Spaces:
Sleeping
Sleeping
File size: 30,521 Bytes
391adea 2d630dd b70c076 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 |
import os
# Set a safe cache directory
os.environ['TRANSFORMERS_CACHE'] = './transformers_cache'
import streamlit as st
import random
import logging # For better error tracking
import pandas as pd # For chart data
from datetime import datetime # For progress tracking
import wikimedia # Import our Wikimedia module
# Set page config first before any other st commands
st.set_page_config(page_title="WikiFit", page_icon="πͺ")
# Setup basic logging
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
# Check for transformers library after setting page config
try:
from transformers import pipeline
AI_AVAILABLE = True
except ImportError:
AI_AVAILABLE = False
# WikiFit - Health & Fitness App with AI Integration
#
# Required packages:
# - streamlit
# - requests
# - transformers
# - torch (automatically installed with transformers)
#
# To install all requirements:
# pip install streamlit requests transformers torch
# -------------------------------
# Utils
# -------------------------------
# Cache the Wikimedia functions using Streamlit's caching decorator
@st.cache_data(ttl=3600)
def get_wikipedia_summary(term):
"""Get summary of a topic from Wikipedia."""
result = wikimedia.get_wikipedia_summary(term)
return result
@st.cache_data(ttl=3600)
def get_wiktionary_definition(term):
"""Get word definitions from Wiktionary"""
return wikimedia.get_wiktionary_definition(term)
@st.cache_data(ttl=3600)
def get_wikiquote_quotes(term):
"""Get quotes related to a topic from Wikiquote"""
return wikimedia.get_wikiquote_quotes(term)
@st.cache_data(ttl=3600)
def get_wikibooks_content(term):
"""Get educational content from Wikibooks"""
return wikimedia.get_wikibooks_content(term)
@st.cache_data(ttl=3600)
def get_wikimedia_commons_images(term, limit=5):
"""Get relevant images from Wikimedia Commons"""
return wikimedia.get_wikimedia_commons_images(term, limit)
@st.cache_data(ttl=3600)
def get_wikisource_texts(term):
"""Get health-related texts from Wikisource"""
return wikimedia.get_wikisource_texts(term)
@st.cache_data(ttl=3600)
def get_wikiversity_resources(term):
"""Get educational resources from Wikiversity"""
return wikimedia.get_wikiversity_resources(term)
@st.cache_data(ttl=3600)
def get_wikispecies_info(species_name):
"""Get species information from Wikispecies"""
return wikimedia.get_wikispecies_info(species_name)
@st.cache_data(ttl=3600)
def get_wikidata_health_info(term):
"""Get structured health data from Wikidata"""
return wikimedia.get_wikidata_health_info(term)
# Add a new function to search across all Wikimedia sources at once
@st.cache_data(ttl=3600)
def search_all_wikimedia(term):
"""Search for a term across all Wikimedia platforms."""
return wikimedia.search_all_wikimedia(term)
def get_random_health_tip():
# Get current month to provide seasonal tips
current_month = datetime.now().month
# Base tips that apply all year
base_tips = [
"Drink at least 2 liters of water every day.",
"Do at least 30 minutes of physical activity daily.",
"Maintain a regular sleep schedule.",
"Include fruits and vegetables in every meal.",
"Take short breaks during long sitting hours.",
"Practice mindfulness meditation for 10 minutes daily.",
"Reduce sodium intake to help control blood pressure.",
"Limit screen time before bedtime for better sleep.",
"Choose whole grains over refined carbohydrates.",
"Incorporate strength training at least twice a week."
]
# Seasonal tips
seasonal_tips = {
# Winter (Dec-Feb)
"winter": [
"Increase vitamin D intake during winter months.",
"Stay hydrated even when it's cold - indoor heating dehydrates you.",
"Wash hands frequently to prevent seasonal colds and flu.",
"Keep exercise routines indoor when weather is harsh.",
"Moisturize skin more frequently in dry winter air."
],
# Spring (Mar-May)
"spring": [
"Consider seasonal allergy preparations before symptoms start.",
"Spring clean your diet - add fresh seasonal produce.",
"Gradually increase outdoor exercise as weather improves.",
"Check and replace air filters to reduce spring allergens.",
"Stay hydrated as temperatures begin to rise."
],
# Summer (Jun-Aug)
"summer": [
"Apply sunscreen 30 minutes before sun exposure.",
"Stay extra hydrated during hot days.",
"Exercise during cooler parts of the day to avoid heat exhaustion.",
"Include electrolytes if sweating heavily.",
"Check for signs of dehydration in hot weather."
],
# Fall (Sep-Nov)
"fall": [
"Boost immune system as cold and flu season approaches.",
"Adjust exercise routines for cooling temperatures.",
"Incorporate seasonal produce like pumpkins and apples.",
"Keep up vitamin D as sunlight exposure decreases.",
"Prepare indoor exercise options for colder days ahead."
]
}
# Determine current season
if current_month in [12, 1, 2]:
season = "winter"
elif current_month in [3, 4, 5]:
season = "spring"
elif current_month in [6, 7, 8]:
season = "summer"
else: # 9, 10, 11
season = "fall"
# Combine base tips with seasonal tips
all_tips = base_tips + seasonal_tips[season]
return random.choice(all_tips)
def generate_quiz():
"""Generate a random health quiz question with multiple choice options"""
questions = [
("How many bones are there in the human body?", ["206", "201", "212", "195"], "206"),
("What vitamin do we get from sunlight?", ["Vitamin A", "Vitamin B12", "Vitamin D", "Vitamin C"], "Vitamin D"),
("Which organ uses the most oxygen?", ["Heart", "Brain", "Lungs", "Liver"], "Brain"),
("What percentage of the human body is water?", ["50-60%", "60-70%", "70-80%", "80-90%"], "60-70%"),
("Which nutrient is the primary source of energy for the body?", ["Protein", "Fats", "Carbohydrates", "Vitamins"], "Carbohydrates")
]
return random.choice(questions)
def calculate_bmi(weight, height, unit="m"):
"""Calculate BMI (Body Mass Index).
Args:
weight: Weight in kilograms
height: Height in meters, centimeters, or feet (with decimal for inches)
unit: Unit of height measurement ("m", "cm", or "ft")
Returns:
tuple: (bmi_value, bmi_category)
"""
if weight <= 0 or height <= 0:
return None, None
# Convert height to meters for calculation
if unit == "cm":
height = height / 100.0
elif unit == "ft":
# Convert feet/inches to meters (1 foot = 0.3048 meters)
feet_whole = int(height)
inches = (height - feet_whole) * 10
height = feet_whole * 0.3048 + inches * 0.0254
bmi = weight / (height ** 2)
if bmi < 18.5:
category = "Underweight"
elif 18.5 <= bmi < 25:
category = "Normal weight"
elif 25 <= bmi < 30:
category = "Overweight"
else:
category = "Obese"
return round(bmi, 2), category
def get_workout_plan(workout_type="full_body"):
workouts = {
"full_body": [
"10 Jumping Jacks",
"10 Push-ups",
"15 Squats",
"20-second Plank",
"10 Lunges (each leg)",
"Repeat 3 times"
],
"cardio": [
"30 seconds Jumping Jacks",
"30 seconds High Knees",
"30 seconds Butt Kicks",
"30 seconds Mountain Climbers",
"30 seconds rest",
"Repeat 4 times"
],
"strength": [
"12 Push-ups",
"15 Squats with 5 second hold",
"10 Tricep Dips",
"10 Glute Bridges",
"8 Superman Holds",
"Repeat 3 times"
],
"flexibility": [
"30 seconds Hamstring Stretch",
"30 seconds Quad Stretch (each leg)",
"30 seconds Child's Pose",
"30 seconds Cat-Cow Stretch",
"30 seconds Butterfly Stretch",
"Repeat 2 times"
]
}
return workouts.get(workout_type, workouts["full_body"])
def get_wikibooks_remedies():
# Placeholder text simulating Wikibooks data
return [
("Turmeric Milk", "Used for colds and inflammation."),
("Honey & Ginger", "Relieves sore throat and cough."),
("Amla Juice", "Boosts immunity and rich in Vitamin C."),
("Mint Tea", "Aids digestion and relieves headaches."),
("Aloe Vera Gel", "Soothes skin irritation and burns."),
("Fenugreek Seeds", "Helps control blood sugar levels.")
]
def get_did_you_know_fact():
facts = [
"The human body has 206 bones.",
"Your heart beats about 100,000 times a day.",
"The skin is the body's largest organ.",
"The brain uses around 20% of the body's oxygen.",
"Laughter is good for your heart and can reduce stress.",
"Adults have fewer bones than babies. Babies are born with 300 bones, but some fuse together.",
"The strongest muscle in your body is your masseter (jaw muscle).",
"Your stomach acid is strong enough to dissolve zinc and sometimes metal.",
"The human nose can detect over 1 trillion different scents."
]
return random.choice(facts)
@st.cache_resource
def load_qa_pipeline():
if not AI_AVAILABLE:
return None
try:
return pipeline("question-answering", model="distilbert-base-cased-distilled-squad")
except Exception as e:
logging.error(f"Error loading QA model: {str(e)}")
return None
# Load the pipeline at startup
qa_pipeline = load_qa_pipeline()
def answer_health_question(question, context):
"""
Process a health-related question using the QA pipeline and provided context
Args:
question: The user's question as a string
context: Health information context for the model to use
Returns:
Answer string or error message
"""
if qa_pipeline is None:
return "AI model is not available. Please check if transformers and torch are installed correctly."
try:
# Add disclaimer for health info
if len(question) < 5:
return "Please ask a more specific question."
# Process the question
result = qa_pipeline(
question=question,
context=context,
max_answer_len=100, # Limit very long answers
handle_impossible_answer=True
)
# Check confidence score
if result.get('score', 0) < 0.1:
return "I don't have enough information to answer that question accurately. Please try a different question related to the topics covered."
return result['answer']
except Exception as e:
logging.error(f"QA error: {str(e)}")
return f"Sorry, I couldn't process your question. Error: {str(e)}"
# -------------------------------
# UI
# -------------------------------
st.title("πͺ WikiFit β Health & Fitness from Wikimedia")
# Initialize session state for visit_history first
if 'visit_history' not in st.session_state:
st.session_state.visit_history = []
# Get time of day for personalized welcome
current_hour = datetime.now().hour
if 5 <= current_hour < 12:
greeting = "Good morning"
elif 12 <= current_hour < 17:
greeting = "Good afternoon"
else:
greeting = "Good evening"
# Welcome message in the sidebar
st.sidebar.markdown(f"### {greeting}!")
st.sidebar.markdown("Welcome to WikiFit, your personal health assistant.")
# Display current date and streak
st.sidebar.markdown(f"**Today**: {datetime.now().strftime('%B %d, %Y')}")
days_visited = len(st.session_state.visit_history)
if days_visited > 0:
st.sidebar.markdown(f"**Streak**: {days_visited} days")
current_date = datetime.now().strftime("%Y-%m-%d")
if current_date not in st.session_state.visit_history:
st.session_state.visit_history.append(current_date)
# Initialize session state for tracking progress
if 'workout_completed' not in st.session_state:
st.session_state.workout_completed = 0
if 'quiz_score' not in st.session_state:
st.session_state.quiz_score = 0
if 'last_visit' not in st.session_state:
st.session_state.last_visit = None
# visit_history is already initialized above
# Check if this is a new day visit
current_date = datetime.now().strftime("%Y-%m-%d")
if st.session_state.last_visit != current_date:
st.session_state.last_visit = current_date
# Add this date to visit history if not already there
if current_date not in st.session_state.visit_history:
st.session_state.visit_history.append(current_date)
st.sidebar.success("Welcome to a new day of health & fitness!")
# Main navigation
menu = st.sidebar.selectbox("Navigate", [
"Daily Tip",
"Health Search",
"Workout Plans",
"Home Remedies",
"Did You Know?",
"Fitness Quiz",
"BMI Calculator",
"AI Health Q&A",
"Knowledge Center", # New Wikimedia endpoints integration
"Progress Tracker" # Added progress tracker option
])
if menu == "Daily Tip":
st.subheader("π Daily Fitness/Nutrition Tip")
tip = get_random_health_tip()
st.success(tip)
# Determine if this is a seasonal tip
current_month = datetime.now().month
if any(keyword in tip.lower() for keyword in ["winter", "vitamin d", "cold", "indoor", "flu"]) and current_month in [12, 1, 2]:
st.info("π‘ This is a seasonal winter health tip.")
elif any(keyword in tip.lower() for keyword in ["spring", "allergy", "pollen", "seasonal"]) and current_month in [3, 4, 5]:
st.info("π‘ This is a seasonal spring health tip.")
elif any(keyword in tip.lower() for keyword in ["summer", "sun", "heat", "hydrated", "sunscreen"]) and current_month in [6, 7, 8]:
st.info("π‘ This is a seasonal summer health tip.")
elif any(keyword in tip.lower() for keyword in ["fall", "autumn", "immune", "cooling"]) and current_month in [9, 10, 11]:
st.info("π‘ This is a seasonal fall health tip.")
elif menu == "Health Search":
st.subheader("π Search Health Info from Wikipedia")
query = st.text_input("Enter a health topic (e.g., Vitamin D, Yoga)")
if query:
result = get_wikipedia_summary(query.replace(" ", "_"))
st.info(result)
elif menu == "Workout Plans":
st.subheader("ποΈββοΈ Basic Workout Plans from Wikibooks")
workout_type = st.selectbox("Choose workout type", ["full_body", "cardio", "strength", "flexibility"])
plan = get_workout_plan(workout_type)
for step in plan:
st.write(f"- {step}")
if st.button("Mark as Completed"):
st.session_state.workout_completed += 1
st.success(f"Great job! You've completed {st.session_state.workout_completed} workouts.")
elif menu == "Home Remedies":
st.subheader("πΏ Traditional Remedies from Wikibooks")
remedies = get_wikibooks_remedies()
for title, desc in remedies:
st.markdown(f"**{title}** β {desc}")
elif menu == "Did You Know?":
st.subheader("β Fun Health Facts from Wikipedia")
st.info(get_did_you_know_fact())
elif menu == "Fitness Quiz":
st.subheader("π§ Quick Fitness Quiz")
q, options, answer = generate_quiz()
user_answer = st.radio(q, options)
if st.button("Submit"):
if user_answer == answer:
st.success("Correct! β
")
st.session_state.quiz_score += 10
st.success(f"You earned 10 points! Total score: {st.session_state.quiz_score}")
else:
st.error(f"Incorrect. The right answer is {answer}.")
elif menu == "BMI Calculator":
st.subheader("π BMI Calculator")
col1, col2 = st.columns(2)
with col1:
weight = st.number_input("Weight (kg)", min_value=0.0, max_value=300.0, value=70.0, step=0.1)
with col2:
unit = st.selectbox("Height unit", ["m", "cm", "ft"], index=0)
if unit == "m":
height = st.number_input("Height (m)", min_value=0.0, max_value=3.0, value=1.70, step=0.01)
elif unit == "cm":
height = st.number_input("Height (cm)", min_value=0.0, max_value=300.0, value=170.0, step=1.0)
else: # ft
height = st.number_input("Height (ft.in)",
min_value=0.0,
max_value=8.0,
value=5.6,
step=0.1,
help="Enter feet as whole number and inches as decimal (e.g., 5.6 for 5'6\")")
if st.button("Calculate BMI"):
bmi_value, bmi_category = calculate_bmi(weight, height, unit)
if bmi_value and bmi_category:
st.info(f"Your BMI: **{bmi_value}**")
if bmi_category == "Underweight":
st.warning(f"Category: **{bmi_category}**")
elif bmi_category == "Normal weight":
st.success(f"Category: **{bmi_category}**")
elif bmi_category == "Overweight":
st.warning(f"Category: **{bmi_category}**")
else:
st.error(f"Category: **{bmi_category}**")
st.write("BMI Categories:")
st.write("- Underweight: < 18.5")
st.write("- Normal weight: 18.5β24.9")
st.write("- Overweight: 25β29.9")
st.write("- Obese: β₯ 30")
elif menu == "AI Health Q&A":
st.subheader("π€ Ask any health or fitness question")
if not AI_AVAILABLE:
st.error("AI features are not available. Please install required libraries: `pip install transformers torch`")
st.info("After installing, please restart the application.")
st.stop()
# Create tabs for different knowledge sources
tab1, tab2, tab3 = st.tabs(["General Health", "Nutrition", "Fitness"])
with tab1:
# General health context
health_context = """
Regular check-ups with healthcare providers are essential for preventive care.
Vaccination helps prevent infectious diseases by building immunity.
Mental health is as important as physical health for overall well-being.
Chronic stress can lead to various physical and mental health problems.
Sleep hygiene practices include consistent sleep schedule and limiting screen time before bed.
Proper handwashing is one of the most effective ways to prevent illness.
Smoking is the leading cause of preventable death worldwide.
Moderate alcohol consumption means up to 1 drink per day for women and 2 for men.
"""
question1 = st.text_input("Ask a general health question", key="general_health")
if question1:
with st.spinner("Finding answer..."):
answer = answer_health_question(question1, health_context)
st.info(f"**Answer:** {answer}")
st.caption("Note: This AI provides general information and should not replace professional medical advice.")
with tab2:
# Nutrition context
nutrition_context = """
The five main food groups are fruits, vegetables, grains, protein foods, and dairy.
Proteins are essential for building and repairing tissues in the body.
Carbohydrates are the body's main source of energy.
Healthy fats support cell growth and protect organs.
Fiber aids digestion and helps maintain bowel health.
Vitamins and minerals are essential for various bodily functions.
Antioxidants help protect cells from damage caused by free radicals.
Turmeric contains curcumin which has anti-inflammatory properties.
Green tea is rich in antioxidants called catechins.
Processed foods often contain high levels of sodium, sugar, and unhealthy fats.
"""
question2 = st.text_input("Ask a nutrition question", key="nutrition")
if question2:
with st.spinner("Finding answer..."):
answer = answer_health_question(question2, nutrition_context)
st.info(f"**Answer:** {answer}")
st.caption("Consult with a nutritionist for personalized dietary advice.")
with tab3:
# Fitness context
fitness_context = """
Cardiovascular exercise improves heart health and increases stamina.
Strength training helps build and maintain muscle mass.
Flexibility exercises help maintain joint mobility and prevent injuries.
Rest days are important for muscle recovery and growth.
Progressive overload is necessary for continued fitness improvements.
HIIT (High-Intensity Interval Training) involves short bursts of intense exercise.
Proper form during exercise helps prevent injuries.
Warming up before exercise prepares your body for physical activity.
Cooling down after exercise helps reduce muscle stiffness.
Functional fitness focuses on exercises that help with everyday activities.
"""
question3 = st.text_input("Ask a fitness question", key="fitness")
if question3:
with st.spinner("Finding answer..."):
answer = answer_health_question(question3, fitness_context)
st.info(f"**Answer:** {answer}")
st.caption("Always consult with a fitness professional before starting a new exercise program.")
elif menu == "Knowledge Center":
st.subheader("π Health & Fitness Knowledge Center")
st.write("Explore a wealth of knowledge from various Wikimedia projects")
# Create tabs for different Wikimedia sources
wiki_tabs = st.tabs([
"Wikipedia", "Wiktionary", "Wikiquote",
"Wikibooks", "Wikimedia Commons", "Wikisource",
"Wikiversity", "Wikispecies", "Wikidata"
])
query = st.text_input("Search across Wikimedia projects", placeholder="Enter a health or fitness topic...")
if query:
search_term = query.strip().replace(" ", "_")
# Wikipedia Tab
with wiki_tabs[0]:
st.subheader(f"π Wikipedia: {query}")
with st.spinner("Searching Wikipedia..."):
wiki_result = get_wikipedia_summary(search_term)
st.info(wiki_result)
st.caption("Source: Wikipedia, the free encyclopedia")
# Wiktionary Tab
with wiki_tabs[1]:
st.subheader(f"π Wiktionary: {query}")
with st.spinner("Searching Wiktionary..."):
wikt_result = get_wiktionary_definition(search_term)
st.info(wikt_result)
st.caption("Source: Wiktionary, the free dictionary")
# Wikiquote Tab
with wiki_tabs[2]:
st.subheader(f"π¬ Wikiquote: {query}")
with st.spinner("Searching Wikiquote..."):
quote_result = get_wikiquote_quotes(search_term)
st.info(quote_result)
st.caption("Source: Wikiquote, the free quote compendium")
# Wikibooks Tab
with wiki_tabs[3]:
st.subheader(f"π Wikibooks: {query}")
with st.spinner("Searching Wikibooks..."):
books_result = get_wikibooks_content(search_term)
st.info(books_result)
st.caption("Source: Wikibooks, open books for an open world")
# Wikimedia Commons Tab
with wiki_tabs[4]:
st.subheader(f"πΌοΈ Wikimedia Commons: {query}")
with st.spinner("Searching Wikimedia Commons..."):
images = get_wikimedia_commons_images(search_term)
if images:
cols = st.columns(min(3, len(images)))
for i, img in enumerate(images):
with cols[i % 3]:
st.image(img["url"], caption=img["title"])
if img["description"]:
st.caption(img["description"][:100] + "..." if len(img["description"]) > 100 else img["description"])
else:
st.info("No images found for this topic on Wikimedia Commons.")
st.caption("Source: Wikimedia Commons, the free media repository")
# Wikisource Tab
with wiki_tabs[5]:
st.subheader(f"π Wikisource: {query}")
with st.spinner("Searching Wikisource..."):
source_results = get_wikisource_texts(search_term)
if source_results:
for result in source_results:
st.markdown(f"**{result['title']}**")
st.write(result["snippet"])
st.markdown("---")
else:
st.info("No relevant texts found on Wikisource.")
st.caption("Source: Wikisource, the free digital library")
# Wikiversity Tab
with wiki_tabs[6]:
st.subheader(f"π Wikiversity: {query}")
with st.spinner("Searching Wikiversity..."):
university_result = get_wikiversity_resources(search_term)
st.info(university_result)
st.caption("Source: Wikiversity, a learning platform")
# Wikispecies Tab
with wiki_tabs[7]:
st.subheader(f"π¦ Wikispecies: {query}")
with st.spinner("Searching Wikispecies..."):
species_result = get_wikispecies_info(search_term)
st.info(species_result)
st.caption("Source: Wikispecies, free species directory")
# Wikidata Tab
with wiki_tabs[8]:
st.subheader(f"ποΈ Wikidata: {query}")
with st.spinner("Searching Wikidata..."):
data_result = get_wikidata_health_info(search_term)
if isinstance(data_result, dict):
st.markdown(f"**{data_result['label']}**")
st.write(data_result['description'])
if data_result['properties']:
st.subheader("Related properties:")
for prop, values in data_result['properties'].items():
st.write(f"**{prop}**: {', '.join(values)}")
else:
st.info(data_result)
st.caption("Source: Wikidata, the free knowledge base")
else:
st.info("Enter a health or fitness topic above to explore information from all Wikimedia projects")
# Show some example topics
st.markdown("### Example topics to search:")
example_cols = st.columns(3)
with example_cols[0]:
st.markdown("**Health topics**")
st.markdown("- Vitamin D")
st.markdown("- Diabetes")
st.markdown("- Mental health")
st.markdown("- Immune system")
with example_cols[1]:
st.markdown("**Fitness topics**")
st.markdown("- HIIT")
st.markdown("- Strength training")
st.markdown("- Flexibility")
st.markdown("- Cardiovascular exercise")
with example_cols[2]:
st.markdown("**Nutrition topics**")
st.markdown("- Protein")
st.markdown("- Carbohydrates")
st.markdown("- Antioxidants")
st.markdown("- Superfoods")
st.info("The Knowledge Center brings together health and fitness information from across all Wikimedia projects in one place.")
elif menu == "Progress Tracker":
st.subheader("π Personal Progress Tracker")
# Display current stats
col1, col2 = st.columns(2)
with col1:
st.metric("Workouts Completed", st.session_state.workout_completed)
with col2:
st.metric("Quiz Score", f"{st.session_state.quiz_score} points")
# Add workout completion
st.subheader("Log Your Activity")
with st.form("workout_form"):
workout_date = st.date_input("Date", datetime.now())
workout_type = st.selectbox("Workout Type",
["Full Body", "Cardio", "Strength", "Flexibility", "Walking/Running", "Cycling", "Other"])
duration = st.number_input("Duration (minutes)", min_value=5, max_value=240, step=5)
intensity = st.slider("Intensity", 1, 10, 5)
notes = st.text_area("Notes (optional)")
submit = st.form_submit_button("Log Workout")
if submit:
st.session_state.workout_completed += 1
st.success(f"Workout logged! You've completed {st.session_state.workout_completed} workouts.")
# Display motivational message based on workout count
if st.session_state.workout_completed % 5 == 0:
st.balloons()
st.success(f"π Congratulations on your {st.session_state.workout_completed}th workout!")
# Allow users to set goals
st.subheader("Set Health Goals")
goal = st.text_input("Enter your health goal")
target_date = st.date_input("Target date", datetime.now())
if st.button("Save Goal"):
st.success("Goal saved! We'll help you track your progress.")
# Display a simple progress chart (placeholder for now)
st.subheader("Workout History")
# Create chart data in the format Streamlit expects
# Create a DataFrame that Streamlit can plot
chart_data = pd.DataFrame({
'Workouts': [
st.session_state.workout_completed,
max(0, st.session_state.workout_completed - 2),
max(0, st.session_state.workout_completed - 5),
max(0, st.session_state.workout_completed - 8)
]},
index=['Week 1', 'Week 2', 'Week 3', 'Week 4']
)
st.bar_chart(chart_data)
|