Spaces:
Running
Running
import time | |
import logging | |
import gradio as gr | |
import cv2 | |
import os | |
from pathlib import Path | |
from huggingface_hub import hf_hub_download | |
from llama_cpp import Llama | |
from llama_cpp.llama_chat_format import Llava15ChatHandler | |
import base64 | |
import gc | |
import io | |
from contextlib import redirect_stdout, redirect_stderr | |
import sys, llama_cpp | |
# ---------------------------------------- | |
# Model configurations: per-size prefixes and repos | |
MODELS = { | |
"256M": { | |
"model_repo": "mradermacher/SmolVLM2-256M-Video-Instruct-GGUF", | |
"clip_repo": "ggml-org/SmolVLM2-256M-Video-Instruct-GGUF", | |
"model_prefix": "SmolVLM2-256M-Video-Instruct", | |
"clip_prefix": "mmproj-SmolVLM2-256M-Video-Instruct", | |
"model_variants": ["f16", "Q8_0", "Q2_K", "Q4_K_M"], | |
"clip_variants": ["Q8_0", "f16"], | |
"model_separator": ".", # Dot for SmolVLM model files | |
}, | |
"450M": { | |
"model_repo": "bartowski/LiquidAI_LFM2-VL-450M-GGUF", | |
"clip_repo": "bartowski/LiquidAI_LFM2-VL-450M-GGUF", | |
"model_prefix": "LiquidAI_LFM2-VL-450M", | |
"clip_prefix": "mmproj-LiquidAI_LFM2-VL-450M", | |
"model_variants": [ | |
"bf16", "Q4_0", "Q8_0", "IQ2_M", "IQ3_M", "IQ3_XS", "IQ3_XXS", | |
"IQ4_NL", "IQ4_XS", "Q2_K", "Q2_K_L", "Q3_K_L", "Q3_K_M", | |
"Q3_K_S", "Q3_K_XL", "Q4_1", "Q4_K_L", "Q4_K_M", "Q4_K_S", | |
"Q5_K_L", "Q5_K_M", "Q5_K_S", "Q6_K", "Q6_K_L" | |
], | |
"clip_variants": ["bf16", "f16"], | |
"model_separator": "-" | |
}, | |
"500M": { | |
"model_repo": "mradermacher/SmolVLM2-500M-Video-Instruct-GGUF", | |
"clip_repo": "ggml-org/SmolVLM2-500M-Video-Instruct-GGUF", | |
"model_prefix": "SmolVLM2-500M-Video-Instruct", | |
"clip_prefix": "mmproj-SmolVLM2-500M-Video-Instruct", | |
"model_variants": ["f16", "Q4_K_M", "Q8_0", "Q2_K"], | |
"clip_variants": ["Q8_0", "f16"], | |
"model_separator": ".", # Dot for SmolVLM model files | |
}, | |
"1B": { | |
"model_repo": "mradermacher/InternVL3_5-1B-GGUF", | |
"clip_repo": "mradermacher/InternVL3_5-1B-GGUF", | |
"model_prefix": "InternVL3_5-1B", | |
"clip_prefix": "InternVL3_5-1B.mmproj", # Includes hyphen to match file names | |
"model_variants": [ | |
"IQ4_XS", "Q2_K", "Q3_K_L", "Q3_K_M", "Q3_K_S", | |
"Q4_K_M", "Q4_K_S", "Q5_K_M", "Q5_K_S", "Q6_K", | |
"Q8_0", "f16" | |
], | |
"clip_variants": ["Q8_0", "f16"], | |
"model_separator": "." # Used for models; clips may need separate handling | |
}, | |
"2.2B": { | |
"model_repo": "mradermacher/SmolVLM2-2.2B-Instruct-GGUF", | |
"clip_repo": "ggml-org/SmolVLM2-2.2B-Instruct-GGUF", | |
"model_prefix": "SmolVLM2-2.2B-Instruct", | |
"clip_prefix": "mmproj-SmolVLM2-2.2B-Instruct", | |
"model_variants": ["f16", "Q4_K_M", "Q8_0", "Q2_K"], | |
"clip_variants": ["Q8_0", "f16"], | |
"model_separator": ".", # Dot for SmolVLM model files | |
}, | |
} | |
# ---------------------------------------- | |
# Cache for loaded model instance | |
model_cache = { | |
'size': None, | |
'model_file': None, | |
'clip_file': None, | |
'verbose': None, | |
'n_threads': None, | |
'llm': None | |
} | |
# Helper to download weights and return their cache paths | |
def ensure_weights(cfg, model_file, clip_file): | |
# Download model and clip into HF cache (writable, e.g. /tmp/.cache) | |
model_path = hf_hub_download(repo_id=cfg['model_repo'], filename=model_file) | |
clip_path = hf_hub_download(repo_id=cfg['clip_repo'], filename=clip_file) | |
return model_path, clip_path | |
# Custom chat handler | |
class SmolVLM2ChatHandler(Llava15ChatHandler): | |
CHAT_FORMAT = ( | |
"<|im_start|>" | |
"{% for message in messages %}" | |
"{{ message['role'] | capitalize }}" | |
"{% if message['role']=='user' and message['content'][0]['type']=='image_url' %}:" | |
"{% else %}: " | |
"{% endif %}" | |
"{% for content in message['content'] %}" | |
"{% if content['type']=='text' %}{{ content['text'] }}" | |
"{% elif content['type']=='image_url' %}" | |
"{% if content['image_url'] is string %}" | |
"{{ content['image_url'] }}\n" | |
"{% elif content['image_url'] is mapping %}" | |
"{{ content['image_url']['url'] }}\n" | |
"{% endif %}" | |
"{% endif %}" | |
"{% endfor %}" | |
"<end_of_utterance>\n" | |
"{% endfor %}" | |
"{% if add_generation_prompt %}Assistant:{% endif %}" | |
) | |
# Load and cache LLM (only on dropdown or verbose or thread change) | |
def update_llm(size, model_file, clip_file, verbose_mode, n_threads): | |
# Only reload if any of parameters changed | |
if (model_cache['size'], model_cache['model_file'], model_cache['clip_file'], model_cache['verbose'], model_cache['n_threads']) != (size, model_file, clip_file, verbose_mode, n_threads): | |
mf, cf = ensure_weights(MODELS[size], model_file, clip_file) | |
handler = SmolVLM2ChatHandler(clip_model_path=cf, verbose=verbose_mode) | |
llm = Llama( | |
model_path=mf, | |
chat_handler=handler, | |
n_ctx=512, | |
verbose=verbose_mode, | |
n_threads=n_threads, | |
use_mlock=True, | |
) | |
model_cache.update({'size': size, 'model_file': mf, 'clip_file': cf, 'verbose': verbose_mode, 'n_threads': n_threads, 'llm': llm}) | |
return None | |
# Build weight filename lists | |
def get_weight_files(size): | |
cfg = MODELS[size] | |
# Use model_separator for model files (default to '.' if not specified) | |
model_sep = cfg.get("model_separator", ".") | |
model_files = [f"{cfg['model_prefix']}{model_sep}{v}.gguf" for v in cfg['model_variants']] | |
# CLIP files always use dash separator | |
clip_files = [f"{cfg['clip_prefix']}-{v}.gguf" for v in cfg['clip_variants']] | |
return model_files, clip_files | |
# Caption using cached llm with real-time debug logs | |
def caption_frame(frame, size, model_file, clip_file, interval_ms, sys_prompt, usr_prompt, reset_clip, verbose_mode): | |
debug_msgs = [] | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Verbose mode: {verbose_mode}") | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] llama_cpp version: {llama_cpp.__version__}") | |
debug_msgs.append(f"[{timestamp}] Python version: {sys.version.split()[0]}") | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Received frame shape: {frame.shape}") | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Using model weights: {model_file}") | |
debug_msgs.append(f"[{timestamp}] Using CLIP weights: {clip_file}") | |
t_resize = time.time() | |
img = cv2.resize(frame.copy(), (384, 384)) | |
elapsed = (time.time() - t_resize) * 1000 | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Resized to 384x384 in {elapsed:.1f} ms") | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Sleeping for {interval_ms} ms") | |
time.sleep(interval_ms / 1000) | |
t_enc = time.time() | |
params = [int(cv2.IMWRITE_JPEG_QUALITY), 75] | |
success, jpeg = cv2.imencode('.jpg', img, params) | |
elapsed = (time.time() - t_enc) * 1000 | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] JPEG encode: success={success}, bytes={len(jpeg)} in {elapsed:.1f} ms") | |
uri = 'data:image/jpeg;base64,' + base64.b64encode(jpeg.tobytes()).decode() | |
messages = [ | |
{"role": "system", "content": sys_prompt}, | |
{"role": "user", "content": [ | |
{"type": "image_url", "image_url": uri}, | |
{"type": "text", "text": usr_prompt} | |
]} | |
] | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Sending prompt of length {len(usr_prompt)} to LLM") | |
if reset_clip: | |
model_cache['llm'].chat_handler = SmolVLM2ChatHandler(clip_model_path=clip_file, verbose=verbose_mode) | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Reinitialized chat handler") | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] CPU count = {os.cpu_count()}") | |
if model_cache.get('n_threads') is not None: | |
debug_msgs.append(f"[{timestamp}] llama_cpp n_threads = {model_cache['n_threads']}") | |
t_start = time.time() | |
buf = io.StringIO() | |
with redirect_stdout(buf), redirect_stderr(buf): | |
resp = model_cache['llm'].create_chat_completion( | |
messages=messages, | |
max_tokens=128, | |
temperature=0.1, | |
stop=["<end_of_utterance>"] | |
) | |
for line in buf.getvalue().splitlines(): | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] {line}") | |
elapsed = (time.time() - t_start) * 1000 | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] LLM response in {elapsed:.1f} ms") | |
content = resp.get('choices', [{}])[0].get('message', {}).get('content', '').strip() | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Caption length: {len(content)} chars") | |
gc.collect() | |
timestamp = time.strftime('%H:%M:%S') | |
debug_msgs.append(f"[{timestamp}] Garbage collected") | |
return content, "\n".join(debug_msgs) | |
# Gradio UI | |
def main(): | |
logging.basicConfig(level=logging.INFO) | |
default = '500M' | |
default_verbose = True | |
default_threads = 2 | |
mf, cf = get_weight_files(default) | |
with gr.Blocks() as demo: | |
gr.Markdown("## 🎥 Real-Time Camera Captioning with Debug Logs") | |
with gr.Row(): | |
size_dd = gr.Dropdown(list(MODELS.keys()), value=default, label='Model Size') | |
model_dd = gr.Dropdown(mf, value=mf[0], label='Decoder Weights') | |
clip_dd = gr.Dropdown(cf, value=cf[0], label='CLIP Weights') | |
verbose_cb= gr.Checkbox(value=default_verbose, label='Verbose Mode') | |
thread_dd = gr.Slider(minimum=1, maximum=os.cpu_count(), step=1, value=default_threads, label='CPU Threads (n_threads)') | |
def on_size_change(sz, verbose, n_threads): | |
mlist, clist = get_weight_files(sz) | |
update_llm(sz, mlist[0], clist[0], verbose, n_threads) | |
return gr.update(choices=mlist, value=mlist[0]), gr.update(choices=clist, value=clist[0]) | |
size_dd.change( | |
fn=on_size_change, | |
inputs=[size_dd, verbose_cb, thread_dd], | |
outputs=[model_dd, clip_dd] | |
) | |
model_dd.change( | |
fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads), | |
inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd], | |
outputs=[] | |
) | |
clip_dd.change( | |
fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads), | |
inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd], | |
outputs=[] | |
) | |
verbose_cb.change( | |
fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads), | |
inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd], | |
outputs=[] | |
) | |
thread_dd.change( | |
fn=lambda sz, mf, cf, verbose, n_threads: update_llm(sz, mf, cf, verbose, n_threads), | |
inputs=[size_dd, model_dd, clip_dd, verbose_cb, thread_dd], | |
outputs=[] | |
) | |
# Initial load | |
update_llm(default, mf[0], cf[0], default_verbose, default_threads) | |
interval = gr.Slider(100, 20000, step=100, value=3000, label='Interval (ms)') | |
sys_p = gr.Textbox(lines=2, value="Focus on key dramatic action…", label='System Prompt') | |
usr_p = gr.Textbox(lines=1, value="""Analyze the provided image and determine if any person is lying on the floor. | |
Output "YES" only if at least one person is clearly lying down on a floor or flat surface (e.g., fully reclined, supine, prone, or in a fetal position). | |
Output "NO" in all other cases, including if no person is present, if people are only standing, sitting, kneeling, crouching, or if the position is ambiguous (e.g., partially on the floor but not fully lying down). | |
Respond with exactly "YES" or "NO" — no additional text, explanations, or punctuation.""", label='User Prompt') | |
reset_clip = gr.Checkbox(value=False, label="Reset CLIP handler each frame") | |
cam = gr.Image(sources=['webcam'], streaming=True, label='Webcam Feed') | |
cap = gr.Textbox(interactive=False, label='Caption') | |
log_box = gr.Textbox(lines=8, interactive=False, label='Debug Log') | |
cam.stream( | |
fn=caption_frame, | |
inputs=[cam, size_dd, model_dd, clip_dd, interval, sys_p, usr_p, reset_clip, verbose_cb], | |
outputs=[cap, log_box], | |
time_limit=600, | |
) | |
demo.launch() | |
if __name__ == '__main__': | |
main() | |