File size: 8,250 Bytes
5172761
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
#!/usr/bin/env python
# coding: utf-8

# In[1]:


import os
import numpy as np
import tensorflow as tf
from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau, EarlyStopping
from dataprep_multitask import get_train_val_datasets
from utils.losses import dice_loss, dice_coefficient, focal_tversky_loss  # custom metrics
from models.unet_multitask import build_unet_multioutput
from glob import glob
from visualize import visualize_batch
import h5py

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3'  # 3=errors only
os.environ['TF_ENABLE_ONEDNN_OPTS'] = '0'
os.environ['TF_GPU_ALLOCATOR'] = 'cuda_malloc_async'

# Set seeds for reproducibility
tf.random.set_seed(42)
np.random.seed(42)

# Paths
DATA_DIR = "BraTS20/BraTS2020_training_data/content/data"
MODEL_SAVE_PATH = "models/unet_brats.keras"

# Hyperparameters
BATCH_SIZE = 8
EPOCHS = 30

# Load datasets
train_dataset, val_dataset = get_train_val_datasets(DATA_DIR, batch_size=BATCH_SIZE)


# ------------------- Model Setup -------------------
model = build_unet_multioutput(input_shape=(240, 240, 4))
model.compile(
    optimizer=tf.keras.optimizers.Adam(learning_rate=1e-4),
    loss={
        'wt_head': focal_tversky_loss,
        'tc_head': focal_tversky_loss,
        'et_head': focal_tversky_loss,
    },
    loss_weights={
        'wt_head': 1.0,
        'tc_head': 1.0,
        'et_head': 2.0,
    },
    metrics={
        'wt_head': dice_coefficient,
        'tc_head': dice_coefficient,
        'et_head': dice_coefficient,
    }
)

# ------------------- Callbacks -------------------
callbacks = [
    ModelCheckpoint("models/unet_multihead_brats.keras", save_best_only=True, monitor='val_et_head_dice_coefficient', mode='max'),
    ReduceLROnPlateau(monitor='val_et_head_dice_coefficient', factor=0.5, patience=4, min_lr=1e-6, verbose=1),
    EarlyStopping(monitor='val_et_head_dice_coefficient', mode='max', patience=8, restore_best_weights=True)
]

# ------------------- Training -------------------
history = model.fit(
    train_dataset,
    validation_data=val_dataset,
    steps_per_epoch=len(train_dataset) // BATCH_SIZE,
    validation_steps=len(val_dataset) // BATCH_SIZE,
    epochs=EPOCHS,
    callbacks=callbacks
)


# In[4]:


import matplotlib.pyplot as plt

print("\nGenerating predictions and visualizing...\n")

# Get one batch from validation set
for x_batch, y_batch in val_dataset.take(1):
    preds = model.predict(x_batch)
    pred_masks = {
        'wt_head': (preds[0] > 0.5).astype(np.float32),
        'tc_head': (preds[1] > 0.5).astype(np.float32),
        'et_head': (preds[2] > 0.5).astype(np.float32),
    }

    def overlay_prediction(img, pred_masks):
        flair = img[:, :, 3]
        flair_norm = (flair - flair.min()) / (flair.max() - flair.min() + 1e-8)
        overlay = np.stack([flair_norm]*3, axis=-1)
        overlay[pred_masks['wt_head'][..., 0] == 1] = [1, 0, 0]  # Red
        overlay[pred_masks['tc_head'][..., 0] == 1] = [0, 1, 0]  # Green
        overlay[pred_masks['et_head'][..., 0] == 1] = [0, 0, 1]  # Blue
        return overlay

    for i in range(min(3, x_batch.shape[0])):
        image = x_batch[i].numpy()
        flair = image[:, :, 3]
        pred_overlay = overlay_prediction(image, {
            'wt_head': pred_masks['wt_head'][i],
            'tc_head': pred_masks['tc_head'][i],
            'et_head': pred_masks['et_head'][i],
        })

        plt.figure(figsize=(12, 4))
        plt.subplot(1, 2, 1)
        plt.imshow(flair, cmap='gray')
        plt.title("FLAIR")
        plt.axis('off')

        plt.subplot(1, 2, 2)
        plt.imshow(pred_overlay)
        plt.title("Predicted Mask Overlay")
        plt.axis('off')
        plt.show()

    break


# In[5]:


import matplotlib.pyplot as plt

def overlay_mask(flair, wt, tc, et):
    """
    Build RGB overlay on FLAIR using WT (red), TC (green), ET (blue) masks.
    """
    flair_norm = (flair - flair.min()) / (flair.max() - flair.min() + 1e-8)
    overlay = np.stack([flair_norm]*3, axis=-1)
    overlay[wt[..., 0] == 1] = [1, 0, 0]  # Red
    overlay[tc[..., 0] == 1] = [0, 1, 0]  # Green
    overlay[et[..., 0] == 1] = [0, 0, 1]  # Blue
    return overlay


# Predict one batch
for x_batch, y_batch in val_dataset.take(1):
    preds = model.predict(x_batch)

    for i in range(3):  # Show first 3 samples
        img = x_batch[i].numpy()
        flair = img[:, :, 3]

        # Predicted masks (thresholded)
        wt_pred = (preds[0][i] > 0.5).astype(np.float32)
        tc_pred = (preds[1][i] > 0.5).astype(np.float32)
        et_pred = (preds[2][i] > 0.5).astype(np.float32)

        # Ground truth masks
        wt_true = y_batch['wt_head'][i].numpy()
        tc_true = y_batch['tc_head'][i].numpy()
        et_true = y_batch['et_head'][i].numpy()

        # Overlays
        gt_overlay = overlay_mask(flair, wt_true, tc_true, et_true)
        pred_overlay = overlay_mask(flair, wt_pred, tc_pred, et_pred)

        # Plot side-by-side
        plt.figure(figsize=(10, 5))
        plt.subplot(1, 2, 1)
        plt.imshow(gt_overlay)
        plt.title("Ground Truth Overlay")
        plt.axis('off')

        plt.subplot(1, 2, 2)
        plt.imshow(pred_overlay)
        plt.title("Predicted Overlay")
        plt.axis('off')

        plt.tight_layout()
        plt.show()

    break


# In[6]:


import matplotlib.pyplot as plt
import numpy as np

def overlay_mask(flair, wt, tc, et):
    """
    Build RGB overlay on FLAIR using WT (red), TC (green), ET (blue).
    """
    flair_norm = (flair - flair.min()) / (flair.max() - flair.min() + 1e-8)
    overlay = np.stack([flair_norm]*3, axis=-1)
    overlay[wt[..., 0] == 1] = [1, 0, 0]  # Red: WT
    overlay[tc[..., 0] == 1] = [0, 1, 0]  # Green: TC
    overlay[et[..., 0] == 1] = [0, 0, 1]  # Blue: ET
    return overlay

def overlay_errors(flair, gt, pred):
    """
    Compare prediction vs ground truth:
    - TP (correct) regions keep their color
    - FP (predicted but not GT): Magenta
    - FN (GT but not predicted): Yellow
    """
    flair_norm = (flair - flair.min()) / (flair.max() - flair.min() + 1e-8)
    overlay = np.stack([flair_norm]*3, axis=-1)

    for mask_name, color, idx in zip(['wt_head', 'tc_head', 'et_head'],
                                     [[1, 0, 0], [0, 1, 0], [0, 0, 1]],
                                     range(3)):
        gt_mask = gt[mask_name][..., 0]
        pred_mask = pred[mask_name][..., 0]

        tp = np.logical_and(gt_mask == 1, pred_mask == 1)
        fn = np.logical_and(gt_mask == 1, pred_mask == 0)  # Missed
        fp = np.logical_and(gt_mask == 0, pred_mask == 1)  # Extra

        overlay[tp] = color            # Correct
        overlay[fn] = [1, 1, 0]        # Yellow for FN
        overlay[fp] = [1, 0, 1]        # Magenta for FP

    return overlay

# Run on one batch
for x_batch, y_batch in val_dataset.take(1):
    preds = model.predict(x_batch)

    for i in range(3):
        img = x_batch[i].numpy()
        flair = img[:, :, 3]

        # Threshold predictions
        pred_masks = {
            'wt_head': (preds[0][i] > 0.5).astype(np.float32),
            'tc_head': (preds[1][i] > 0.5).astype(np.float32),
            'et_head': (preds[2][i] > 0.5).astype(np.float32)
        }

        gt_masks = {
            'wt_head': y_batch['wt_head'][i].numpy(),
            'tc_head': y_batch['tc_head'][i].numpy(),
            'et_head': y_batch['et_head'][i].numpy()
        }

        # Overlays
        gt_overlay = overlay_mask(flair, gt_masks['wt_head'], gt_masks['tc_head'], gt_masks['et_head'])
        pred_overlay = overlay_mask(flair, pred_masks['wt_head'], pred_masks['tc_head'], pred_masks['et_head'])
        error_overlay = overlay_errors(flair, gt_masks, pred_masks)

        # Plot all 3
        plt.figure(figsize=(18, 5))
        plt.subplot(1, 3, 1)
        plt.imshow(gt_overlay)
        plt.title("Ground Truth Overlay")
        plt.axis('off')

        plt.subplot(1, 3, 2)
        plt.imshow(pred_overlay)
        plt.title("Predicted Overlay")
        plt.axis('off')

        plt.subplot(1, 3, 3)
        plt.imshow(error_overlay)
        plt.title("Error Overlay\nFN=Yellow | FP=Magenta")
        plt.axis('off')

        plt.tight_layout()
        plt.show()

    break


# In[ ]: