CoTyle / piFlow /demo /example_dxqwen_pipeline.py
root
update
e5a560a
import torch
from diffusers import FlowMatchEulerDiscreteScheduler
from lakonlab.pipelines.piqwen_pipeline import PiQwenImagePipeline
pipe = PiQwenImagePipeline.from_pretrained(
'Qwen/Qwen-Image',
policy_type='DX',
policy_kwargs=dict(
segment_size=1 / 3.5, # 1 / (nfe - 1 + final_step_size_scale)
shift=3.2),
torch_dtype=torch.bfloat16)
adapter_name = pipe.load_piflow_adapter( # you may later call `pipe.set_adapters([adapter_name, ...])` to combine other adapters (e.g., style LoRAs)
'Lakonik/pi-Qwen-Image',
subfolder='dxqwen_n10_piid_4step',
target_module_name='transformer')
pipe.scheduler = FlowMatchEulerDiscreteScheduler.from_config( # use fixed shift=3.2
pipe.scheduler.config, shift=3.2, shift_terminal=None, use_dynamic_shifting=False)
pipe = pipe.to('cuda')
out = pipe(
prompt='Photo of a coffee shop entrance featuring a chalkboard sign reading "ฯ€-Qwen Coffee ๐Ÿ˜Š $2 per cup," with a neon '
'light beside it displaying "ฯ€-้€šไน‰ๅƒ้—ฎ". Next to it hangs a poster showing a beautiful Chinese woman, '
'and beneath the poster is written "eโ‰ˆ2.71828-18284-59045-23536-02874-71352".',
width=1920,
height=1080,
num_inference_steps=4,
generator=torch.Generator().manual_seed(42),
).images[0]
out.save('dxqwen_4nfe.png')