Qwen-Image-Edit / app.py
linoyts's picture
linoyts HF Staff
Create app.py
51a1e24 verified
raw
history blame
4.24 kB
import gradio as gr
import numpy as np
import random
import torch
import spaces
from PIL import Image
from diffusers import QwenImageEditPipeline
import os
# --- Model Loading ---
dtype = torch.bfloat16
device = "cuda" if torch.cuda.is_available() else "cpu"
# Load the model pipeline
pipe = QwenImageEditPipeline.from_pretrained("Qwen/Qwen-Image-Edit", torch_dtype=dtype).to(device)
# --- UI Constants and Helpers ---
MAX_SEED = np.iinfo(np.int32).max
# --- Main Inference Function (with hardcoded negative prompt) ---
@spaces.GPU(duration=120)
def infer(
image,
prompt,
seed=42,
randomize_seed=False,
guidance_scale=4.0,
num_inference_steps=50,
progress=gr.Progress(track_tqdm=True),
):
"""
Generates an image using the local Qwen-Image diffusers pipeline.
"""
# Hardcode the negative prompt as requested
negative_prompt = "text, watermark, copyright, blurry, low resolution"
if randomize_seed:
seed = random.randint(0, MAX_SEED)
# Set up the generator for reproducibility
generator = torch.Generator(device=device).manual_seed(seed)
print(f"Calling pipeline with prompt: '{prompt}'")
print(f"Negative Prompt: '{negative_prompt}'")
print(f"Seed: {seed}, Steps: {num_inference_steps}, Guidance: {guidance_scale}")
# Generate the image
image = pipe(
image,
prompt=prompt,
negative_prompt=negative_prompt,
num_inference_steps=num_inference_steps,
generator=generator,
true_cfg_scale=guidance_scale,
guidance_scale=1.0 # Use a fixed default for distilled guidance
).images[0]
return image, seed
# --- Examples and UI Layout ---
examples = []
css = """
#col-container {
margin: 0 auto;
max-width: 1024px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown('<img src="https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen-Image/qwen_image_logo.png" alt="Qwen-Image Logo" width="400" style="display: block; margin: 0 auto;">')
gr.Markdown("[Learn more](https://github.com/QwenLM/Qwen-Image) about the Qwen-Image series. Try on [Qwen Chat](https://chat.qwen.ai/), or [download model](https://huggingface.co/Qwen/Qwen-Image-Edit) to run locally with ComfyUI or diffusers.")
with gr.Row():
with gr.Column():
input_image = gr.Image(label="Input Image", show_label=False, type="pil")
prompt = gr.Text(
label="Prompt",
show_label=False,
placeholder="describe the edit instruction",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
result = gr.Image(label="Result", show_label=False, type="pil")
with gr.Accordion("Advanced Settings", open=False):
# Negative prompt UI element is removed here
seed = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
guidance_scale = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=4.0,
)
num_inference_steps = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=30,
)
# gr.Examples(examples=examples, inputs=[prompt], outputs=[result, seed], fn=infer, cache_examples=False)
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
input_image,
prompt,
# negative_prompt is no longer an input from the UI
seed,
randomize_seed,
guidance_scale,
num_inference_steps,
],
outputs=[result, seed],
)
if __name__ == "__main__":
demo.launch()