import streamlit as st from langchain.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.llms import HuggingFacePipeline from langchain.schema import Document from transformers import AutoModelForSeq2SeqLM, AutoTokenizer, pipeline from sentence_transformers import SentenceTransformer import torch from io import BytesIO import fitz # PyMuPDF # Set device based on GPU availability device = "cuda" if torch.cuda.is_available() else "cpu" # Load embeddings with a smaller model and run on CPU embedding_model = "all-MiniLM-L6-v2" embeddings = HuggingFaceEmbeddings(model_name=embedding_model, model_kwargs={'device': 'cpu'}) # Set up text generation model with PyTorch-compatible pipeline model_name = "google/flan-t5-small" # Or use a smaller model if needed tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForSeq2SeqLM.from_pretrained(model_name).to(device) # Create a text generation pipeline generator = pipeline( "text2text-generation", model=model, tokenizer=tokenizer, device=0 if device == "cuda" else -1, model_kwargs={"max_length": 256, "temperature": 0.7} ) llm = HuggingFacePipeline(pipeline=generator) # Streamlit interface def main(): st.title("Chat with Multiple PDFs") st.write("Upload PDF files and chat with them.") # File uploader uploaded_files = st.file_uploader("Upload PDF Files", accept_multiple_files=True, type=["pdf"]) if uploaded_files: # Load PDF documents documents = [] for uploaded_file in uploaded_files: pdf_content = BytesIO(uploaded_file.read()) doc = fitz.open(stream=pdf_content, filetype="pdf") # Open PDF with PyMuPDF text = "" for page in doc: text += page.get_text() # Extract text from each page doc.close() # Create Document instance with page content documents.append(Document(page_content=text, metadata={"file_name": uploaded_file.name})) # Split documents into manageable chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=100) chunks = text_splitter.split_documents(documents) # Embed document chunks into vector store vector_store = FAISS.from_documents(chunks, embeddings) # User query input st.write("You can now start chatting with your PDFs!") user_input = st.text_input("Ask a question:") if user_input: # Perform similarity search on the vector store docs = vector_store.similarity_search(user_input, k=3) # Concatenate retrieved docs into a single prompt prompt = "\n".join([doc.page_content for doc in docs]) + "\n\n" + user_input # Generate response try: response = generator(prompt, max_new_tokens=50, num_return_sequences=1)[0]["generated_text"] st.write(response) except torch.cuda.OutOfMemoryError: st.error("Out of memory. Try using a smaller model or fewer documents.") if __name__ == "__main__": main()