import gradio as gr import onnxruntime as ort import numpy as np from transformers import AutoTokenizer # Load tokenizer (Qwen tokenizer) tokenizer = AutoTokenizer.from_pretrained("Qwen/Qwen1.5-0.5B") # Load ONNX model session = ort.InferenceSession("/models/model.onnx") def chat_fn(user_input, history): if not user_input.strip(): return history # Tokenize input inputs = tokenizer(user_input, return_tensors="np", padding=True) ort_inputs = {session.get_inputs()[0].name: inputs["input_ids"].astype(np.int64)} # Run inference output = session.run(None, ort_inputs)[0] # Decode model output text = tokenizer.decode(output[0], skip_special_tokens=True) history.append(("🧑‍💻 You: " + user_input, "🤖 Sam (Qwen3): " + text)) return history demo = gr.ChatInterface(fn=chat_fn, title="💬 Qwen3-0.6B-ONNX Demo", description="Running ONNX model on a prebuilt Docker Space (SmilyAI Style!)") demo.launch(server_name="0.0.0.0", server_port=7860)