Spaces:
Runtime error
Runtime error
File size: 10,137 Bytes
9c6c4fb 2b91516 9c6c4fb 2b91516 9c6c4fb 2b91516 9c6c4fb 4cc700d 2b91516 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
---
title: Dynamic Tab Loading Examples
emoji: 🏢
colorFrom: blue
colorTo: indigo
sdk: gradio
sdk_version: 5.34.2
app_file: app.py
pinned: true
license: apache-2.0
short_description: Exploring different loading methods for a HF Space
---
# Dynamic Space Loading
---
## 1. **Sending Data To/From IFrames**
### **A. Standard Web (HTML/JS) Context**
- **IFrames are sandboxed:** By default, an iframe is isolated from the parent page for security reasons.
- **postMessage API:**
- The standard way to communicate between a parent page and an iframe (and vice versa) is using the [window.postMessage](https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage) API.
- This requires both the parent and the iframe to have JavaScript code that listens for and sends messages.
- Example:
- Parent: `iframeEl.contentWindow.postMessage({data: "hello"}, "https://iframe-domain.com")`
- IFrame: `window.parent.postMessage({data: "hi back"}, "https://parent-domain.com")`
- **Limitations in Gradio:**
- Gradio does not expose a built-in way to inject custom JS for postMessage into the iframe or parent.
- If you control both the parent and the iframe (i.e., both are your own apps), you could add custom JS to both and use postMessage.
- If the iframe is a third-party app (like a Hugging Face Space you don’t control), you cannot inject JS into it, so you cannot send/receive data programmatically.
### **B. Gradio Context**
- **No built-in Gradio API for iframe communication.**
- **You can use gr.HTML to inject a script into the parent,** but you cannot inject into the iframe if you don’t control its code.
---
## 2. **Sending Data Between Tabs in Gradio**
- **Tabs in Gradio are just layout elements:** All components in all tabs exist in the same Python process and can share state.
- **You can use gr.State or any shared variable:**
- For example, you can have a gr.State object that is updated in one tab and read in another.
- You can also use hidden components or callbacks to pass data between tabs.
---
## 3. **Summary Table**
| Method | Parent ↔ IFrame | Tab ↔ Tab (Gradio) |
|-----------------------|:--------------:|:------------------:|
| postMessage (JS) | Yes (if you control both) | N/A |
| gr.State | No | Yes |
| Hidden Components | No | Yes |
| gradio API | No | Yes |
---
## 4. **Practical Recommendations**
- **For arbitrary Hugging Face Spaces in iframes:**
- You cannot send/receive data programmatically unless the Space itself is designed to listen for postMessage.
- **For your own Spaces:**
- You can add JS to both parent and iframe to use postMessage.
- **For Gradio tabs:**
- Use gr.State or shared components for seamless data transfer.
---
This is a very insightful and advanced question! Here’s a breakdown of what’s possible, what’s not, and what’s practical with Gradio, Hugging Face Spaces, and Python environments:
---
## 2. **GPU Spaces (transformers/diffusers) Loading/Unloading**
### **A. In a Single Python Process (One Space, One App)**
- **You can load multiple models/pipelines in one Gradio app.**
- You can have a dropdown or tabs to select which model/task/pipeline to use.
- You can load/unload models on demand (though loading large models is slow).
- You can keep all models in memory (if you have enough GPU RAM), or load/unload as needed.
- **You cannot have truly separate environments** (e.g., different Python dependencies, CUDA versions, or isolated memory) in a single Space.
- All code runs in the same Python process/environment.
- All models share the same GPU/CPU memory pool.
#### **Example:**
```python
from transformers import pipeline
import gradio as gr
# Preload or lazy-load multiple pipelines
pipe1 = pipeline("text-generation", model="gpt2")
pipe2 = pipeline("image-classification", model="google/vit-base-patch16-224")
def run_model(input, model_choice):
if model_choice == "Text Generation":
return pipe1(input)
elif model_choice == "Image Classification":
return pipe2(input)
# ... more models
gr.Interface(
fn=run_model,
inputs=[gr.Textbox(), gr.Dropdown(["Text Generation", "Image Classification"])],
outputs="auto"
).launch()
```
- You can use tabs or dropdowns to switch between models/tasks.
---
### **B. Multiple Gradio Apps in One Space**
- You can define multiple Gradio interfaces in one script and show/hide them with tabs or dropdowns.
- **But:** They still share the same Python process and memory.
---
### **C. True Isolation (Multiple Environments)**
- **Not possible in a single Hugging Face Space.**
- You cannot have multiple Python environments, different dependency sets, or isolated GPU memory pools in one Space.
- Each Space is a single container/process.
---
### **D. What About Docker or Subprocesses?**
- Hugging Face Spaces (hosted) do not support running multiple containers or true subprocess isolation with different environments.
- On your own infrastructure, you could use Docker or subprocesses, but this is not supported on Spaces.
---
## 3. **Best Practices for Multi-Model/Multi-Task Apps**
- **Lazy-load models:** Only load a model when its tab is selected, and unload it when switching (if memory is a concern).
- **Use a single environment:** Install all dependencies needed for all models in your `requirements.txt`.
- **Warn users about memory:** If users switch between large models, GPU memory may fill up and require manual cleanup (e.g., `torch.cuda.empty_cache()`).
---
## 4. **Summary Table**
| Approach | Isolation | Multiple Models | Multiple Envs | GPU Sharing | Supported on Spaces |
|----------------------------------|:---------:|:--------------:|:-------------:|:-----------:|:------------------:|
| Single Gradio app, many models | No | Yes | No | Yes | Yes |
| Multiple Gradio apps in one file | No | Yes | No | Yes | Yes |
| Multiple Spaces (one per app) | Yes | Yes | Yes | Isolated | Yes |
| Docker/subprocess isolation | Yes | Yes | Yes | Isolated | No (on Spaces) |
---
## 4. **What’s Practical?**
- **For most use cases:**
- Use a single app with tabs/dropdowns to select the model/task.
- Lazy-load and unload models as needed to manage memory.
- **For true isolation:**
- Use multiple Spaces (one per app/model) or host your own infrastructure with Docker.
---
## 5. **Properly Unloading Models, Weights, and Freeing Memory in PyTorch/Diffusers**
When working with large models (especially on GPU), it's important to:
- **Delete references to the model and pipeline**
- **Call `gc.collect()`** to trigger Python's garbage collector
- **Call `torch.cuda.empty_cache()`** (if using CUDA) to free GPU memory
### **Best Practice Pattern**
Here’s a robust pattern for loading and unloading models in a multi-model Gradio app:
```python
import torch
import gc
from diffusers import DiffusionPipeline
model_cache = {}
def load_diffusion_model(model_id, dtype=torch.float32, device="cpu"):
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=dtype)
pipe = pipe.to(device)
pipe.enable_attention_slicing()
return pipe
def unload_model(model_key):
# Remove from cache
if model_key in model_cache:
del model_cache[model_key]
# Run Python garbage collection
gc.collect()
# Free GPU memory if using CUDA
if torch.cuda.is_available():
torch.cuda.empty_cache()
```
### **How to Use in a Gradio Tab**
```python
import gradio as gr
model_id = "LPX55/FLUX.1-merged_lightning_v2"
model_key = "flux"
device = "cpu" # or "cuda" if available and desired
def do_load():
if model_key not in model_cache:
model_cache[model_key] = load_diffusion_model(model_id, torch.float32, device)
return "Model loaded!"
def do_unload():
unload_model(model_key)
return "Model unloaded!"
def run_inference(prompt, width, height, steps):
if model_key not in model_cache:
return None, "Model not loaded!"
pipe = model_cache[model_key]
image = pipe(
prompt=prompt,
width=width,
height=height,
num_inference_steps=steps,
).images[0]
return image, "Success!"
with gr.Blocks() as demo:
status = gr.Markdown("Model not loaded.")
load_btn = gr.Button("Load Model")
unload_btn = gr.Button("Unload Model")
prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world")
width = gr.Slider(256, 1536, value=768, step=64, label="Width")
height = gr.Slider(256, 1536, value=1152, step=64, label="Height")
steps = gr.Slider(1, 50, value=8, step=1, label="Inference Steps")
run_btn = gr.Button("Generate Image")
output_img = gr.Image(label="Output Image")
output_msg = gr.Textbox(label="Status", interactive=False)
load_btn.click(do_load, None, status)
unload_btn.click(do_unload, None, status)
run_btn.click(run_inference, [prompt, width, height, steps], [output_img, output_msg])
demo.launch()
```
---
### **Key Points**
- **Always delete the model from your cache/dictionary.**
- **Call `gc.collect()` after deleting the model.**
- **Call `torch.cuda.empty_cache()` if using CUDA.**
- **Do this every time you switch models or want to free memory.**
---
### **Advanced: Unloading All Models**
If you want to ensure all models are unloaded (e.g., when switching tabs):
```python
def unload_all_models():
model_cache.clear()
gc.collect()
if torch.cuda.is_available():
torch.cuda.empty_cache()
```
---
### **Summary Table**
| Step | CPU | GPU (CUDA) |
|---------------------|-----|------------|
| Delete model object | ✅ | ✅ |
| `gc.collect()` | ✅ | ✅ |
| `torch.cuda.empty_cache()` | ❌ | ✅ |
---
|