|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
import math |
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from torch.nn.modules.utils import _single |
|
import src.modules.utils as utils |
|
from src.modules.multihead_attention import MultiheadAttention |
|
import numpy as np |
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
import copy |
|
|
|
|
|
def make_positions(tensor, padding_idx, left_pad): |
|
"""Replace non-padding symbols with their position numbers. |
|
Position numbers begin at padding_idx+1. |
|
Padding symbols are ignored, but it is necessary to specify whether padding |
|
is added on the left side (left_pad=True) or right side (left_pad=False). |
|
""" |
|
|
|
|
|
max_pos = padding_idx + 1 + tensor.size(1) |
|
|
|
range_buf = tensor.new() |
|
|
|
if range_buf.numel() < max_pos: |
|
torch.arange(padding_idx + 1, max_pos, out=range_buf) |
|
mask = tensor.ne(padding_idx) |
|
positions = range_buf[:tensor.size(1)].expand_as(tensor) |
|
if left_pad: |
|
positions = positions - mask.size(1) + mask.long().sum(dim=1).unsqueeze(1) |
|
|
|
out = tensor.clone() |
|
out = out.masked_scatter_(mask,positions[mask]) |
|
return out |
|
|
|
|
|
class LearnedPositionalEmbedding(nn.Embedding): |
|
"""This module learns positional embeddings up to a fixed maximum size. |
|
Padding symbols are ignored, but it is necessary to specify whether padding |
|
is added on the left side (left_pad=True) or right side (left_pad=False). |
|
""" |
|
|
|
def __init__(self, num_embeddings, embedding_dim, padding_idx, left_pad): |
|
super().__init__(num_embeddings, embedding_dim, padding_idx) |
|
self.left_pad = left_pad |
|
nn.init.normal_(self.weight, mean=0, std=embedding_dim ** -0.5) |
|
|
|
def forward(self, input, incremental_state=None): |
|
"""Input is expected to be of size [bsz x seqlen].""" |
|
if incremental_state is not None: |
|
|
|
|
|
positions = input.data.new(1, 1).fill_(self.padding_idx + input.size(1)) |
|
else: |
|
|
|
positions = make_positions(input.data, self.padding_idx, self.left_pad) |
|
return super().forward(positions) |
|
|
|
def max_positions(self): |
|
"""Maximum number of supported positions.""" |
|
return self.num_embeddings - self.padding_idx - 1 |
|
|
|
class SinusoidalPositionalEmbedding(nn.Module): |
|
"""This module produces sinusoidal positional embeddings of any length. |
|
Padding symbols are ignored, but it is necessary to specify whether padding |
|
is added on the left side (left_pad=True) or right side (left_pad=False). |
|
""" |
|
|
|
def __init__(self, embedding_dim, padding_idx, left_pad, init_size=1024): |
|
super().__init__() |
|
self.embedding_dim = embedding_dim |
|
self.padding_idx = padding_idx |
|
self.left_pad = left_pad |
|
self.weights = SinusoidalPositionalEmbedding.get_embedding( |
|
init_size, |
|
embedding_dim, |
|
padding_idx, |
|
) |
|
self.register_buffer('_float_tensor', torch.FloatTensor()) |
|
|
|
@staticmethod |
|
def get_embedding(num_embeddings, embedding_dim, padding_idx=None): |
|
"""Build sinusoidal embeddings. |
|
This matches the implementation in tensor2tensor, but differs slightly |
|
from the description in Section 3.5 of "Attention Is All You Need". |
|
""" |
|
half_dim = embedding_dim // 2 |
|
emb = math.log(10000) / (half_dim - 1) |
|
emb = torch.exp(torch.arange(half_dim, dtype=torch.float) * -emb) |
|
emb = torch.arange(num_embeddings, dtype=torch.float).unsqueeze(1) * emb.unsqueeze(0) |
|
emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1).view(num_embeddings, -1) |
|
if embedding_dim % 2 == 1: |
|
|
|
emb = torch.cat([emb, torch.zeros(num_embeddings, 1)], dim=1) |
|
if padding_idx is not None: |
|
emb[padding_idx, :] = 0 |
|
return emb |
|
|
|
def forward(self, input, incremental_state=None): |
|
"""Input is expected to be of size [bsz x seqlen].""" |
|
|
|
bsz, seq_len = input.size() |
|
max_pos = self.padding_idx + 1 + seq_len |
|
if self.weights is None or max_pos > self.weights.size(0): |
|
self.weights = SinusoidalPositionalEmbedding.get_embedding( |
|
max_pos, |
|
self.embedding_dim, |
|
self.padding_idx, |
|
) |
|
self.weights = self.weights.type_as(self._float_tensor) |
|
|
|
if incremental_state is not None: |
|
|
|
return self.weights[self.padding_idx + seq_len, :].expand(bsz, 1, -1) |
|
|
|
positions = make_positions(input.data, self.padding_idx, self.left_pad) |
|
return self.weights.index_select(0, positions.view(-1)).view(bsz, seq_len, -1).detach() |
|
|
|
def max_positions(self): |
|
"""Maximum number of supported positions.""" |
|
return int(1e5) |
|
|
|
class TransformerDecoderLayer(nn.Module): |
|
"""Decoder layer block.""" |
|
|
|
def __init__(self, embed_dim, n_att, dropout=0.5, normalize_before=True, last_ln=False): |
|
super().__init__() |
|
|
|
self.embed_dim = embed_dim |
|
self.dropout = dropout |
|
self.relu_dropout = dropout |
|
self.normalize_before = normalize_before |
|
num_layer_norm = 3 |
|
|
|
|
|
self.self_attn = MultiheadAttention( |
|
self.embed_dim, n_att, |
|
dropout=dropout, |
|
) |
|
|
|
self.cond_att = MultiheadAttention( |
|
self.embed_dim, n_att, |
|
dropout=dropout, |
|
) |
|
|
|
self.fc1 = Linear(self.embed_dim, self.embed_dim) |
|
self.fc2 = Linear(self.embed_dim, self.embed_dim) |
|
self.layer_norms = nn.ModuleList([LayerNorm(self.embed_dim) for i in range(num_layer_norm)]) |
|
self.use_last_ln = last_ln |
|
if self.use_last_ln: |
|
self.last_ln = LayerNorm(self.embed_dim) |
|
|
|
def forward(self, x, ingr_features, ingr_mask, incremental_state, img_features): |
|
|
|
|
|
residual = x |
|
x = self.maybe_layer_norm(0, x, before=True) |
|
x, _ = self.self_attn( |
|
query=x, |
|
key=x, |
|
value=x, |
|
mask_future_timesteps=True, |
|
incremental_state=incremental_state, |
|
need_weights=False, |
|
) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
x = residual + x |
|
x = self.maybe_layer_norm(0, x, after=True) |
|
|
|
residual = x |
|
x = self.maybe_layer_norm(1, x, before=True) |
|
|
|
|
|
if ingr_features is None: |
|
|
|
x, _ = self.cond_att(query=x, |
|
key=img_features, |
|
value=img_features, |
|
key_padding_mask=None, |
|
incremental_state=incremental_state, |
|
static_kv=True, |
|
) |
|
elif img_features is None: |
|
x, _ = self.cond_att(query=x, |
|
key=ingr_features, |
|
value=ingr_features, |
|
key_padding_mask=ingr_mask, |
|
incremental_state=incremental_state, |
|
static_kv=True, |
|
) |
|
|
|
|
|
else: |
|
|
|
kv = torch.cat((img_features, ingr_features), 0) |
|
mask = torch.cat((torch.zeros(img_features.shape[1], img_features.shape[0], dtype=torch.uint8).to(device), |
|
ingr_mask), 1) |
|
x, _ = self.cond_att(query=x, |
|
key=kv, |
|
value=kv, |
|
key_padding_mask=mask, |
|
incremental_state=incremental_state, |
|
static_kv=True, |
|
) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
x = residual + x |
|
x = self.maybe_layer_norm(1, x, after=True) |
|
|
|
residual = x |
|
x = self.maybe_layer_norm(-1, x, before=True) |
|
x = F.relu(self.fc1(x)) |
|
x = F.dropout(x, p=self.relu_dropout, training=self.training) |
|
x = self.fc2(x) |
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
x = residual + x |
|
x = self.maybe_layer_norm(-1, x, after=True) |
|
|
|
if self.use_last_ln: |
|
x = self.last_ln(x) |
|
|
|
return x |
|
|
|
def maybe_layer_norm(self, i, x, before=False, after=False): |
|
assert before ^ after |
|
if after ^ self.normalize_before: |
|
return self.layer_norms[i](x) |
|
else: |
|
return x |
|
|
|
class DecoderTransformer(nn.Module): |
|
"""Transformer decoder.""" |
|
|
|
def __init__(self, embed_size, vocab_size, dropout=0.5, seq_length=20, num_instrs=15, |
|
attention_nheads=16, pos_embeddings=True, num_layers=8, learned=True, normalize_before=True, |
|
normalize_inputs=False, last_ln=False, scale_embed_grad=False): |
|
super(DecoderTransformer, self).__init__() |
|
self.dropout = dropout |
|
self.seq_length = seq_length * num_instrs |
|
self.embed_tokens = nn.Embedding(vocab_size, embed_size, padding_idx=vocab_size-1, |
|
scale_grad_by_freq=scale_embed_grad) |
|
nn.init.normal_(self.embed_tokens.weight, mean=0, std=embed_size ** -0.5) |
|
if pos_embeddings: |
|
self.embed_positions = PositionalEmbedding(1024, embed_size, 0, left_pad=False, learned=learned) |
|
else: |
|
self.embed_positions = None |
|
self.normalize_inputs = normalize_inputs |
|
if self.normalize_inputs: |
|
self.layer_norms_in = nn.ModuleList([LayerNorm(embed_size) for i in range(3)]) |
|
|
|
self.embed_scale = math.sqrt(embed_size) |
|
self.layers = nn.ModuleList([]) |
|
self.layers.extend([ |
|
TransformerDecoderLayer(embed_size, attention_nheads, dropout=dropout, normalize_before=normalize_before, |
|
last_ln=last_ln) |
|
for i in range(num_layers) |
|
]) |
|
|
|
self.linear = Linear(embed_size, vocab_size-1) |
|
|
|
def forward(self, ingr_features, ingr_mask, captions, img_features, incremental_state=None): |
|
|
|
if ingr_features is not None: |
|
ingr_features = ingr_features.permute(0, 2, 1) |
|
ingr_features = ingr_features.transpose(0, 1) |
|
if self.normalize_inputs: |
|
self.layer_norms_in[0](ingr_features) |
|
|
|
if img_features is not None: |
|
img_features = img_features.permute(0, 2, 1) |
|
img_features = img_features.transpose(0, 1) |
|
if self.normalize_inputs: |
|
self.layer_norms_in[1](img_features) |
|
|
|
if ingr_mask is not None: |
|
ingr_mask = (1-ingr_mask.squeeze(1)).byte() |
|
|
|
|
|
if self.embed_positions is not None: |
|
positions = self.embed_positions(captions, incremental_state=incremental_state) |
|
if incremental_state is not None: |
|
if self.embed_positions is not None: |
|
positions = positions[:, -1:] |
|
captions = captions[:, -1:] |
|
|
|
|
|
x = self.embed_scale * self.embed_tokens(captions) |
|
|
|
if self.embed_positions is not None: |
|
x += positions |
|
|
|
if self.normalize_inputs: |
|
x = self.layer_norms_in[2](x) |
|
|
|
x = F.dropout(x, p=self.dropout, training=self.training) |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
for p, layer in enumerate(self.layers): |
|
x = layer( |
|
x, |
|
ingr_features, |
|
ingr_mask, |
|
incremental_state, |
|
img_features |
|
) |
|
|
|
|
|
x = x.transpose(0, 1) |
|
|
|
x = self.linear(x) |
|
_, predicted = x.max(dim=-1) |
|
|
|
return x, predicted |
|
|
|
def sample(self, ingr_features, ingr_mask, greedy=True, temperature=1.0, beam=-1, |
|
img_features=None, first_token_value=0, |
|
replacement=True, last_token_value=0): |
|
|
|
incremental_state = {} |
|
|
|
|
|
if ingr_features is not None: |
|
fs = ingr_features.size(0) |
|
else: |
|
fs = img_features.size(0) |
|
|
|
if beam != -1: |
|
if fs == 1: |
|
return self.sample_beam(ingr_features, ingr_mask, beam, img_features, first_token_value, |
|
replacement, last_token_value) |
|
else: |
|
print ("Beam Search can only be used with batch size of 1. Running greedy or temperature sampling...") |
|
|
|
first_word = torch.ones(fs)*first_token_value |
|
|
|
first_word = first_word.to(device).long() |
|
sampled_ids = [first_word] |
|
logits = [] |
|
|
|
for i in range(self.seq_length): |
|
|
|
outputs, _ = self.forward(ingr_features, ingr_mask, torch.stack(sampled_ids, 1), |
|
img_features, incremental_state) |
|
outputs = outputs.squeeze(1) |
|
if not replacement: |
|
|
|
if i == 0: |
|
predicted_mask = torch.zeros(outputs.shape).float().to(device) |
|
else: |
|
|
|
batch_ind = [j for j in range(fs) if sampled_ids[i][j] != 0] |
|
sampled_ids_new = sampled_ids[i][batch_ind] |
|
predicted_mask[batch_ind, sampled_ids_new] = float('-inf') |
|
|
|
|
|
outputs += predicted_mask |
|
|
|
logits.append(outputs) |
|
if greedy: |
|
outputs_prob = torch.nn.functional.softmax(outputs, dim=-1) |
|
_, predicted = outputs_prob.max(1) |
|
predicted = predicted.detach() |
|
else: |
|
k = 10 |
|
outputs_prob = torch.div(outputs.squeeze(1), temperature) |
|
outputs_prob = torch.nn.functional.softmax(outputs_prob, dim=-1).data |
|
|
|
|
|
prob_prev_topk, indices = torch.topk(outputs_prob, k=k, dim=1) |
|
predicted = torch.multinomial(prob_prev_topk, 1).view(-1) |
|
predicted = torch.index_select(indices, dim=1, index=predicted)[:, 0].detach() |
|
|
|
sampled_ids.append(predicted) |
|
|
|
sampled_ids = torch.stack(sampled_ids[1:], 1) |
|
logits = torch.stack(logits, 1) |
|
|
|
return sampled_ids, logits |
|
|
|
def sample_beam(self, ingr_features, ingr_mask, beam=3, img_features=None, first_token_value=0, |
|
replacement=True, last_token_value=0): |
|
k = beam |
|
alpha = 0.0 |
|
|
|
if ingr_features is not None: |
|
fs = ingr_features.size(0) |
|
else: |
|
fs = img_features.size(0) |
|
first_word = torch.ones(fs)*first_token_value |
|
|
|
first_word = first_word.to(device).long() |
|
|
|
sequences = [[[first_word], 0, {}, False, 1]] |
|
finished = [] |
|
|
|
for i in range(self.seq_length): |
|
|
|
all_candidates = [] |
|
for rem in range(len(sequences)): |
|
incremental = sequences[rem][2] |
|
outputs, _ = self.forward(ingr_features, ingr_mask, torch.stack(sequences[rem][0], 1), |
|
img_features, incremental) |
|
outputs = outputs.squeeze(1) |
|
if not replacement: |
|
|
|
if i == 0: |
|
predicted_mask = torch.zeros(outputs.shape).float().to(device) |
|
else: |
|
|
|
batch_ind = [j for j in range(fs) if sequences[rem][0][i][j] != 0] |
|
sampled_ids_new = sequences[rem][0][i][batch_ind] |
|
predicted_mask[batch_ind, sampled_ids_new] = float('-inf') |
|
|
|
|
|
outputs += predicted_mask |
|
|
|
outputs_prob = torch.nn.functional.log_softmax(outputs, dim=-1) |
|
probs, indices = torch.topk(outputs_prob, beam) |
|
|
|
|
|
|
|
|
|
|
|
for bid in range(beam): |
|
tokens = sequences[rem][0] + [indices[:, bid]] |
|
score = sequences[rem][1] + probs[:, bid].squeeze().item() |
|
if indices[:,bid].item() == last_token_value: |
|
finished.append([tokens, score, None, True, sequences[rem][-1] + 1]) |
|
else: |
|
all_candidates.append([tokens, score, incremental, False, sequences[rem][-1] + 1]) |
|
|
|
|
|
ordered_all = sorted(all_candidates + finished, key=lambda tup: tup[1]/(np.power(tup[-1],alpha)), |
|
reverse=True)[:k] |
|
if all(el[-1] == True for el in ordered_all): |
|
all_candidates = [] |
|
|
|
|
|
ordered = sorted(all_candidates, key=lambda tup: tup[1]/(np.power(tup[-1],alpha)), reverse=True) |
|
|
|
sequences = ordered[:k] |
|
finished = sorted(finished, key=lambda tup: tup[1]/(np.power(tup[-1],alpha)), reverse=True)[:k] |
|
|
|
if len(finished) != 0: |
|
sampled_ids = torch.stack(finished[0][0][1:], 1) |
|
logits = finished[0][1] |
|
else: |
|
sampled_ids = torch.stack(sequences[0][0][1:], 1) |
|
logits = sequences[0][1] |
|
return sampled_ids, logits |
|
|
|
def max_positions(self): |
|
"""Maximum output length supported by the decoder.""" |
|
return self.embed_positions.max_positions() |
|
|
|
def upgrade_state_dict(self, state_dict): |
|
if isinstance(self.embed_positions, SinusoidalPositionalEmbedding): |
|
if 'decoder.embed_positions.weights' in state_dict: |
|
del state_dict['decoder.embed_positions.weights'] |
|
if 'decoder.embed_positions._float_tensor' not in state_dict: |
|
state_dict['decoder.embed_positions._float_tensor'] = torch.FloatTensor() |
|
return state_dict |
|
|
|
|
|
|
|
def Embedding(num_embeddings, embedding_dim, padding_idx, ): |
|
m = nn.Embedding(num_embeddings, embedding_dim, padding_idx=padding_idx) |
|
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) |
|
return m |
|
|
|
|
|
def LayerNorm(embedding_dim): |
|
m = nn.LayerNorm(embedding_dim) |
|
return m |
|
|
|
|
|
def Linear(in_features, out_features, bias=True): |
|
m = nn.Linear(in_features, out_features, bias) |
|
nn.init.xavier_uniform_(m.weight) |
|
nn.init.constant_(m.bias, 0.) |
|
return m |
|
|
|
|
|
def PositionalEmbedding(num_embeddings, embedding_dim, padding_idx, left_pad, learned=False): |
|
if learned: |
|
m = LearnedPositionalEmbedding(num_embeddings, embedding_dim, padding_idx, left_pad) |
|
nn.init.normal_(m.weight, mean=0, std=embedding_dim ** -0.5) |
|
nn.init.constant_(m.weight[padding_idx], 0) |
|
else: |
|
m = SinusoidalPositionalEmbedding(embedding_dim, padding_idx, left_pad, num_embeddings) |
|
return m |
|
|