alimirferdos commited on
Commit
1dc10eb
·
verified ·
1 Parent(s): c7354ea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +69 -274
app.py CHANGED
@@ -1,275 +1,70 @@
1
- import os
2
- import cv2
3
  import gradio as gr
4
- import numpy as np
5
- import random
6
- import base64
7
- import requests
8
- import json
9
- import time
10
-
11
-
12
- def tryon(person_img, garment_img, seed, randomize_seed):
13
- post_start_time = time.time()
14
- if person_img is None or garment_img is None:
15
- gr.Warning("Empty image")
16
- return None, None, "Empty image"
17
- if randomize_seed:
18
- seed = random.randint(0, MAX_SEED)
19
- encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes()
20
- encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8')
21
- encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes()
22
- encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8')
23
-
24
- url = "http://" + os.environ['tryon_url'] + "Submit"
25
- token = os.environ['token']
26
- cookie = os.environ['Cookie']
27
- referer = os.environ['referer']
28
- headers = {'Content-Type': 'application/json', 'token': token, 'Cookie': cookie, 'referer': referer}
29
- data = {
30
- "clothImage": encoded_garment_img,
31
- "humanImage": encoded_person_img,
32
- "seed": seed
33
- }
34
- try:
35
- response = requests.post(url, headers=headers, data=json.dumps(data), timeout=50)
36
- # print("post response code", response.status_code)
37
- if response.status_code == 200:
38
- result = response.json()['result']
39
- status = result['status']
40
- if status == "success":
41
- uuid = result['result']
42
- # print(uuid)
43
- except Exception as err:
44
- print(f"Post Exception Error: {err}")
45
- raise gr.Error("Too many users, please try again later")
46
- post_end_time = time.time()
47
- print(f"post time used: {post_end_time-post_start_time}")
48
-
49
- get_start_time =time.time()
50
- time.sleep(9)
51
- Max_Retry = 12
52
- result_img = None
53
- info = ""
54
- err_log = ""
55
- for i in range(Max_Retry):
56
- try:
57
- url = "http://" + os.environ['tryon_url'] + "Query?taskId=" + uuid
58
- response = requests.get(url, headers=headers, timeout=20)
59
- # print("get response code", response.status_code)
60
- if response.status_code == 200:
61
- result = response.json()['result']
62
- status = result['status']
63
- if status == "success":
64
- result = base64.b64decode(result['result'])
65
- result_np = np.frombuffer(result, np.uint8)
66
- result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
67
- result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR)
68
- info = "Success"
69
- break
70
- elif status == "error":
71
- err_log = f"Status is Error"
72
- info = "Error"
73
- break
74
- else:
75
- # print(response.text)
76
- err_log = "URL error, pleace contact the admin"
77
- info = "URL error, pleace contact the admin"
78
- break
79
- except requests.exceptions.ReadTimeout:
80
- err_log = "Http Timeout"
81
- info = "Http Timeout, please try again later"
82
- except Exception as err:
83
- err_log = f"Get Exception Error: {err}"
84
- time.sleep(1)
85
- get_end_time = time.time()
86
- print(f"get time used: {get_end_time-get_start_time}")
87
- print(f"all time used: {get_end_time-get_start_time+post_end_time-post_start_time}")
88
- if info == "":
89
- err_log = f"No image after {Max_Retry} retries"
90
- info = "Too many users, please try again later"
91
- if info != "Success":
92
- print(f"Error Log: {err_log}")
93
- gr.Warning("Too many users, please try again later")
94
-
95
- return result_img, seed, info
96
-
97
- def start_tryon(person_img, garment_img, seed, randomize_seed):
98
- start_time = time.time()
99
- if person_img is None or garment_img is None:
100
- return None, None, "Empty image"
101
- if randomize_seed:
102
- seed = random.randint(0, MAX_SEED)
103
- encoded_person_img = cv2.imencode('.jpg', cv2.cvtColor(person_img, cv2.COLOR_RGB2BGR))[1].tobytes()
104
- encoded_person_img = base64.b64encode(encoded_person_img).decode('utf-8')
105
- encoded_garment_img = cv2.imencode('.jpg', cv2.cvtColor(garment_img, cv2.COLOR_RGB2BGR))[1].tobytes()
106
- encoded_garment_img = base64.b64encode(encoded_garment_img).decode('utf-8')
107
-
108
- url = "http://" + os.environ['tryon_url']
109
- token = os.environ['token']
110
- cookie = os.environ['Cookie']
111
- referer = os.environ['referer']
112
-
113
- headers = {'Content-Type': 'application/json', 'token': token, 'Cookie': cookie, 'referer': referer}
114
- data = {
115
- "clothImage": encoded_garment_img,
116
- "humanImage": encoded_person_img,
117
- "seed": seed
118
- }
119
-
120
- result_img = None
121
- try:
122
- session = requests.Session()
123
- response = session.post(url, headers=headers, data=json.dumps(data), timeout=60)
124
- print("response code", response.status_code)
125
- if response.status_code == 200:
126
- result = response.json()['result']
127
- status = result['status']
128
- if status == "success":
129
- result = base64.b64decode(result['result'])
130
- result_np = np.frombuffer(result, np.uint8)
131
- result_img = cv2.imdecode(result_np, cv2.IMREAD_UNCHANGED)
132
- result_img = cv2.cvtColor(result_img, cv2.COLOR_RGB2BGR)
133
- info = "Success"
134
- else:
135
- info = "Try again latter"
136
- else:
137
- print(response.text)
138
- info = "URL error, pleace contact the admin"
139
- except requests.exceptions.ReadTimeout:
140
- print("timeout")
141
- info = "Too many users, please try again later"
142
- raise gr.Error("Too many users, please try again later")
143
- except Exception as err:
144
- print(f"其他错误: {err}")
145
- info = "Error, pleace contact the admin"
146
- end_time = time.time()
147
- print(f"time used: {end_time-start_time}")
148
-
149
- return result_img, seed, info
150
-
151
- MAX_SEED = 999999
152
-
153
- example_path = os.path.join(os.path.dirname(__file__), 'assets')
154
-
155
- garm_list = os.listdir(os.path.join(example_path,"cloth"))
156
- garm_list_path = [os.path.join(example_path,"cloth",garm) for garm in garm_list]
157
-
158
- human_list = os.listdir(os.path.join(example_path,"human"))
159
- human_list_path = [os.path.join(example_path,"human",human) for human in human_list]
160
-
161
- css="""
162
- #col-left {
163
- margin: 0 auto;
164
- max-width: 430px;
165
- }
166
- #col-mid {
167
- margin: 0 auto;
168
- max-width: 430px;
169
- }
170
- #col-right {
171
- margin: 0 auto;
172
- max-width: 430px;
173
- }
174
- #col-showcase {
175
- margin: 0 auto;
176
- max-width: 1100px;
177
- }
178
- #button {
179
- color: blue;
180
- }
181
- """
182
-
183
- def load_description(fp):
184
- with open(fp, 'r', encoding='utf-8') as f:
185
- content = f.read()
186
- return content
187
-
188
- def change_imgs(image1, image2):
189
- return image1, image2
190
-
191
- with gr.Blocks(css=css) as Tryon:
192
- gr.HTML(load_description("assets/title.md"))
193
- with gr.Row():
194
- with gr.Column(elem_id = "col-left"):
195
- gr.HTML("""
196
- <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
197
- <div>
198
- Step 1. Upload a person image ⬇️
199
- </div>
200
- </div>
201
- """)
202
- with gr.Column(elem_id = "col-mid"):
203
- gr.HTML("""
204
- <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
205
- <div>
206
- Step 2. Upload a garment image ⬇️
207
- </div>
208
- </div>
209
- """)
210
- with gr.Column(elem_id = "col-right"):
211
- gr.HTML("""
212
- <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
213
- <div>
214
- Step 3. Press “Run” to get try-on results
215
- </div>
216
- </div>
217
- """)
218
- with gr.Row():
219
- with gr.Column(elem_id = "col-left"):
220
- imgs = gr.Image(label="Person image", sources='upload', type="numpy")
221
- # category = gr.Dropdown(label="Garment category", choices=['upper_body', 'lower_body', 'dresses'], value="upper_body")
222
- example = gr.Examples(
223
- inputs=imgs,
224
- examples_per_page=12,
225
- examples=human_list_path
226
- )
227
- with gr.Column(elem_id = "col-mid"):
228
- garm_img = gr.Image(label="Garment image", sources='upload', type="numpy")
229
- example = gr.Examples(
230
- inputs=garm_img,
231
- examples_per_page=12,
232
- examples=garm_list_path
233
- )
234
- with gr.Column(elem_id = "col-right"):
235
- image_out = gr.Image(label="Result", show_share_button=False)
236
- with gr.Row():
237
- seed = gr.Slider(
238
- label="Seed",
239
- minimum=0,
240
- maximum=MAX_SEED,
241
- step=1,
242
- value=0,
243
- )
244
- randomize_seed = gr.Checkbox(label="Random seed", value=True)
245
- with gr.Row():
246
- seed_used = gr.Number(label="Seed used")
247
- result_info = gr.Text(label="Response")
248
- # try_button = gr.Button(value="Run", elem_id="button")
249
- test_button = gr.Button(value="Run", elem_id="button")
250
-
251
-
252
- # try_button.click(fn=start_tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name='tryon',concurrency_limit=10)
253
- test_button.click(fn=tryon, inputs=[imgs, garm_img, seed, randomize_seed], outputs=[image_out, seed_used, result_info], api_name=False, concurrency_limit=45)
254
-
255
- with gr.Column(elem_id = "col-showcase"):
256
- gr.HTML("""
257
- <div style="display: flex; justify-content: center; align-items: center; text-align: center; font-size: 20px;">
258
- <div> </div>
259
- <br>
260
- <div>
261
- Virtual try-on examples in pairs of person and garment images
262
- </div>
263
- </div>
264
- """)
265
- show_case = gr.Examples(
266
- examples=[
267
- ["assets/examples/model2.png", "assets/examples/garment2.png", "assets/examples/result2.png"],
268
- ["assets/examples/model3.png", "assets/examples/garment3.png", "assets/examples/result3.png"],
269
- ["assets/examples/model1.png", "assets/examples/garment1.png", "assets/examples/result1.png"],
270
- ],
271
- inputs=[imgs, garm_img, image_out],
272
- label=None
273
- )
274
-
275
- Tryon.queue(api_open=False).launch(show_api=False)
 
1
+ import tempfile, os, re
 
2
  import gradio as gr
3
+ import fitz # PyMuPDF
4
+ from TTS.utils.synthesizer import Synthesizer
5
+ from TTS.utils.download import download_url
6
+
7
+ MODEL_NAMES = [
8
+ "vits male1 (best)", "vits female (best)", "vits-male", "vits female1",
9
+ "glowtts-male", "glowtts-female", "female tacotron2"
10
+ ]
11
+ MAX_TXT_LEN = 800
12
+
13
+ # Load/download models if not already present
14
+ modelInfo = [
15
+ ["vits-male", "best_model_65633.pth", "config-0.json", "https://huggingface.co/Kamtera/persian-tts-male-vits/resolve/main/"],
16
+ ["vits female (best)", "checkpoint_48000.pth", "config-2.json", "https://huggingface.co/Kamtera/persian-tts-female-vits/resolve/main/"],
17
+ ["glowtts-male", "best_model_77797.pth", "config-1.json", "https://huggingface.co/Kamtera/persian-tts-male-glow_tts/resolve/main/"],
18
+ ["glowtts-female", "best_model.pth", "config.json", "https://huggingface.co/Kamtera/persian-tts-female-glow_tts/resolve/main/"],
19
+ ["vits male1 (best)", "checkpoint_88000.pth", "config.json", "https://huggingface.co/Kamtera/persian-tts-male1-vits/resolve/main/"],
20
+ ["vits female1", "checkpoint_50000.pth", "config.json", "https://huggingface.co/Kamtera/persian-tts-female1-vits/resolve/main/"],
21
+ ["female tacotron2", "checkpoint_313000.pth", "config-2.json", "https://huggingface.co/Kamtera/persian-tts-female-tacotron2/resolve/main/"]
22
+ ]
23
+
24
+ for d in modelInfo:
25
+ if not os.path.exists(d[0]):
26
+ os.makedirs(d[0])
27
+ download_url(d[3]+d[1], d[0], "best_model.pth")
28
+ download_url(d[3]+d[2], d[0], "config.json")
29
+
30
+ def split_chapters(text):
31
+ chapters = re.split(r'\n\s*(?:فصل|بخش)[^\n]*\n', text)
32
+ return [ch.strip() for ch in chapters if ch.strip()]
33
+
34
+ def synthesize_text(text, synthesizer):
35
+ chunks = [text[i:i+MAX_TXT_LEN] for i in range(0, len(text), MAX_TXT_LEN)]
36
+ audio_paths = []
37
+ for i, chunk in enumerate(chunks):
38
+ wav = synthesizer.tts(chunk)
39
+ with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as fp:
40
+ synthesizer.save_wav(wav, fp.name)
41
+ audio_paths.append(fp.name)
42
+ return audio_paths
43
+
44
+ def pdf_to_chapter_audio(pdf_file, model_name):
45
+ # Load model
46
+ synthesizer = Synthesizer(f"{model_name}/best_model.pth", f"{model_name}/config.json")
47
+
48
+ # Extract PDF text
49
+ doc = fitz.open(pdf_file.name)
50
+ text = "\n".join([page.get_text() for page in doc])
51
+ chapters = split_chapters(text)
52
+
53
+ chapter_audios = []
54
+ for i, chapter in enumerate(chapters):
55
+ paths = synthesize_text(chapter, synthesizer)
56
+ chapter_path = tempfile.NamedTemporaryFile(suffix=".wav", delete=False).name
57
+ os.system(f"sox {' '.join(paths)} {chapter_path}") # Merge if multiple chunks
58
+ chapter_audios.append((f"Chapter {i+1}", chapter_path))
59
+ return chapter_audios
60
+
61
+ gr.Interface(
62
+ fn=pdf_to_chapter_audio,
63
+ inputs=[
64
+ gr.File(label="Upload Persian PDF Book"),
65
+ gr.Radio(label="Pick a TTS Model", choices=MODEL_NAMES, value="vits female (best)"),
66
+ ],
67
+ outputs=gr.Dataset(components=["text", gr.Audio(label="Chapter Audio", type='filepath')]),
68
+ title="📚 Persian Book to Audio Chapters",
69
+ description="Upload a Persian PDF book and convert each chapter into audio using a TTS model."
70
+ ).launch()