Create README.md

#2
by mgbam - opened
Files changed (1) hide show
  1. README.md +312 -124
README.md CHANGED
@@ -15,179 +15,367 @@ tags:
15
  - gradio-6
16
  license: mit
17
  ---
 
 
18
 
19
- # OmniMind Orchestrator
 
20
 
21
- **Automated MCP Server Generation for Enterprise Workflows**
 
22
 
23
- ## Competition Entry
 
24
 
25
- **Track**: MCP in Action - Enterprise Category
26
- **Event**: MCP's 1st Birthday Hackathon (Anthropic & Gradio)
27
- **Tags**: `mcp-in-action-track-enterprise`
28
 
29
- ---
30
 
31
- ## What It Does
 
32
 
33
- OmniMind generates custom MCP (Model Context Protocol) servers from natural language descriptions. Instead of manually writing integration code, you describe what you need and the system generates the code, deploys it, and makes it available as a tool.
34
 
35
- **Example**:
36
- You say: *"Create a tool that checks if a domain is available for registration"*
37
- OmniMind writes the MCP server code, handles the API integration, and deploys it. Takes about 30 seconds.
38
 
39
- ---
40
 
41
- ## Key Features
42
 
43
- ### 1. Dynamic Code Generation
44
- - Generates complete MCP server implementations
45
- - Includes API integration, error handling, and documentation
46
- - Uses Claude Sonnet 4 for code synthesis
47
 
48
- ### 2. Multi-Model Routing
49
- - Routes tasks to appropriate models based on requirements
50
- - Claude Sonnet 4 for complex reasoning and code
51
- - Gemini 2.0 Flash for faster, simpler tasks
52
- - GPT-4o-mini for planning and routing decisions
53
- - Reduces API costs by ~90% vs using Claude for everything
54
 
55
- ### 3. Performance Optimization
56
- - Analyzes generated code for improvements
57
- - Suggests and applies optimizations automatically
58
- - Benchmarks show 10-25% performance gains on average
59
 
60
- ### 4. Voice Interface (Optional)
61
- - ElevenLabs integration for voice input/output
62
- - Useful for hands-free operation in field/manufacturing settings
63
 
64
- ### 5. Enterprise Knowledge Integration
65
- - LlamaIndex RAG for context from company documents
66
- - Generates more accurate code when given domain knowledge
67
 
68
- ---
69
 
70
- ## Technical Architecture
71
-
72
- ```
73
- User Request
74
- ↓
75
- Multi-Model Router (selects appropriate LLM)
76
- ↓
77
- Code Generation (creates MCP server)
78
- ↓
79
- Optional: Modal Deployment (serverless hosting)
80
- ↓
81
- Execution & Response
82
- ```
83
-
84
- **Stack**:
85
- - **Frontend**: Gradio 6.0
86
- - **LLMs**: Claude Sonnet 4, Gemini 2.0 Flash, GPT-4o-mini
87
- - **Deployment**: Modal (optional)
88
- - **RAG**: LlamaIndex
89
- - **Voice**: ElevenLabs (optional)
90
 
91
- ---
 
92
 
93
- ## Use Cases
94
 
95
- **API Integration**
96
- *"Create a tool that fetches real-time stock prices from Alpha Vantage"*
97
 
98
- **Data Processing**
99
- *"Build a tool that converts CSV files to JSON with schema validation"*
100
 
101
- **Web Scraping**
102
- *"Make a tool that extracts product prices from an e-commerce site"*
103
 
104
- **Internal Tools**
105
- *"Create a tool that queries our PostgreSQL database for customer orders"*
106
 
107
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
108
 
109
- ## Setup
110
 
111
- ### Required API Keys
112
- - Anthropic Claude: [Get key](https://console.anthropic.com/settings/keys)
113
- - OpenAI: [Get key](https://platform.openai.com/api-keys)
114
- - Google Gemini: [Get key](https://aistudio.google.com/app/apikey)
115
 
116
- ### Optional API Keys
117
- - Modal (for deployment): [Get token](https://modal.com/settings)
118
- - ElevenLabs (for voice): [Get key](https://elevenlabs.io/app/settings)
119
 
120
- Configure in Space Settings β†’ Variables and secrets:
121
- ```
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
122
  ANTHROPIC_API_KEY=sk-ant-xxx
123
  OPENAI_API_KEY=sk-xxx
124
  GOOGLE_API_KEY=xxx
125
- ```
 
 
 
 
126
 
127
- ---
128
 
129
- ## Cost Comparison
130
 
131
- **Traditional Development**:
132
- - Developer time: 4-8 hours @ $100/hr = $400-800
133
- - Testing & debugging: 2-4 hours = $200-400
134
- - **Total**: $600-1,200 per integration
135
 
136
- **With OmniMind**:
137
- - Generation time: 30 seconds
138
- - API cost: ~$0.05
139
- - **Total**: $0.05 per integration
140
 
141
- *Note: Still requires human review of generated code for production use.*
142
 
143
- ---
144
 
145
- ## Limitations & Honest Assessment
 
146
 
147
- **What works well**:
148
- - Generating standard API wrappers and data transformations
149
- - Creating simple automation tools
150
- - Rapid prototyping of integrations
151
 
152
- **What needs improvement**:
153
- - Complex business logic requires human review
154
- - Security-critical code should be manually audited
155
- - Performance optimization is hit-or-miss
156
- - No guarantee of correctness (LLM limitations apply)
157
 
158
- **This is a prototype**, not production-ready software. Use it for:
159
- - Prototyping
160
- - Internal tools
161
- - Non-critical automations
162
 
163
- Don't use it for:
164
- - Financial transactions
165
- - Healthcare/safety-critical systems
166
- - Anything where bugs could cause serious harm
167
 
168
- ---
169
 
170
- ## Sponsor Integrations
171
 
172
- This project uses:
173
- - **Anthropic Claude**: Code generation and reasoning
174
- - **Google Gemini**: Fast task routing and multimodal support
175
- - **OpenAI GPT-4**: Planning and decision-making
176
- - **Modal**: Optional serverless deployment
177
- - **LlamaIndex**: Enterprise knowledge retrieval
178
- - **ElevenLabs**: Optional voice interface
179
- - **Gradio 6**: User interface
180
 
181
- ---
182
 
183
- ## License
184
 
185
- MIT License - See LICENSE file for details
186
 
187
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
188
 
189
- ## Acknowledgments
 
 
190
 
191
- Thanks to Anthropic, Gradio, and HuggingFace for hosting this hackathon and providing the infrastructure to build this.
 
192
 
193
- Built for MCP's 1st Birthday Hackathon - November 2024
 
15
  - gradio-6
16
  license: mit
17
  ---
18
+ 🧠 OmniMind Orchestrator
19
+ Automated MCP Server Generation for Enterprise Workflows
20
 
21
+ OmniMind turns natural language descriptions into fully working MCP (Model Context Protocol) servers.
22
+ You describe the integration you want, and OmniMind designs, generates, and wires up the MCP server for you.
23
 
24
+ β€œCreate a tool that checks if a domain is available for registration”
25
+ β†’ OmniMind generates the MCP server, handles the API integration, and prepares it for deployment β€” in ~30 seconds.
26
 
27
+ 🎯 Competition Entry
28
+ Track: MCP in Action – Enterprise Category
29
 
30
+ Event: MCP’s 1st Birthday Hackathon (Anthropic & Gradio)
 
 
31
 
32
+ Tag: mcp-in-action-track-enterprise
33
 
34
+ πŸŽ₯ Demo
35
+ Loom Walkthrough: Watch the OmniMind Orchestrator demo
36
 
37
+ (Shows real-time generation of an MCP server for live crypto data and other enterprise-style workflows.)
38
 
39
+ 🌐 Problem & Vision
40
+ Enterprise teams increasingly want MCP-native tools to connect LLMs to:
 
41
 
42
+ internal APIs,
43
 
44
+ third-party SaaS,
45
 
46
+ data warehouses and transactional systems.
 
 
 
47
 
48
+ But today, every integration still looks like a mini engineering project:
 
 
 
 
 
49
 
50
+ custom boilerplate,
 
 
 
51
 
52
+ careful error handling,
 
 
53
 
54
+ model context wiring,
 
 
55
 
56
+ deployment plumbing.
57
 
58
+ OmniMind Orchestrator aims to compress that effort from hours β†’ seconds, while still keeping a human in the loop for review and security.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
59
 
60
+ βš™οΈ What OmniMind Does
61
+ OmniMind takes a plain-language spec like:
62
 
63
+ β€œCreate a tool that fetches real-time stock prices from Alpha Vantage and returns OHLC data for a given symbol.”
64
 
65
+ and automatically:
 
66
 
67
+ Plans the MCP server structure (tools, parameters, schema).
 
68
 
69
+ Selects models for planning, codegen, and optimization via a multi-model router.
 
70
 
71
+ Generates code for a fully functional MCP server.
 
72
 
73
+ Integrates APIs (including auth, error handling, and basic validation).
74
+
75
+ Optionally deploys via Modal for serverless hosting.
76
+
77
+ Exposes the server as an MCP tool ready to be used by compatible clients.
78
+
79
+ πŸ”‘ Key Features
80
+ 1. Dynamic MCP Code Generation
81
+ Generates complete MCP server implementations from natural language.
82
+
83
+ Handles:
84
+
85
+ API calls and integration logic
86
+
87
+ basic error handling and retries
88
+
89
+ inline documentation & comments
90
+
91
+ Uses Claude Sonnet 4 for high-quality code synthesis and reasoning-heavy steps.
92
+
93
+ 2. Multi-Model Routing for Cost & Latency
94
+ OmniMind doesn’t throw every request at the biggest model. Instead, it uses a router to pick the right model for the job:
95
+
96
+ Claude Sonnet 4 – complex reasoning, core code generation, refactors.
97
+
98
+ Gemini 2.0 Flash – fast responses for simple transforms and scaffolding.
99
+
100
+ GPT-4o-mini – lightweight planning, routing, and glue logic.
101
+
102
+ This strategy:
103
+
104
+ Offloads simple subtasks to cheaper/faster models.
105
+
106
+ Reserves premium models for only the hardest parts.
107
+
108
+ Cuts API costs by ~90% compared to β€œClaude everywhere” while maintaining quality.
109
+
110
+ 3. Performance-Aware Code Generation
111
+ Once a server is generated, OmniMind can:
112
+
113
+ Analyze the code for obvious performance issues.
114
+
115
+ Suggest improved patterns (e.g. batching, caching, connection reuse).
116
+
117
+ Regenerate sections of code to apply optimizations.
118
+
119
+ Benchmarks on sample integrations show 10–25% performance gains on average for optimized versions, especially on I/O-bound workflows.
120
+
121
+ 4. Optional Voice Interface
122
+ For hands-free or field environments (manufacturing, operations, etc.):
123
+
124
+ ElevenLabs integration for:
125
+
126
+ Voice input β†’ text β†’ MCP codegen request.
127
+
128
+ Text output β†’ synthesized speech.
129
+
130
+ Makes it possible to say:
131
+
132
+ β€œCreate a tool that checks inventory levels in our warehouse API”
133
+ and have the system handle it end-to-end.
134
+
135
+ 5. Enterprise Knowledge Integration (RAG)
136
+ Enterprise integrations usually depend on tribal knowledge:
137
+
138
+ internal API conventions,
139
+
140
+ auth patterns,
141
+
142
+ environment-specific edge cases.
143
+
144
+ OmniMind uses LlamaIndex for RAG over:
145
+
146
+ internal documentation,
147
+
148
+ API specs,
149
+
150
+ runbooks and design docs.
151
+
152
+ This allows it to:
153
+
154
+ Ground code generation in company-specific context.
155
+
156
+ Reduce hallucinations about endpoints and parameters.
157
+
158
+ Generate more accurate, domain-aligned integrations.
159
+
160
+ 🧱 System Overview
161
+ text
162
+ Copy code
163
+ User (text or voice)
164
+ β”‚
165
+ β–Ό
166
+ Multi-Model Router ──► chooses Claude / Gemini / GPT-4o-mini
167
+ β”‚
168
+ β–Ό
169
+ Planning & Spec Expansion
170
+ β”‚
171
+ β–Ό
172
+ Code Generation Engine
173
+ β”‚
174
+ β–Ό
175
+ (Optional) Performance Pass
176
+ β”‚
177
+ β–Ό
178
+ (Optional) Modal Deployment
179
+ β”‚
180
+ β–Ό
181
+ MCP Server Available as Tool
182
+ Core layers:
183
+
184
+ UX Layer: Gradio 6 app (Hugging Face Space) in app.py.
185
+
186
+ Routing Layer: Decides which LLM handles which part of the workflow.
187
+
188
+ Codegen Layer: Synthesizes MCP server code from natural language + context.
189
+
190
+ Knowledge Layer (RAG): Pulls enterprise docs via LlamaIndex.
191
+
192
+ Deployment Layer (optional): Wraps servers for deployment on Modal.
193
+
194
+ Voice Layer (optional): ElevenLabs for speech I/O.
195
+
196
+ πŸ’Ό Example Use Cases
197
+ 1. API Integration
198
+ β€œCreate a tool that fetches real-time stock prices from Alpha Vantage.”
199
+
200
+ OmniMind:
201
+
202
+ Generates MCP tools that:
203
+
204
+ accept ticker symbol and interval,
205
+
206
+ call Alpha Vantage,
207
 
208
+ normalize and return the data in MCP-friendly schemas.
209
 
210
+ 2. Data Processing & Transformation
211
+ β€œBuild a tool that converts CSV files to JSON with schema validation.”
 
 
212
 
213
+ OmniMind:
 
 
214
 
215
+ Designs tool parameters (file_path, schema, etc.).
216
+
217
+ Generates code for:
218
+
219
+ reading CSV,
220
+
221
+ validating against a simple schema,
222
+
223
+ returning JSON with validation errors if any.
224
+
225
+ 3. Web Scraping
226
+ β€œMake a tool that extracts product prices from an e-commerce site.”
227
+
228
+ OmniMind:
229
+
230
+ Generates scraping logic (using a library you specify or generic requests/HTML parsing).
231
+
232
+ Handles user-specified:
233
+
234
+ base URL,
235
+
236
+ CSS selectors / patterns,
237
+
238
+ pagination options.
239
+
240
+ (Subject to the target site’s ToS and legal constraints β€” still needs human review.)
241
+
242
+ 4. Internal Enterprise Tools
243
+ β€œCreate a tool that queries our PostgreSQL database for customer orders.”
244
+
245
+ OmniMind:
246
+
247
+ Generates code to:
248
+
249
+ connect to Postgres with environment variables,
250
+
251
+ execute safe parameterized queries,
252
+
253
+ return summarized results.
254
+
255
+ This is where LlamaIndex + internal docs really matter (e.g. schema names, auth patterns).
256
+
257
+ 🧰 Tech Stack
258
+ Frontend
259
+
260
+ Gradio 6.0 – main orchestrator UI (hosts on Hugging Face Spaces).
261
+
262
+ LLMs
263
+
264
+ Anthropic Claude Sonnet 4 – deep reasoning and high-quality codegen.
265
+
266
+ Google Gemini 2.0 Flash – fast inference for simpler subtasks.
267
+
268
+ OpenAI GPT-4o-mini – planning, routing, and smaller logic steps.
269
+
270
+ Infrastructure & Extras
271
+
272
+ Modal – optional serverless deployment of generated MCP servers.
273
+
274
+ LlamaIndex – retrieval-augmented generation over enterprise docs.
275
+
276
+ ElevenLabs – optional voice in/out.
277
+
278
+ MCP – target protocol for the generated servers.
279
+
280
+ πŸ” Setup
281
+ Required API Keys
282
+ Anthropic Claude – Get key
283
+
284
+ OpenAI – Get key
285
+
286
+ Google Gemini – Get key
287
+
288
+ Optional Keys
289
+ Modal (deployment) – Get token
290
+
291
+ ElevenLabs (voice) – Get key
292
+
293
+ On Hugging Face Spaces, configure them under
294
+ Settings β†’ Variables and secrets:
295
+
296
+ bash
297
+ Copy code
298
  ANTHROPIC_API_KEY=sk-ant-xxx
299
  OPENAI_API_KEY=sk-xxx
300
  GOOGLE_API_KEY=xxx
301
+ MODAL_TOKEN=xxx # optional
302
+ ELEVENLABS_API_KEY=xxx # optional
303
+ πŸ’Έ Cost Comparison (Back-of-the-Envelope)
304
+ Traditional Integration
305
+ Developer time: 4–8 hours @ ~$100/hr β†’ $400–800
306
 
307
+ Testing & debugging: 2–4 hours β†’ $200–400
308
 
309
+ Total: β‰ˆ $600–1,200 per integration
310
 
311
+ With OmniMind Orchestrator
312
+ Code generation: β‰ˆ 30 seconds
 
 
313
 
314
+ API cost (multi-model routed): β‰ˆ $0.05
 
 
 
315
 
316
+ Total: β‰ˆ $0.05 per integration (plus human review time)
317
 
318
+ ⚠️ Important: OmniMind does not remove the need for human review. Generated code for production systems should always be audited.
319
 
320
+ 🚧 Limitations & Honest Assessment
321
+ Works well for:
322
 
323
+ Standard API wrappers and adapters.
 
 
 
324
 
325
+ Data transformation tools and utility MCP servers.
 
 
 
 
326
 
327
+ Rapid prototyping and internal tooling.
 
 
 
328
 
329
+ Exploring what MCP-based automation could look like in your stack.
 
 
 
330
 
331
+ Still needs improvement / human oversight for:
332
 
333
+ Complex, multi-step business logic.
334
 
335
+ Security-sensitive operations (auth, permissions, financial operations).
 
 
 
 
 
 
 
336
 
337
+ Advanced performance tuning beyond obvious optimizations.
338
 
339
+ Fully correct behavior across all edge cases (LLM limitations still apply).
340
 
341
+ Intended usage:
342
 
343
+ βœ… Prototyping
344
+
345
+ βœ… Internal tools
346
+
347
+ βœ… Non-critical automations
348
+
349
+ Not recommended for:
350
+
351
+ ❌ Financial transactions and trading logic
352
+
353
+ ❌ Healthcare / safety-critical systems
354
+
355
+ ❌ Scenarios where bugs could cause serious harm or large financial loss
356
+
357
+ 🀝 Sponsor & Partner Integrations
358
+ This project showcases integrations with:
359
+
360
+ Anthropic Claude – core code generation and reasoning.
361
+
362
+ Google Gemini – fast routing and multimodal support.
363
+
364
+ OpenAI GPT-4 – planning and decision logic.
365
+
366
+ Modal – optional serverless deployment target.
367
+
368
+ LlamaIndex – enterprise knowledge retrieval.
369
+
370
+ ElevenLabs – voice interface.
371
+
372
+ Gradio 6 – user-facing interface and hackathon demo environment.
373
 
374
+ πŸ“œ License
375
+ This project is licensed under the MIT License.
376
+ See the LICENSE file for full details.
377
 
378
+ πŸ™ Acknowledgments
379
+ Thanks to Anthropic, Gradio, and Hugging Face for organizing MCP’s 1st Birthday Hackathon and providing the infrastructure to build and demo this project.
380
 
381
+ Built for MCP’s 1st Birthday Hackathon – November 2024.