import gradio as gr from transformers import pipeline def text_tab(model_cache, unload_all_models): def load_text_model(): unload_all_models() model_cache["text"] = pipeline("text-generation", model="gpt2", device=-1) return "Text model loaded!" def unload_text_model(): if "text" in model_cache: del model_cache["text"] return "Text model unloaded!" def run_text(prompt): if "text" not in model_cache: return "Text model not loaded!" return model_cache["text"](prompt)[0]["generated_text"] with gr.Tab("Text Generation"): status = gr.Markdown("Model not loaded.") load_btn = gr.Button("Load Text Model") unload_btn = gr.Button("Unload Model") prompt = gr.Textbox(label="Prompt", value="Hello world") run_btn = gr.Button("Generate") output = gr.Textbox(label="Output") load_btn.click(load_text_model, None, status) unload_btn.click(unload_text_model, None, status) run_btn.click(run_text, prompt, output)