import torch import gradio as gr from transformers import pipeline pipe=pipeline("summarization", model="sshleifer/distilbart-cnn-12-6", torch_dtype=torch.bfloat16, device="cpu") #pipe=pipeline("summarization", model="facebook/bart-large-cnn", torch_dtype=torch.bfloat16, device="cpu") from pydantic import BaseModel, PydanticUserError, ConfigDict from pydantic import BaseModel, ConfigDict class MyModel(BaseModel): request: 'starlette.requests.Request' model_config = ConfigDict(arbitrary_types_allowed=True) from pydantic_core import core_schema from starlette.requests import Request def get_pydantic_core_schema(request_type, handler): return core_schema.any_schema() Request.__get_pydantic_core_schema__ = get_pydantic_core_schema #pipe = pipeline("summarization", model="sshleifer/distilbart-cnn-6-6") text_summary=pipeline(task="summarization", model="sshleifer/distilbart-cnn-12-6", torch_dtype=torch.bfloat16) def summary(input): #max_input_len=1024 #if len(full_text.split()) > max_input_len: # full_text = " ".join(full_text.split()[:max_input_len]) output=text_summary(input) return output[0]['summary_text'] gr.close_all() demo=gr.Interface(fn=summary, inputs=[gr.Textbox(label='Input Text to Summarize', lines=1)], outputs=[gr.Textbox(label='Summarized Text', lines=4)], title='KS Text Summarizer', description='This application will be used to summarize a corpus') demo.launch()