Spaces:
Running
on
Zero
Running
on
Zero
| import os | |
| import sys | |
| import argparse | |
| import socket | |
| from contextlib import closing | |
| def parse_args(): | |
| parser = argparse.ArgumentParser(description='Train a model') | |
| parser.add_argument('config', help='train config file path') | |
| parser.add_argument('--work-dir', help='the dir to save logs and models') | |
| parser.add_argument( | |
| '--resume-from', help='the checkpoint file to resume from') | |
| parser.add_argument( | |
| '--no-validate', | |
| action='store_true', | |
| help='whether not to evaluate the checkpoint during training') | |
| parser.add_argument( | |
| '--gpu-ids', | |
| type=int, | |
| nargs='+', | |
| help='ids of gpus to use') | |
| parser.add_argument( | |
| '--force-ddp', | |
| action='store_true', | |
| help='whether to force ddp training even if only one gpu is used') | |
| parser.add_argument('--seed', type=int, help='random seed') | |
| parser.add_argument( | |
| '--deterministic', | |
| action='store_true', | |
| help='whether to set deterministic options for CUDNN backend.') | |
| args = parser.parse_args() | |
| return args | |
| def args_to_str(args): | |
| argv = [args.config] | |
| if args.work_dir is not None: | |
| argv += ['--work-dir', args.work_dir] | |
| if args.resume_from is not None: | |
| argv += ['--resume-from', args.resume_from] | |
| if args.no_validate: | |
| argv.append('--no-validate') | |
| if args.seed is not None: | |
| argv += ['--seed', str(args.seed)] | |
| if args.deterministic: | |
| argv.append('--deterministic') | |
| return argv | |
| def main(): | |
| args = parse_args() | |
| if args.gpu_ids is not None: | |
| gpu_ids = args.gpu_ids | |
| elif 'CUDA_VISIBLE_DEVICES' in os.environ: | |
| gpu_ids = [int(i) for i in os.environ['CUDA_VISIBLE_DEVICES'].split(',')] | |
| else: | |
| gpu_ids = [0] | |
| os.environ['CUDA_VISIBLE_DEVICES'] = ','.join([str(i) for i in gpu_ids]) | |
| if len(gpu_ids) == 1 and not args.force_ddp: | |
| import tools.train | |
| sys.argv = [''] + args_to_str(args) | |
| tools.train.main() | |
| else: | |
| from torch.distributed import launch | |
| for port in range(29500, 65536): | |
| with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as sock: | |
| res = sock.connect_ex(('localhost', port)) | |
| if res != 0: | |
| break | |
| os.environ['training_script'] = './tools/train.py' | |
| sys.argv = ['', | |
| '--nproc_per_node={}'.format(len(gpu_ids)), | |
| '--master_port={}'.format(port), | |
| './tools/train.py' | |
| ] + args_to_str(args) + ['--launcher', 'pytorch', '--diff_seed'] | |
| launch.main() | |
| if __name__ == '__main__': | |
| main() | |