Spaces:
Runtime error
Runtime error
LPX55
commited on
Commit
·
a5723a0
1
Parent(s):
56e596b
Add Gradio interface for multi-model diffusion and text generation tasks, including model loading/unloading functionality and shared state management. Introduce new tabs for text and diffusion models, enhancing user interaction and modularity.
Browse files- app_mm.py +31 -0
- auto-diffuser.md +232 -0
- pipeline_tabs/app_diffusion.py +60 -0
- pipeline_tabs/app_task.py +95 -0
- pipeline_tabs/diffusion_tab.py +49 -0
- pipeline_tabs/text_tab.py +29 -0
- requirements.txt +4 -1
app_mm.py
ADDED
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
import gc
|
4 |
+
import json
|
5 |
+
from pipeline_tabs.text_tab import text_tab
|
6 |
+
from pipeline_tabs.diffusion_tab import diffusion_tab
|
7 |
+
|
8 |
+
model_cache = {}
|
9 |
+
|
10 |
+
def unload_all_models():
|
11 |
+
model_cache.clear()
|
12 |
+
gc.collect()
|
13 |
+
if torch.cuda.is_available():
|
14 |
+
torch.cuda.empty_cache()
|
15 |
+
|
16 |
+
with gr.Blocks() as demo:
|
17 |
+
with gr.Tabs():
|
18 |
+
text_tab(model_cache, unload_all_models)
|
19 |
+
diffusion_tab(model_cache, unload_all_models)
|
20 |
+
# Shared state display
|
21 |
+
def pretty_json():
|
22 |
+
return json.dumps(list(model_cache.keys()), indent=2, ensure_ascii=False)
|
23 |
+
state_box = gr.Textbox(label="Loaded Models", lines=4, interactive=False, value=pretty_json())
|
24 |
+
# Update state_box whenever a model is loaded/unloaded
|
25 |
+
demo.load(fn=pretty_json, inputs=None, outputs=state_box)
|
26 |
+
|
27 |
+
# Optionally, you can add a button to refresh the state display
|
28 |
+
refresh_btn = gr.Button("Refresh Model State")
|
29 |
+
refresh_btn.click(fn=pretty_json, inputs=None, outputs=state_box)
|
30 |
+
|
31 |
+
demo.launch()
|
auto-diffuser.md
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
You are an expert in optimizing diffusers library code for different hardware configurations.
|
2 |
+
|
3 |
+
NOTE: This system includes curated optimization knowledge from HuggingFace documentation.
|
4 |
+
|
5 |
+
TASK: Generate optimized Python code for running a diffusion model with the following specifications:
|
6 |
+
- Model: LPX55/FLUX.1-merged_lightning_v2
|
7 |
+
- Prompt: "A cat holding a sign that says hello world"
|
8 |
+
- Image size: 768x1152
|
9 |
+
- Inference steps: 8
|
10 |
+
|
11 |
+
HARDWARE SPECIFICATIONS:
|
12 |
+
- Platform: Linux (manual_input)
|
13 |
+
- CPU Cores: 8
|
14 |
+
- CUDA Available: False
|
15 |
+
- MPS Available: False
|
16 |
+
- Optimization Profile: balanced
|
17 |
+
- GPU: Custom GPU (20.0 GB VRAM)
|
18 |
+
|
19 |
+
OPTIMIZATION KNOWLEDGE BASE:
|
20 |
+
|
21 |
+
# DIFFUSERS OPTIMIZATION TECHNIQUES
|
22 |
+
|
23 |
+
## Memory Optimization Techniques
|
24 |
+
|
25 |
+
### 1. Model CPU Offloading
|
26 |
+
Use `enable_model_cpu_offload()` to move models between GPU and CPU automatically:
|
27 |
+
```python
|
28 |
+
pipe.enable_model_cpu_offload()
|
29 |
+
```
|
30 |
+
- Saves significant VRAM by keeping only active models on GPU
|
31 |
+
- Automatic management, no manual intervention needed
|
32 |
+
- Compatible with all pipelines
|
33 |
+
|
34 |
+
### 2. Sequential CPU Offloading
|
35 |
+
Use `enable_sequential_cpu_offload()` for more aggressive memory saving:
|
36 |
+
```python
|
37 |
+
pipe.enable_sequential_cpu_offload()
|
38 |
+
```
|
39 |
+
- More memory efficient than model offloading
|
40 |
+
- Moves models to CPU after each forward pass
|
41 |
+
- Best for very limited VRAM scenarios
|
42 |
+
|
43 |
+
### 3. Attention Slicing
|
44 |
+
Use `enable_attention_slicing()` to reduce memory during attention computation:
|
45 |
+
```python
|
46 |
+
pipe.enable_attention_slicing()
|
47 |
+
# or specify slice size
|
48 |
+
pipe.enable_attention_slicing("max") # maximum slicing
|
49 |
+
pipe.enable_attention_slicing(1) # slice_size = 1
|
50 |
+
```
|
51 |
+
- Trades compute time for memory
|
52 |
+
- Most effective for high-resolution images
|
53 |
+
- Can be combined with other techniques
|
54 |
+
|
55 |
+
### 4. VAE Slicing
|
56 |
+
Use `enable_vae_slicing()` for large batch processing:
|
57 |
+
```python
|
58 |
+
pipe.enable_vae_slicing()
|
59 |
+
```
|
60 |
+
- Decodes images one at a time instead of all at once
|
61 |
+
- Essential for batch sizes > 4
|
62 |
+
- Minimal performance impact on single images
|
63 |
+
|
64 |
+
### 5. VAE Tiling
|
65 |
+
Use `enable_vae_tiling()` for high-resolution image generation:
|
66 |
+
```python
|
67 |
+
pipe.enable_vae_tiling()
|
68 |
+
```
|
69 |
+
- Enables 4K+ image generation on 8GB VRAM
|
70 |
+
- Splits images into overlapping tiles
|
71 |
+
- Automatically disabled for 512x512 or smaller images
|
72 |
+
|
73 |
+
### 6. Memory Efficient Attention (xFormers)
|
74 |
+
Use `enable_xformers_memory_efficient_attention()` if xFormers is installed:
|
75 |
+
```python
|
76 |
+
pipe.enable_xformers_memory_efficient_attention()
|
77 |
+
```
|
78 |
+
- Significantly reduces memory usage and improves speed
|
79 |
+
- Requires xformers library installation
|
80 |
+
- Compatible with most models
|
81 |
+
|
82 |
+
## Performance Optimization Techniques
|
83 |
+
|
84 |
+
### 1. Half Precision (FP16/BF16)
|
85 |
+
Use lower precision for better memory and speed:
|
86 |
+
```python
|
87 |
+
# FP16 (widely supported)
|
88 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
89 |
+
|
90 |
+
# BF16 (better numerical stability, newer hardware)
|
91 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
92 |
+
```
|
93 |
+
- FP16: Halves memory usage, widely supported
|
94 |
+
- BF16: Better numerical stability, requires newer GPUs
|
95 |
+
- Essential for most optimization scenarios
|
96 |
+
|
97 |
+
### 2. Torch Compile (PyTorch 2.0+)
|
98 |
+
Use `torch.compile()` for significant speed improvements:
|
99 |
+
```python
|
100 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
101 |
+
# For some models, compile VAE too:
|
102 |
+
pipe.vae.decode = torch.compile(pipe.vae.decode, mode="reduce-overhead", fullgraph=True)
|
103 |
+
```
|
104 |
+
- 5-50% speed improvement
|
105 |
+
- Requires PyTorch 2.0+
|
106 |
+
- First run is slower due to compilation
|
107 |
+
|
108 |
+
### 3. Fast Schedulers
|
109 |
+
Use faster schedulers for fewer steps:
|
110 |
+
```python
|
111 |
+
from diffusers import LMSDiscreteScheduler, UniPCMultistepScheduler
|
112 |
+
|
113 |
+
# LMS Scheduler (good quality, fast)
|
114 |
+
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config)
|
115 |
+
|
116 |
+
# UniPC Scheduler (fastest)
|
117 |
+
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
|
118 |
+
```
|
119 |
+
|
120 |
+
## Hardware-Specific Optimizations
|
121 |
+
|
122 |
+
### NVIDIA GPU Optimizations
|
123 |
+
```python
|
124 |
+
# Enable Tensor Cores
|
125 |
+
torch.backends.cudnn.benchmark = True
|
126 |
+
|
127 |
+
# Optimal data type for NVIDIA
|
128 |
+
torch_dtype = torch.float16 # or torch.bfloat16 for RTX 30/40 series
|
129 |
+
```
|
130 |
+
|
131 |
+
### Apple Silicon (MPS) Optimizations
|
132 |
+
```python
|
133 |
+
# Use MPS device
|
134 |
+
device = "mps" if torch.backends.mps.is_available() else "cpu"
|
135 |
+
pipe = pipe.to(device)
|
136 |
+
|
137 |
+
# Recommended dtype for Apple Silicon
|
138 |
+
torch_dtype = torch.bfloat16 # Better than float16 on Apple Silicon
|
139 |
+
|
140 |
+
# Attention slicing often helps on MPS
|
141 |
+
pipe.enable_attention_slicing()
|
142 |
+
```
|
143 |
+
|
144 |
+
### CPU Optimizations
|
145 |
+
```python
|
146 |
+
# Use float32 for CPU
|
147 |
+
torch_dtype = torch.float32
|
148 |
+
|
149 |
+
# Enable optimized attention
|
150 |
+
pipe.enable_attention_slicing()
|
151 |
+
```
|
152 |
+
|
153 |
+
## Model-Specific Guidelines
|
154 |
+
|
155 |
+
### FLUX Models
|
156 |
+
- Do NOT use guidance_scale parameter (not needed for FLUX)
|
157 |
+
- Use 4-8 inference steps maximum
|
158 |
+
- BF16 dtype recommended
|
159 |
+
- Enable attention slicing for memory optimization
|
160 |
+
|
161 |
+
### Stable Diffusion XL
|
162 |
+
- Enable attention slicing for high resolutions
|
163 |
+
- Use refiner model sparingly to save memory
|
164 |
+
- Consider VAE tiling for >1024px images
|
165 |
+
|
166 |
+
### Stable Diffusion 1.5/2.1
|
167 |
+
- Very memory efficient base models
|
168 |
+
- Can often run without optimizations on 8GB+ VRAM
|
169 |
+
- Enable VAE slicing for batch processing
|
170 |
+
|
171 |
+
## Memory Usage Estimation
|
172 |
+
- FLUX.1: ~24GB for full precision, ~12GB for FP16
|
173 |
+
- SDXL: ~7GB for FP16, ~14GB for FP32
|
174 |
+
- SD 1.5: ~2GB for FP16, ~4GB for FP32
|
175 |
+
|
176 |
+
## Optimization Combinations by VRAM
|
177 |
+
|
178 |
+
### 24GB+ VRAM (High-end)
|
179 |
+
```python
|
180 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.bfloat16)
|
181 |
+
pipe = pipe.to("cuda")
|
182 |
+
pipe.unet = torch.compile(pipe.unet, mode="reduce-overhead", fullgraph=True)
|
183 |
+
```
|
184 |
+
|
185 |
+
### 12-24GB VRAM (Mid-range)
|
186 |
+
```python
|
187 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
188 |
+
pipe = pipe.to("cuda")
|
189 |
+
pipe.enable_model_cpu_offload()
|
190 |
+
pipe.enable_xformers_memory_efficient_attention()
|
191 |
+
```
|
192 |
+
|
193 |
+
### 8-12GB VRAM (Entry-level)
|
194 |
+
```python
|
195 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
196 |
+
pipe.enable_sequential_cpu_offload()
|
197 |
+
pipe.enable_attention_slicing()
|
198 |
+
pipe.enable_vae_slicing()
|
199 |
+
pipe.enable_xformers_memory_efficient_attention()
|
200 |
+
```
|
201 |
+
|
202 |
+
### <8GB VRAM (Low-end)
|
203 |
+
```python
|
204 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16)
|
205 |
+
pipe.enable_sequential_cpu_offload()
|
206 |
+
pipe.enable_attention_slicing("max")
|
207 |
+
pipe.enable_vae_slicing()
|
208 |
+
pipe.enable_vae_tiling()
|
209 |
+
```
|
210 |
+
|
211 |
+
|
212 |
+
IMPORTANT: For FLUX.1-schnell models, do NOT include guidance_scale parameter as it's not needed.
|
213 |
+
|
214 |
+
Using the OPTIMIZATION KNOWLEDGE BASE above, generate Python code that:
|
215 |
+
|
216 |
+
1. **Selects the best optimization techniques** for the specific hardware profile
|
217 |
+
2. **Applies appropriate memory optimizations** based on available VRAM
|
218 |
+
3. **Uses optimal data types** for the target hardware:
|
219 |
+
- User specified dtype (if provided): Use exactly as specified
|
220 |
+
- Apple Silicon (MPS): prefer torch.bfloat16
|
221 |
+
- NVIDIA GPUs: prefer torch.float16 or torch.bfloat16
|
222 |
+
- CPU only: use torch.float32
|
223 |
+
4. **Implements hardware-specific optimizations** (CUDA, MPS, CPU)
|
224 |
+
5. **Follows model-specific guidelines** (e.g., FLUX guidance_scale handling)
|
225 |
+
|
226 |
+
IMPORTANT GUIDELINES:
|
227 |
+
- Reference the OPTIMIZATION KNOWLEDGE BASE to select appropriate techniques
|
228 |
+
- Include all necessary imports
|
229 |
+
- Add brief comments explaining optimization choices
|
230 |
+
- Generate compact, production-ready code
|
231 |
+
- Inline values where possible for concise code
|
232 |
+
- Generate ONLY the Python code, no explanations before or after the code block
|
pipeline_tabs/app_diffusion.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import DiffusionPipeline
|
4 |
+
import gc
|
5 |
+
|
6 |
+
# Shared state for model cache
|
7 |
+
model_cache = {}
|
8 |
+
|
9 |
+
def load_flux_model():
|
10 |
+
model_id = "LPX55/FLUX.1-merged_lightning_v2"
|
11 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
|
12 |
+
pipe = pipe.to("cpu")
|
13 |
+
pipe.enable_attention_slicing()
|
14 |
+
return pipe
|
15 |
+
|
16 |
+
def unload_flux_model():
|
17 |
+
if "flux" in model_cache:
|
18 |
+
del model_cache["flux"]
|
19 |
+
gc.collect()
|
20 |
+
if torch.cuda.is_available():
|
21 |
+
torch.cuda.empty_cache()
|
22 |
+
|
23 |
+
def run_flux(prompt, width, height, steps):
|
24 |
+
if "flux" not in model_cache:
|
25 |
+
return None, "Model not loaded!"
|
26 |
+
pipe = model_cache["flux"]
|
27 |
+
image = pipe(
|
28 |
+
prompt=prompt,
|
29 |
+
width=width,
|
30 |
+
height=height,
|
31 |
+
num_inference_steps=steps,
|
32 |
+
).images[0]
|
33 |
+
return image, "Success!"
|
34 |
+
|
35 |
+
with gr.Blocks() as demo:
|
36 |
+
with gr.Tab("FLUX Diffusion"):
|
37 |
+
status = gr.Markdown("Model not loaded.")
|
38 |
+
load_btn = gr.Button("Load Model")
|
39 |
+
unload_btn = gr.Button("Unload Model")
|
40 |
+
prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world")
|
41 |
+
width = gr.Slider(256, 1536, value=768, step=64, label="Width")
|
42 |
+
height = gr.Slider(256, 1536, value=1152, step=64, label="Height")
|
43 |
+
steps = gr.Slider(1, 50, value=8, step=1, label="Inference Steps")
|
44 |
+
run_btn = gr.Button("Generate Image")
|
45 |
+
output_img = gr.Image(label="Output Image")
|
46 |
+
output_msg = gr.Textbox(label="Status", interactive=False)
|
47 |
+
|
48 |
+
def do_load():
|
49 |
+
model_cache["flux"] = load_flux_model()
|
50 |
+
return "Model loaded!"
|
51 |
+
|
52 |
+
def do_unload():
|
53 |
+
unload_flux_model()
|
54 |
+
return "Model unloaded!"
|
55 |
+
|
56 |
+
load_btn.click(do_load, None, status)
|
57 |
+
unload_btn.click(do_unload, None, status)
|
58 |
+
run_btn.click(run_flux, [prompt, width, height, steps], [output_img, output_msg])
|
59 |
+
|
60 |
+
demo.launch()
|
pipeline_tabs/app_task.py
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
4 |
+
import gc
|
5 |
+
import json
|
6 |
+
|
7 |
+
# Define available models/tasks
|
8 |
+
MODEL_CONFIGS = [
|
9 |
+
{
|
10 |
+
"name": "Text Generation (GPT-2)",
|
11 |
+
"task": "text-generation",
|
12 |
+
"model": "gpt2",
|
13 |
+
"input_type": "text",
|
14 |
+
"output_type": "text"
|
15 |
+
},
|
16 |
+
{
|
17 |
+
"name": "Image Classification (ViT)",
|
18 |
+
"task": "image-classification",
|
19 |
+
"model": "google/vit-base-patch16-224",
|
20 |
+
"input_type": "image",
|
21 |
+
"output_type": "label"
|
22 |
+
},
|
23 |
+
# Add more models/tasks as needed
|
24 |
+
]
|
25 |
+
|
26 |
+
# Shared state for demo
|
27 |
+
shared_state = gr.State({"active_model": None, "last_result": None})
|
28 |
+
|
29 |
+
# Model cache for lazy loading
|
30 |
+
model_cache = {}
|
31 |
+
|
32 |
+
def load_model(task, model_name):
|
33 |
+
# Use device_map="auto" or device=0 for GPU if available
|
34 |
+
return pipeline(task, model=model_name, device=-1)
|
35 |
+
|
36 |
+
def unload_model(model_key):
|
37 |
+
if model_key in model_cache:
|
38 |
+
del model_cache[model_key]
|
39 |
+
gc.collect()
|
40 |
+
if torch.cuda.is_available():
|
41 |
+
torch.cuda.empty_cache()
|
42 |
+
|
43 |
+
with gr.Blocks() as demo:
|
44 |
+
gr.Markdown("# Multi-Model, Multi-Task Gradio Demo\n_Switch between models and tasks in one Space!_")
|
45 |
+
tab_names = [m["name"] for m in MODEL_CONFIGS]
|
46 |
+
with gr.Tabs() as tabs:
|
47 |
+
tab_blocks = []
|
48 |
+
for i, config in enumerate(MODEL_CONFIGS):
|
49 |
+
with gr.Tab(config["name"]):
|
50 |
+
status = gr.Markdown(f"**Model:** {config['model']}<br>**Task:** {config['task']}")
|
51 |
+
load_btn = gr.Button("Load Model")
|
52 |
+
unload_btn = gr.Button("Unload Model")
|
53 |
+
if config["input_type"] == "text":
|
54 |
+
input_comp = gr.Textbox(label="Input Text")
|
55 |
+
elif config["input_type"] == "image":
|
56 |
+
input_comp = gr.Image(label="Input Image")
|
57 |
+
else:
|
58 |
+
input_comp = gr.Textbox(label="Input")
|
59 |
+
run_btn = gr.Button("Run Model")
|
60 |
+
output_comp = gr.Textbox(label="Output", lines=4)
|
61 |
+
model_key = f"{config['task']}|{config['model']}"
|
62 |
+
|
63 |
+
def do_load(state):
|
64 |
+
if model_key not in model_cache:
|
65 |
+
model_cache[model_key] = load_model(config["task"], config["model"])
|
66 |
+
state = dict(state)
|
67 |
+
state["active_model"] = model_key
|
68 |
+
return f"Loaded: {model_key}", state
|
69 |
+
|
70 |
+
def do_unload(state):
|
71 |
+
unload_model(model_key)
|
72 |
+
state = dict(state)
|
73 |
+
state["active_model"] = None
|
74 |
+
return f"Unloaded: {model_key}", state
|
75 |
+
|
76 |
+
def do_run(inp, state):
|
77 |
+
if model_key not in model_cache:
|
78 |
+
return "Model not loaded!", state
|
79 |
+
pipe = model_cache[model_key]
|
80 |
+
result = pipe(inp)
|
81 |
+
state = dict(state)
|
82 |
+
state["last_result"] = result
|
83 |
+
return str(result), state
|
84 |
+
|
85 |
+
load_btn.click(do_load, shared_state, [status, shared_state])
|
86 |
+
unload_btn.click(do_unload, shared_state, [status, shared_state])
|
87 |
+
run_btn.click(do_run, [input_comp, shared_state], [output_comp, shared_state])
|
88 |
+
|
89 |
+
# Shared state display
|
90 |
+
def pretty_json(state):
|
91 |
+
return json.dumps(state, indent=2, ensure_ascii=False)
|
92 |
+
shared_state_box = gr.Textbox(label="Shared State", lines=8, interactive=False)
|
93 |
+
shared_state.change(pretty_json, shared_state, shared_state_box)
|
94 |
+
|
95 |
+
demo.launch()
|
pipeline_tabs/diffusion_tab.py
ADDED
@@ -0,0 +1,49 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from diffusers import DiffusionPipeline
|
4 |
+
import gc
|
5 |
+
|
6 |
+
def diffusion_tab(model_cache, unload_all_models):
|
7 |
+
def load_diffusion_model():
|
8 |
+
unload_all_models()
|
9 |
+
model_id = "LPX55/FLUX.1-merged_lightning_v2"
|
10 |
+
pipe = DiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float32)
|
11 |
+
pipe = pipe.to("cpu")
|
12 |
+
pipe.enable_attention_slicing()
|
13 |
+
model_cache["diffusion"] = pipe
|
14 |
+
return "Diffusion model loaded!"
|
15 |
+
|
16 |
+
def unload_diffusion_model():
|
17 |
+
if "diffusion" in model_cache:
|
18 |
+
del model_cache["diffusion"]
|
19 |
+
gc.collect()
|
20 |
+
if torch.cuda.is_available():
|
21 |
+
torch.cuda.empty_cache()
|
22 |
+
return "Diffusion model unloaded!"
|
23 |
+
|
24 |
+
def run_diffusion(prompt, width, height, steps):
|
25 |
+
if "diffusion" not in model_cache:
|
26 |
+
return None, "Diffusion model not loaded!"
|
27 |
+
pipe = model_cache["diffusion"]
|
28 |
+
image = pipe(
|
29 |
+
prompt=prompt,
|
30 |
+
width=width,
|
31 |
+
height=height,
|
32 |
+
num_inference_steps=steps,
|
33 |
+
).images[0]
|
34 |
+
return image, "Success!"
|
35 |
+
|
36 |
+
with gr.Tab("Diffusion"):
|
37 |
+
status = gr.Markdown("Model not loaded.")
|
38 |
+
load_btn = gr.Button("Load Diffusion Model")
|
39 |
+
unload_btn = gr.Button("Unload Model")
|
40 |
+
prompt = gr.Textbox(label="Prompt", value="A cat holding a sign that says hello world")
|
41 |
+
width = gr.Slider(256, 1536, value=768, step=64, label="Width")
|
42 |
+
height = gr.Slider(256, 1536, value=1152, step=64, label="Height")
|
43 |
+
steps = gr.Slider(1, 50, value=8, step=1, label="Inference Steps")
|
44 |
+
run_btn = gr.Button("Generate Image")
|
45 |
+
output_img = gr.Image(label="Output Image")
|
46 |
+
output_msg = gr.Textbox(label="Status", interactive=False)
|
47 |
+
load_btn.click(load_diffusion_model, None, status)
|
48 |
+
unload_btn.click(unload_diffusion_model, None, status)
|
49 |
+
run_btn.click(run_diffusion, [prompt, width, height, steps], [output_img, output_msg])
|
pipeline_tabs/text_tab.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import pipeline
|
3 |
+
|
4 |
+
def text_tab(model_cache, unload_all_models):
|
5 |
+
def load_text_model():
|
6 |
+
unload_all_models()
|
7 |
+
model_cache["text"] = pipeline("text-generation", model="gpt2", device=-1)
|
8 |
+
return "Text model loaded!"
|
9 |
+
|
10 |
+
def unload_text_model():
|
11 |
+
if "text" in model_cache:
|
12 |
+
del model_cache["text"]
|
13 |
+
return "Text model unloaded!"
|
14 |
+
|
15 |
+
def run_text(prompt):
|
16 |
+
if "text" not in model_cache:
|
17 |
+
return "Text model not loaded!"
|
18 |
+
return model_cache["text"](prompt)[0]["generated_text"]
|
19 |
+
|
20 |
+
with gr.Tab("Text Generation"):
|
21 |
+
status = gr.Markdown("Model not loaded.")
|
22 |
+
load_btn = gr.Button("Load Text Model")
|
23 |
+
unload_btn = gr.Button("Unload Model")
|
24 |
+
prompt = gr.Textbox(label="Prompt", value="Hello world")
|
25 |
+
run_btn = gr.Button("Generate")
|
26 |
+
output = gr.Textbox(label="Output")
|
27 |
+
load_btn.click(load_text_model, None, status)
|
28 |
+
unload_btn.click(unload_text_model, None, status)
|
29 |
+
run_btn.click(run_text, prompt, output)
|
requirements.txt
CHANGED
@@ -1,3 +1,6 @@
|
|
1 |
gradio[mcp]
|
2 |
numpy
|
3 |
-
pandas
|
|
|
|
|
|
|
|
1 |
gradio[mcp]
|
2 |
numpy
|
3 |
+
pandas
|
4 |
+
torch
|
5 |
+
transformers
|
6 |
+
diffusers
|