File size: 10,137 Bytes
9c6c4fb
2b91516
 
9c6c4fb
2b91516
9c6c4fb
 
 
2b91516
 
 
9c6c4fb
 
4cc700d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2b91516
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
---
title: Dynamic Tab Loading Examples
emoji: 🏢
colorFrom: blue
colorTo: indigo
sdk: gradio
sdk_version: 5.34.2
app_file: app.py
pinned: true
license: apache-2.0
short_description: Exploring different loading methods for a HF Space
---

# Dynamic Space Loading
---

## 1. **Sending Data To/From IFrames**

### **A. Standard Web (HTML/JS) Context**
- **IFrames are sandboxed:** By default, an iframe is isolated from the parent page for security reasons.
- **postMessage API:**  
  - The standard way to communicate between a parent page and an iframe (and vice versa) is using the [window.postMessage](https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage) API.
  - This requires both the parent and the iframe to have JavaScript code that listens for and sends messages.
  - Example:  
    - Parent: `iframeEl.contentWindow.postMessage({data: "hello"}, "https://iframe-domain.com")`
    - IFrame: `window.parent.postMessage({data: "hi back"}, "https://parent-domain.com")`
- **Limitations in Gradio:**  
  - Gradio does not expose a built-in way to inject custom JS for postMessage into the iframe or parent.
  - If you control both the parent and the iframe (i.e., both are your own apps), you could add custom JS to both and use postMessage.
  - If the iframe is a third-party app (like a Hugging Face Space you don’t control), you cannot inject JS into it, so you cannot send/receive data programmatically.

### **B. Gradio Context**
- **No built-in Gradio API for iframe communication.**
- **You can use gr.HTML to inject a script into the parent,** but you cannot inject into the iframe if you don’t control its code.

---

## 2. **Sending Data Between Tabs in Gradio**

- **Tabs in Gradio are just layout elements:** All components in all tabs exist in the same Python process and can share state.
- **You can use gr.State or any shared variable:**  
  - For example, you can have a gr.State object that is updated in one tab and read in another.
  - You can also use hidden components or callbacks to pass data between tabs.
---

## 3. **Summary Table**

| Method                | Parent ↔ IFrame | Tab ↔ Tab (Gradio) |
|-----------------------|:--------------:|:------------------:|
| postMessage (JS)      | Yes (if you control both) | N/A              |
| gr.State              | No              | Yes               |
| Hidden Components     | No              | Yes               |
| gradio API            | No              | Yes               |

---

## 4. **Practical Recommendations**

- **For arbitrary Hugging Face Spaces in iframes:**  
  - You cannot send/receive data programmatically unless the Space itself is designed to listen for postMessage.
- **For your own Spaces:**  
  - You can add JS to both parent and iframe to use postMessage.
- **For Gradio tabs:**  
  - Use gr.State or shared components for seamless data transfer.

---

This is a very insightful and advanced question! Here’s a breakdown of what’s possible, what’s not, and what’s practical with Gradio, Hugging Face Spaces, and Python environments:

---

## 2. **GPU Spaces (transformers/diffusers) Loading/Unloading**

### **A. In a Single Python Process (One Space, One App)**
- **You can load multiple models/pipelines in one Gradio app.**
  - You can have a dropdown or tabs to select which model/task/pipeline to use.
  - You can load/unload models on demand (though loading large models is slow).
  - You can keep all models in memory (if you have enough GPU RAM), or load/unload as needed.
- **You cannot have truly separate environments** (e.g., different Python dependencies, CUDA versions, or isolated memory) in a single Space.
  - All code runs in the same Python process/environment.
  - All models share the same GPU/CPU memory pool.

#### **Example:**
```python
from transformers import pipeline
import gradio as gr

# Preload or lazy-load multiple pipelines
pipe1 = pipeline("text-generation", model="gpt2")
pipe2 = pipeline("image-classification", model="google/vit-base-patch16-224")

def run_model(input, model_choice):
    if model_choice == "Text Generation":
        return pipe1(input)
    elif model_choice == "Image Classification":
        return pipe2(input)
    # ... more models

gr.Interface(
    fn=run_model,
    inputs=[gr.Textbox(), gr.Dropdown(["Text Generation", "Image Classification"])],
    outputs="auto"
).launch()
```
- You can use tabs or dropdowns to switch between models/tasks.

---

### **B. Multiple Gradio Apps in One Space**
- You can define multiple Gradio interfaces in one script and show/hide them with tabs or dropdowns.
- **But:** They still share the same Python process and memory.

---

### **C. True Isolation (Multiple Environments)**
- **Not possible in a single Hugging Face Space.**
  - You cannot have multiple Python environments, different dependency sets, or isolated GPU memory pools in one Space.
  - Each Space is a single container/process.

---

### **D. What About Docker or Subprocesses?**
- Hugging Face Spaces (hosted) do not support running multiple containers or true subprocess isolation with different environments.
- On your own infrastructure, you could use Docker or subprocesses, but this is not supported on Spaces.

---

## 3. **Best Practices for Multi-Model/Multi-Task Apps**

- **Lazy-load models:** Only load a model when its tab is selected, and unload it when switching (if memory is a concern).
- **Use a single environment:** Install all dependencies needed for all models in your `requirements.txt`.
- **Warn users about memory:** If users switch between large models, GPU memory may fill up and require manual cleanup (e.g., `torch.cuda.empty_cache()`).

---

## 4. **Summary Table**

| Approach                        | Isolation | Multiple Models | Multiple Envs | GPU Sharing | Supported on Spaces |
|----------------------------------|:---------:|:--------------:|:-------------:|:-----------:|:------------------:|
| Single Gradio app, many models   |   No      |      Yes       |      No       |    Yes      |        Yes         |
| Multiple Gradio apps in one file |   No      |      Yes       |      No       |    Yes      |        Yes         |
| Multiple Spaces (one per app)    |   Yes     |      Yes       |     Yes       |   Isolated  |        Yes         |
| Docker/subprocess isolation      |   Yes     |      Yes       |     Yes       |   Isolated  |   No (on Spaces)   |

---

## 4. **What’s Practical?**

- **For most use cases:**  
  - Use a single app with tabs/dropdowns to select the model/task.
  - Lazy-load and unload models as needed to manage memory.
- **For true isolation:**  
  - Use multiple Spaces (one per app/model) or host your own infrastructure with Docker.

---

## 5. **Properly Unloading Models, Weights, and Freeing Memory in PyTorch/Diffusers**

When working with large models (especially on GPU), it's important to:
- **Delete references to the model and pipeline**
- **Call `gc.collect()`** to trigger Python's garbage collector
- **Call `torch.cuda.empty_cache()`** (if using CUDA) to free GPU memory

### **Best Practice Pattern**

Here’s a robust pattern for loading and unloading models in a multi-model Gradio app:

```python
import torch
import gc
from diffusers import DiffusionPipeline

model_cache = {}

def load_diffusion_model(model_id, dtype=torch.float32, device="cpu"):
    pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype)
    pipe = pipe.to(device)
    pipe.enable_attention_slicing()
    return pipe

def unload_model(model_key):
    # Remove from cache
    if model_key in model_cache:
        del model_cache[model_key]
    # Run Python garbage collection
    gc.collect()
    # Free GPU memory if using CUDA
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
```

### **How to Use in a Gradio Tab**

```python
import gradio as gr

model_id = "LPX55/FLUX.1-merged_lightning_v2"
model_key = "flux"
device = "cpu"  # or "cuda" if available and desired

def do_load():
    if model_key not in model_cache:
        model_cache[model_key] = load_diffusion_model(model_id, torch.float32, device)
    return "Model loaded!"

def do_unload():
    unload_model(model_key)
    return "Model unloaded!"

def run_inference(prompt, width, height, steps):
    if model_key not in model_cache:
        return None, "Model not loaded!"
    pipe = model_cache[model_key]
    image = pipe(
        prompt=prompt,
        width=width,
        height=height,
        num_inference_steps=steps,
    ).images[0]
    return image, "Success!"

with gr.Blocks() as demo:
    status = gr.Markdown("Model not loaded.")
    load_btn = gr.Button("Load Model")
    unload_btn = gr.Button("Unload Model")
    prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world")
    width = gr.Slider(256, 1536, value=768, step=64, label="Width")
    height = gr.Slider(256, 1536, value=1152, step=64, label="Height")
    steps = gr.Slider(1, 50, value=8, step=1, label="Inference Steps")
    run_btn = gr.Button("Generate Image")
    output_img = gr.Image(label="Output Image")
    output_msg = gr.Textbox(label="Status", interactive=False)

    load_btn.click(do_load, None, status)
    unload_btn.click(do_unload, None, status)
    run_btn.click(run_inference, [prompt, width, height, steps], [output_img, output_msg])

demo.launch()
```

---

### **Key Points**
- **Always delete the model from your cache/dictionary.**
- **Call `gc.collect()` after deleting the model.**
- **Call `torch.cuda.empty_cache()` if using CUDA.**
- **Do this every time you switch models or want to free memory.**

---

### **Advanced: Unloading All Models**

If you want to ensure all models are unloaded (e.g., when switching tabs):

```python
def unload_all_models():
    model_cache.clear()
    gc.collect()
    if torch.cuda.is_available():
        torch.cuda.empty_cache()
```

---

### **Summary Table**

| Step                | CPU | GPU (CUDA) |
|---------------------|-----|------------|
| Delete model object | ✅  | ✅         |
| `gc.collect()`      | ✅  | ✅         |
| `torch.cuda.empty_cache()` | ❌  | ✅         |

---