[:, 0].min() | |
| x2 = points[:, 0].max() | |
| y1 = points[:, 1].min() | |
| y2 = points[:, 1].max() | |
| def fix_point(pt1: float, pt2: float, max_val: float) -> Tuple[float, float]: | |
| # In my opinion, these errors should be very low, around 1-2 pixels. | |
| if pt1 < 0: | |
| return 0, pt2 + pt1 | |
| if pt2 > max_val: | |
| return pt1 - (pt2 - max_val), max_val | |
| return pt1, pt2 | |
| x1, x2 = fix_point(x1, x2, cols) | |
| y1, y2 = fix_point(y1, y2, rows) | |
| return normalize_bbox((x1, y1, x2, y2), rows, cols) | |
| def keypoint_safe_rotate( | |
| keypoint: KeypointInternalType, | |
| matrix: np.ndarray, | |
| angle: float, | |
| scale_x: float, | |
| scale_y: float, | |
| cols: int, | |
| rows: int, | |
| ) -> KeypointInternalType: | |
| x, y, a, s = keypoint[:4] | |
| point = np.array([[x, y, 1]]) | |
| x, y = (point @ matrix.T)[0] | |
| # To avoid problems with float errors | |
| x = np.clip(x, 0, cols - 1) | |
| y = np.clip(y, 0, rows - 1) | |
| a += angle | |
| s *= max(scale_x, scale_y) | |
| return x, y, a, s | |
| def piecewise_affine( | |
| img: np.ndarray, | |
| matrix: Optional[skimage.transform.PiecewiseAffineTransform], | |
| interpolation: int, | |
| mode: str, | |
| cval: float, | |
| ) -> np.ndarray: | |
| if matrix is None: | |
| return img | |
| return skimage.transform.warp( | |
| img, matrix, order=interpolation, mode=mode, cval=cval, preserve_range=True, output_shape=img.shape | |
| ) | |
| def to_distance_maps( | |
| keypoints: Sequence[Tuple[float, float]], height: int, width: int, inverted: bool = False | |
| ) -> np.ndarray: | |
| """Generate a ``(H,W,N)`` array of distance maps for ``N`` keypoints. | |
| The ``n``-th distance map contains at every location ``(y, x)`` the | |
| euclidean distance to the ``n``-th keypoint. | |
| This function can be used as a helper when augmenting keypoints with a | |
| method that only supports the augmentation of images. | |
| Args: | |
| keypoint: keypoint coordinates | |
| height: image height | |
| width: image width | |
| inverted (bool): If ``True``, inverted distance maps are returned where each | |
| distance value d is replaced by ``d/(d+1)``, i.e. the distance | |
| maps have values in the range ``(0.0, 1.0]`` with ``1.0`` denoting | |
| exactly the position of the respective keypoint. | |
| Returns: | |
| (H, W, N) ndarray | |
| A ``float32`` array containing ``N`` distance maps for ``N`` | |
| keypoints. Each location ``(y, x, n)`` in the array denotes the | |
| euclidean distance at ``(y, x)`` to the ``n``-th keypoint. | |
| If `inverted` is ``True``, the distance ``d`` is replaced | |
| by ``d/(d+1)``. The height and width of the array match the | |
| height and width in ``KeypointsOnImage.shape``. | |
| """ | |
| distance_maps = np.zeros((height, width, len(keypoints)), dtype=np.float32) | |
| yy = np.arange(0, height) | |
| xx = np.arange(0, width) | |
| grid_xx, grid_yy = np.meshgrid(xx, yy) | |
| for i, (x, y) in enumerate(keypoints): | |
| distance_maps[:, :, i] = (grid_xx - x) ** 2 + (grid_yy - y) ** 2 | |
| distance_maps = np.sqrt(distance_maps) | |
| if inverted: | |
| return 1 / (distance_maps + 1) | |
| return distance_maps | |
| def from_distance_maps( | |
| distance_maps: np.ndarray, | |
| inverted: bool, | |
| if_not_found_coords: Optional[Union[Sequence[int], dict]], | |
| threshold: Optional[float] = None, | |
| ) -> List[Tuple[float, float]]: | |
| """Convert outputs of ``to_distance_maps()`` to ``KeypointsOnImage``. | |
| This is the inverse of `to_distance_maps`. | |
| Args: | |
| distance_maps (np.ndarray): The distance maps. ``N`` is the number of keypoints. | |
| inverted (bool): Whether the given distance maps were generated in inverted mode | |
| (i.e. :func:`KeypointsOnImage.to_distance_maps` was called with ``inverted=True``) or in non-inverted mode. | |
| if_not_found_coords (tuple, list, dict or None, optional): | |
| Coordinates to use for keypoints that cannot be found in `distance_maps`. | |
| * If this is a ``list``/``tuple``, it must contain two ``int`` values. | |
| * If it is a ``dict``, it must contain the keys ``x`` and ``y`` with each containing one ``int`` value. | |
| * If this is ``None``, then the keypoint will not be added. | |
| threshold (float): The search for keypoints works by searching for the | |
| argmin (non-inverted) or argmax (inverted) in each channel. This | |
| parameters contains the maximum (non-inverted) or minimum (inverted) value to accept in order to view a hit | |
| as a keypoint. Use ``None`` to use no min/max. | |
| nb_channels (None, int): Number of channels of the image on which the keypoints are placed. | |
| Some keypoint augmenters require that information. If set to ``None``, the keypoint's shape will be set | |
| to ``(height, width)``, otherwise ``(height, width, nb_channels)``. | |
| """ | |
| if distance_maps.ndim != 3: | |
| raise ValueError( | |
| f"Expected three-dimensional input, " | |
| f"got {distance_maps.ndim} dimensions and shape {distance_maps.shape}." | |
| ) | |
| height, width, nb_keypoints = distance_maps.shape | |
| drop_if_not_found = False | |
| if if_not_found_coords is None: | |
| drop_if_not_found = True | |
| if_not_found_x = -1 | |
| if_not_found_y = -1 | |
| elif isinstance(if_not_found_coords, (tuple, list)): | |
| if len(if_not_found_coords) != 2: | |
| raise ValueError( | |
| f"Expected tuple/list 'if_not_found_coords' to contain exactly two entries, " | |
| f"got {len(if_not_found_coords)}." | |
| ) | |
| if_not_found_x = if_not_found_coords[0] | |
| if_not_found_y = if_not_found_coords[1] | |
| elif isinstance(if_not_found_coords, dict): | |
| if_not_found_x = if_not_found_coords["x"] | |
| if_not_found_y = if_not_found_coords["y"] | |
| else: | |
| raise ValueError( | |
| f"Expected if_not_found_coords to be None or tuple or list or dict, got {type(if_not_found_coords)}." | |
| ) | |
| keypoints = [] | |
| for i in range(nb_keypoints): | |
| if inverted: | |
| hitidx_flat = np.argmax(distance_maps[..., i]) | |
| else: | |
| hitidx_flat = np.argmin(distance_maps[..., i]) | |
| hitidx_ndim = np.unravel_index(hitidx_flat, (height, width)) | |
| if not inverted and threshold is not None: | |
| found = distance_maps[hitidx_ndim[0], hitidx_ndim[1], i] < threshold | |
| elif inverted and threshold is not None: | |
| found = distance_maps[hitidx_ndim[0], hitidx_ndim[1], i] >= threshold | |
| else: | |
| found = True | |
| if found: | |
| keypoints.append((float(hitidx_ndim[1]), float(hitidx_ndim[0]))) | |
| else: | |
| if not drop_if_not_found: | |
| keypoints.append((if_not_found_x, if_not_found_y)) | |
| return keypoints | |
| def keypoint_piecewise_affine( | |
| keypoint: KeypointInternalType, | |
| matrix: Optional[skimage.transform.PiecewiseAffineTransform], | |
| h: int, | |
| w: int, | |
| keypoints_threshold: float, | |
| ) -> KeypointInternalType: | |
| if matrix is None: | |
| return keypoint | |
| x, y, a, s = keypoint[:4] | |
| dist_maps = to_distance_maps([(x, y)], h, w, True) | |
| dist_maps = piecewise_affine(dist_maps, matrix, 0, "constant", 0) | |
| x, y = from_distance_maps(dist_maps, True, {"x": -1, "y": -1}, keypoints_threshold)[0] | |
| return x, y, a, s | |
| def bbox_piecewise_affine( | |
| bbox: BoxInternalType, | |
| matrix: Optional[skimage.transform.PiecewiseAffineTransform], | |
| h: int, | |
| w: int, | |
| keypoints_threshold: float, | |
| ) -> BoxInternalType: | |
| if matrix is None: | |
| return bbox | |
| x1, y1, x2, y2 = denormalize_bbox(bbox, h, w)[:4] | |
| keypoints = [ | |
| (x1, y1), | |
| (x2, y1), | |
| (x2, y2), | |
| (x1, y2), | |
| ] | |
| dist_maps = to_distance_maps(keypoints, h, w, True) | |
| dist_maps = piecewise_affine(dist_maps, matrix, 0, "constant", 0) | |
| keypoints = from_distance_maps(dist_maps, True, {"x": -1, "y": -1}, keypoints_threshold) | |
| keypoints = [i for i in keypoints if 0 <= i[0] < w and 0 <= i[1] < h] | |
| keypoints_arr = np.array(keypoints) | |
| x1 = keypoints_arr[:, 0].min() | |
| y1 = keypoints_arr[:, 1].min() | |
| x2 = keypoints_arr[:, 0].max() | |
| y2 = keypoints_arr[:, 1].max() | |
| return normalize_bbox((x1, y1, x2, y2), h, w) | |
| def vflip(img: np.ndarray) -> np.ndarray: | |
| return np.ascontiguousarray(img[::-1, ...]) | |
| def hflip(img: np.ndarray) -> np.ndarray: | |
| return np.ascontiguousarray(img[:, ::-1, ...]) | |
| def hflip_cv2(img: np.ndarray) -> np.ndarray: | |
| return cv2.flip(img, 1) | |
| def random_flip(img: np.ndarray, code: int) -> np.ndarray: | |
| return cv2.flip(img, code) | |
| def transpose(img: np.ndarray) -> np.ndarray: | |
| return img.transpose(1, 0, 2) if len(img.shape) > 2 else img.transpose(1, 0) | |
| def rot90(img: np.ndarray, factor: int) -> np.ndarray: | |
| img = np.rot90(img, factor) | |
| return np.ascontiguousarray(img) | |
| def bbox_vflip(bbox: BoxInternalType, rows: int, cols: int) -> BoxInternalType: # skipcq: PYL-W0613 | |
| """Flip a bounding box vertically around the x-axis. | |
| Args: | |
| bbox: A bounding box `(x_min, y_min, x_max, y_max)`. | |
| rows: Image rows. | |
| cols: Image cols. | |
| Returns: | |
| tuple: A bounding box `(x_min, y_min, x_max, y_max)`. | |
| """ | |
| x_min, y_min, x_max, y_max = bbox[:4] | |
| return x_min, 1 - y_max, x_max, 1 - y_min | |
| def bbox_hflip(bbox: BoxInternalType, rows: int, cols: int) -> BoxInternalType: # skipcq: PYL-W0613 | |
| """Flip a bounding box horizontally around the y-axis. | |
| Args: | |
| bbox: A bounding box `(x_min, y_min, x_max, y_max)`. | |
| rows: Image rows. | |
| cols: Image cols. | |
| Returns: | |
| A bounding box `(x_min, y_min, x_max, y_max)`. | |
| """ | |
| x_min, y_min, x_max, y_max = bbox[:4] | |
| return 1 - x_max, y_min, 1 - x_min, y_max | |
| def bbox_flip(bbox: BoxInternalType, d: int, rows: int, cols: int) -> BoxInternalType: | |
| """Flip a bounding box either vertically, horizontally or both depending on the value of `d`. | |
| Args: | |
| bbox: A bounding box `(x_min, y_min, x_max, y_max)`. | |
| d: dimension. 0 for vertical flip, 1 for horizontal, -1 for transpose | |
| rows: Image rows. | |
| cols: Image cols. | |
| Returns: | |
| A bounding box `(x_min, y_min, x_max, y_max)`. | |
| Raises: | |
| ValueError: if value of `d` is not -1, 0 or 1. | |
| """ | |
| if d == 0: | |
| bbox = bbox_vflip(bbox, rows, cols) | |
| elif d == 1: | |
| bbox = bbox_hflip(bbox, rows, cols) | |
| elif d == -1: | |
| bbox = bbox_hflip(bbox, rows, cols) | |
| bbox = bbox_vflip(bbox, rows, cols) | |
| else: | |
| raise ValueError("Invalid d value {}. Valid values are -1, 0 and 1".format(d)) | |
| return bbox | |
| def bbox_transpose( | |
| bbox: KeypointInternalType, axis: int, rows: int, cols: int | |
| ) -> KeypointInternalType: # skipcq: PYL-W0613 | |
| """Transposes a bounding box along given axis. | |
| Args: | |
| bbox: A bounding box `(x_min, y_min, x_max, y_max)`. | |
| axis: 0 - main axis, 1 - secondary axis. | |
| rows: Image rows. | |
| cols: Image cols. | |
| Returns: | |
| A bounding box tuple `(x_min, y_min, x_max, y_max)`. | |
| Raises: | |
| ValueError: If axis not equal to 0 or 1. | |
| """ | |
| x_min, y_min, x_max, y_max = bbox[:4] | |
| if axis not in {0, 1}: | |
| raise ValueError("Axis must be either 0 or 1.") | |
| if axis == 0: | |
| bbox = (y_min, x_min, y_max, x_max) | |
| if axis == 1: | |
| bbox = (1 - y_max, 1 - x_max, 1 - y_min, 1 - x_min) | |
| return bbox | |
| def keypoint_vflip(keypoint: KeypointInternalType, rows: int, cols: int) -> KeypointInternalType: | |
| """Flip a keypoint vertically around the x-axis. | |
| Args: | |
| keypoint: A keypoint `(x, y, angle, scale)`. | |
| rows: Image height. | |
| cols: Image width. | |
| Returns: | |
| tuple: A keypoint `(x, y, angle, scale)`. | |
| """ | |
| x, y, angle, scale = keypoint[:4] | |
| angle = -angle | |
| return x, (rows - 1) - y, angle, scale | |
| def keypoint_hflip(keypoint: KeypointInternalType, rows: int, cols: int) -> KeypointInternalType: | |
| """Flip a keypoint horizontally around the y-axis. | |
| Args: | |
| keypoint: A keypoint `(x, y, angle, scale)`. | |
| rows: Image height. | |
| cols: Image width. | |
| Returns: | |
| A keypoint `(x, y, angle, scale)`. | |
| """ | |
| x, y, angle, scale = keypoint[:4] | |
| angle = math.pi - angle | |
| return (cols - 1) - x, y, angle, scale | |
| def keypoint_flip(keypoint: KeypointInternalType, d: int, rows: int, cols: int) -> KeypointInternalType: | |
| """Flip a keypoint either vertically, horizontally or both depending on the value of `d`. | |
| Args: | |
| keypoint: A keypoint `(x, y, angle, scale)`. | |
| d: Number of flip. Must be -1, 0 or 1: | |
| * 0 - vertical flip, | |
| * 1 - horizontal flip, | |
| * -1 - vertical and horizontal flip. | |
| rows: Image height. | |
| cols: Image width. | |
| Returns: | |
| A keypoint `(x, y, angle, scale)`. | |
| Raises: | |
| ValueError: if value of `d` is not -1, 0 or 1. | |
| """ | |
| if d == 0: | |
| keypoint = keypoint_vflip(keypoint, rows, cols) | |
| elif d == 1: | |
| keypoint = keypoint_hflip(keypoint, rows, cols) | |
| elif d == -1: | |
| keypoint = keypoint_hflip(keypoint, rows, cols) | |
| keypoint = keypoint_vflip(keypoint, rows, cols) | |
| else: | |
| raise ValueError(f"Invalid d value {d}. Valid values are -1, 0 and 1") | |
| return keypoint | |
| def keypoint_transpose(keypoint: KeypointInternalType) -> KeypointInternalType: | |
| """Rotate a keypoint by angle. | |
| Args: | |
| keypoint: A keypoint `(x, y, angle, scale)`. | |
| Returns: | |
| A keypoint `(x, y, angle, scale)`. | |
| """ | |
| x, y, angle, scale = keypoint[:4] | |
| if angle <= np.pi: | |
| angle = np.pi - angle | |
| else: | |
| angle = 3 * np.pi - angle | |
| return y, x, angle, scale | |
| def pad( | |
| img: np.ndarray, | |
| min_height: int, | |
| min_width: int, | |
| border_mode: int = cv2.BORDER_REFLECT_101, | |
| value: Optional[ImageColorType] = None, | |
| ) -> np.ndarray: | |
| height, width = img.shape[:2] | |
| if height < min_height: | |
| h_pad_top = int((min_height - height) / 2.0) | |
| h_pad_bottom = min_height - height - h_pad_top | |
| else: | |
| h_pad_top = 0 | |
| h_pad_bottom = 0 | |
| if width < min_width: | |
| w_pad_left = int((min_width - width) / 2.0) | |
| w_pad_right = min_width - width - w_pad_left | |
| else: | |
| w_pad_left = 0 | |
| w_pad_right = 0 | |
| img = pad_with_params(img, h_pad_top, h_pad_bottom, w_pad_left, w_pad_right, border_mode, value) | |
| if img.shape[:2] != (max(min_height, height), max(min_width, width)): | |
| raise RuntimeError( | |
| "Invalid result shape. Got: {}. Expected: {}".format( | |
| img.shape[:2], (max(min_height, height), max(min_width, width)) | |
| ) | |
| ) | |
| return img | |
| def pad_with_params( | |
| img: np.ndarray, | |
| h_pad_top: int, | |
| h_pad_bottom: int, | |
| w_pad_left: int, | |
| w_pad_right: int, | |
| border_mode: int = cv2.BORDER_REFLECT_101, | |
| value: Optional[ImageColorType] = None, | |
| ) -> np.ndarray: | |
| pad_fn = _maybe_process_in_chunks( | |
| cv2.copyMakeBorder, | |
| top=h_pad_top, | |
| bottom=h_pad_bottom, | |
| left=w_pad_left, | |
| right=w_pad_right, | |
| borderType=border_mode, | |
| value=value, | |
| ) | |
| return pad_fn(img) | |
| def optical_distortion( | |
| img: np.ndarray, | |
| k: int = 0, | |
| dx: int = 0, | |
| dy: int = 0, | |
| interpolation: int = cv2.INTER_LINEAR, | |
| border_mode: int = cv2.BORDER_REFLECT_101, | |
| value: Optional[ImageColorType] = None, | |
| ) -> np.ndarray: | |
| """Barrel / pincushion distortion. Unconventional augment. | |
| Reference: | |
| | https://stackoverflow.com/questions/6199636/formulas-for-barrel-pincushion-distortion | |
| | https://stackoverflow.com/questions/10364201/image-transformation-in-opencv | |
| | https://stackoverflow.com/questions/2477774/correcting-fisheye-distortion-programmatically | |
| | http://www.coldvision.io/2017/03/02/advanced-lane-finding-using-opencv/ | |
| """ | |
| height, width = img.shape[:2] | |
| fx = width | |
| fy = height | |
| cx = width * 0.5 + dx | |
| cy = height * 0.5 + dy | |
| camera_matrix = np.array([[fx, 0, cx], [0, fy, cy], [0, 0, 1]], dtype=np.float32) | |
| distortion = np.array([k, k, 0, 0, 0], dtype=np.float32) | |
| map1, map2 = cv2.initUndistortRectifyMap( | |
| camera_matrix, distortion, None, None, (width, height), cv2.CV_32FC1 # type: ignore[attr-defined] | |
| ) | |
| return cv2.remap(img, map1, map2, interpolation=interpolation, borderMode=border_mode, borderValue=value) | |
| def grid_distortion( | |
| img: np.ndarray, | |
| num_steps: int = 10, | |
| xsteps: Tuple = (), | |
| ysteps: Tuple = (), | |
| interpolation: int = cv2.INTER_LINEAR, | |
| border_mode: int = cv2.BORDER_REFLECT_101, | |
| value: Optional[ImageColorType] = None, | |
| ) -> np.ndarray: | |
| """Perform a grid distortion of an input image. | |
| Reference: | |
| http://pythology.blogspot.sg/2014/03/interpolation-on-regular-distorted-grid.html | |
| """ | |
| height, width = img.shape[:2] | |
| x_step = width // num_steps | |
| xx = np.zeros(width, np.float32) | |
| prev = 0 | |
| for idx in range(num_steps + 1): | |
| x = idx * x_step | |
| start = int(x) | |
| end = int(x) + x_step | |
| if end > width: | |
| end = width | |
| cur = width | |
| else: | |
| cur = prev + x_step * xsteps[idx] | |
| xx[start:end] = np.linspace(prev, cur, end - start) | |
| prev = cur | |
| y_step = height // num_steps | |
| yy = np.zeros(height, np.float32) | |
| prev = 0 | |
| for idx in range(num_steps + 1): | |
| y = idx * y_step | |
| start = int(y) | |
| end = int(y) + y_step | |
| if end > height: | |
| end = height | |
| cur = height | |
| else: | |
| cur = prev + y_step * ysteps[idx] | |
| yy[start:end] = np.linspace(prev, cur, end - start) | |
| prev = cur | |
| map_x, map_y = np.meshgrid(xx, yy) | |
| map_x = map_x.astype(np.float32) | |
| map_y = map_y.astype(np.float32) | |
| remap_fn = _maybe_process_in_chunks( | |
| cv2.remap, | |
| map1=map_x, | |
| map2=map_y, | |
| interpolation=interpolation, | |
| borderMode=border_mode, | |
| borderValue=value, | |
| ) | |
| return remap_fn(img) | |
| def elastic_transform_approx( | |
| img: np.ndarray, | |
| alpha: float, | |
| sigma: float, | |
| alpha_affine: float, | |
| interpolation: int = cv2.INTER_LINEAR, | |
| border_mode: int = cv2.BORDER_REFLECT_101, | |
| value: Optional[ImageColorType] = None, | |
| random_state: Optional[np.random.RandomState] = None, | |
| ) -> np.ndarray: | |
| """Elastic deformation of images as described in [Simard2003]_ (with modifications for speed). | |
| Based on https://gist.github.com/ernestum/601cdf56d2b424757de5 | |
| .. [Simard2003] Simard, Steinkraus and Platt, "Best Practices for | |
| Convolutional Neural Networks applied to Visual Document Analysis", in | |
| Proc. of the International Conference on Document Analysis and | |
| Recognition, 2003. | |
| """ | |
| height, width = img.shape[:2] | |
| # Random affine | |
| center_square = np.array((height, width), dtype=np.float32) // 2 | |
| square_size = min((height, width)) // 3 | |
| alpha = float(alpha) | |
| sigma = float(sigma) | |
| alpha_affine = float(alpha_affine) | |
| pts1 = np.array( | |
| [ | |
| center_square + square_size, | |
| [center_square[0] + square_size, center_square[1] - square_size], | |
| center_square - square_size, | |
| ], | |
| dtype=np.float32, | |
| ) | |
| pts2 = pts1 + random_utils.uniform(-alpha_affine, alpha_affine, size=pts1.shape, random_state=random_state).astype( | |
| np.float32 | |
| ) | |
| matrix = cv2.getAffineTransform(pts1, pts2) | |
| warp_fn = _maybe_process_in_chunks( | |
| cv2.warpAffine, | |
| M=matrix, | |
| dsize=(width, height), | |
| flags=interpolation, | |
| borderMode=border_mode, | |
| borderValue=value, | |
| ) | |
| img = warp_fn(img) | |
| dx = random_utils.rand(height, width, random_state=random_state).astype(np.float32) * 2 - 1 | |
| cv2.GaussianBlur(dx, (17, 17), sigma, dst=dx) | |
| dx *= alpha | |
| dy = random_utils.rand(height, width, random_state=random_state).astype(np.float32) * 2 - 1 | |
| cv2.GaussianBlur(dy, (17, 17), sigma, dst=dy) | |
| dy *= alpha | |
| x, y = np.meshgrid(np.arange(width), np.arange(height)) | |
| map_x = np.float32(x + dx) | |
| map_y = np.float32(y + dy) | |
| remap_fn = _maybe_process_in_chunks( | |
| cv2.remap, | |
| map1=map_x, | |
| map2=map_y, | |
| interpolation=interpolation, | |
| borderMode=border_mode, | |
| borderValue=value, | |
| ) | |
| return remap_fn(img) | |