Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -2,15 +2,40 @@ from fastapi import FastAPI
|
|
2 |
from pydantic import BaseModel
|
3 |
from typing import Optional
|
4 |
|
|
|
5 |
from llama_index.core.settings import Settings
|
6 |
from llama_index.core import Document
|
7 |
-
from llama_index.embeddings.huggingface import HuggingFaceEmbedding
|
8 |
from llama_index.llms.llama_cpp import LlamaCPP
|
9 |
from llama_index.core.node_parser import SemanticSplitterNodeParser
|
10 |
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
app = FastAPI()
|
12 |
|
13 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
class ChunkRequest(BaseModel):
|
15 |
text: str
|
16 |
source_id: Optional[str] = None
|
@@ -20,38 +45,26 @@ class ChunkRequest(BaseModel):
|
|
20 |
|
21 |
@app.post("/chunk")
|
22 |
async def chunk_text(data: ChunkRequest):
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
# ✅ Embedding open-source via Hugging Face
|
34 |
-
embed_model = HuggingFaceEmbedding(model_name="BAAI/bge-small-en-v1.5")
|
35 |
-
|
36 |
-
# ✅ Configuration du service IA
|
37 |
-
# service_context = ServiceContext.from_defaults(
|
38 |
-
# llm=llm,
|
39 |
-
# embed_model=embed_model
|
40 |
-
# )
|
41 |
-
|
42 |
|
43 |
-
|
44 |
-
|
45 |
-
|
|
|
46 |
|
|
|
|
|
47 |
|
48 |
-
|
49 |
-
try:
|
50 |
# ✅ Découpage sémantique intelligent
|
51 |
-
# parser = SemanticSplitterNodeParser.from_defaults(service_context=service_context)
|
52 |
-
|
53 |
-
# ✅ Appel du parser sans service_context
|
54 |
-
|
55 |
parser = SemanticSplitterNodeParser.from_defaults()
|
56 |
nodes = parser.get_nodes_from_documents([Document(text=data.text)])
|
57 |
|
@@ -61,14 +74,12 @@ async def chunk_text(data: ChunkRequest):
|
|
61 |
"source_id": data.source_id,
|
62 |
"titre": data.titre,
|
63 |
"source": data.source,
|
64 |
-
"type": data.type
|
65 |
}
|
|
|
66 |
except Exception as e:
|
67 |
return {"error": str(e)}
|
68 |
|
69 |
-
|
70 |
if __name__ == "__main__":
|
71 |
import uvicorn
|
72 |
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|
73 |
-
|
74 |
-
|
|
|
2 |
from pydantic import BaseModel
|
3 |
from typing import Optional
|
4 |
|
5 |
+
# ✅ Modules de LlamaIndex
|
6 |
from llama_index.core.settings import Settings
|
7 |
from llama_index.core import Document
|
|
|
8 |
from llama_index.llms.llama_cpp import LlamaCPP
|
9 |
from llama_index.core.node_parser import SemanticSplitterNodeParser
|
10 |
|
11 |
+
# ✅ Pour l'embedding LOCAL via transformers
|
12 |
+
from transformers import AutoTokenizer, AutoModel
|
13 |
+
import torch
|
14 |
+
import torch.nn.functional as F
|
15 |
+
import os
|
16 |
+
|
17 |
app = FastAPI()
|
18 |
|
19 |
+
# ✅ Configuration locale du cache HF pour Hugging Face
|
20 |
+
CACHE_DIR = "/data"
|
21 |
+
os.environ["HF_HOME"] = CACHE_DIR
|
22 |
+
os.environ["TRANSFORMERS_CACHE"] = CACHE_DIR
|
23 |
+
os.environ["HF_MODULES_CACHE"] = CACHE_DIR
|
24 |
+
os.environ["HF_HUB_CACHE"] = CACHE_DIR
|
25 |
+
|
26 |
+
# ✅ Configuration du modèle d’embedding local (ex: BGE / Nomic / GTE etc.)
|
27 |
+
MODEL_NAME = "BAAI/bge-small-en-v1.5"
|
28 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
29 |
+
model = AutoModel.from_pretrained(MODEL_NAME, cache_dir=CACHE_DIR)
|
30 |
+
|
31 |
+
def get_embedding(text: str):
|
32 |
+
with torch.no_grad():
|
33 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True)
|
34 |
+
outputs = model(**inputs)
|
35 |
+
embeddings = outputs.last_hidden_state[:, 0]
|
36 |
+
return F.normalize(embeddings, p=2, dim=1).squeeze().tolist()
|
37 |
+
|
38 |
+
# ✅ Données entrantes du POST
|
39 |
class ChunkRequest(BaseModel):
|
40 |
text: str
|
41 |
source_id: Optional[str] = None
|
|
|
45 |
|
46 |
@app.post("/chunk")
|
47 |
async def chunk_text(data: ChunkRequest):
|
48 |
+
try:
|
49 |
+
# ✅ Chargement du modèle LLM depuis Hugging Face en ligne (pas de .gguf local)
|
50 |
+
llm = LlamaCPP(
|
51 |
+
model_url="https://huggingface.co/leafspark/Mistral-7B-Instruct-v0.2-Q4_K_M-GGUF/resolve/main/mistral-7b-instruct-v0.2.Q4_K_M.gguf",
|
52 |
+
temperature=0.1,
|
53 |
+
max_new_tokens=512,
|
54 |
+
context_window=2048,
|
55 |
+
generate_kwargs={"top_p": 0.95},
|
56 |
+
model_kwargs={"n_gpu_layers": 1},
|
57 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
|
59 |
+
# ✅ Intégration manuelle de l'embedding local dans Settings
|
60 |
+
class SimpleEmbedding:
|
61 |
+
def get_text_embedding(self, text: str):
|
62 |
+
return get_embedding(text)
|
63 |
|
64 |
+
Settings.llm = llm
|
65 |
+
Settings.embed_model = SimpleEmbedding()
|
66 |
|
|
|
|
|
67 |
# ✅ Découpage sémantique intelligent
|
|
|
|
|
|
|
|
|
68 |
parser = SemanticSplitterNodeParser.from_defaults()
|
69 |
nodes = parser.get_nodes_from_documents([Document(text=data.text)])
|
70 |
|
|
|
74 |
"source_id": data.source_id,
|
75 |
"titre": data.titre,
|
76 |
"source": data.source,
|
77 |
+
"type": data.type,
|
78 |
}
|
79 |
+
|
80 |
except Exception as e:
|
81 |
return {"error": str(e)}
|
82 |
|
|
|
83 |
if __name__ == "__main__":
|
84 |
import uvicorn
|
85 |
uvicorn.run("app:app", host="0.0.0.0", port=7860)
|
|
|
|