Spaces:
Running
Running
File size: 18,399 Bytes
c60cf73 d2c3513 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
# llmEngine.py
# IMPROVED: Multi-provider LLM engine with CACHING to prevent reloading
# This version fixes the critical issue where LocalLLM was reloading on every call
# Features:
# - Provider caching (models stay in memory)
# - Unified OpenAI-style chat() API
# - Providers: OpenAI, Anthropic, HuggingFace, Nebius, SambaNova, Local (transformers)
# - Automatic fallback to local model on errors
# - JSON-based credit tracking
from dotenv import load_dotenv
import json
import os
import traceback
from typing import List, Dict, Optional
load_dotenv()
hf_token = os.getenv('HUGGINGFACE_TOKEN')
if hf_token:
from huggingface_hub import login
try:
login(token=hf_token)
# logger.info("[HF] Logged in")
except Exception as e:
# logger.warning(f"[HF] Login failed: {e}")
pass
###########################################################
# SIMPLE JSON CREDIT STORE
###########################################################
CREDITS_DB_PATH = "credits.json"
DEFAULT_CREDITS = {
"openai": 25,
"anthropic": 25000,
"huggingface": 25,
"nebius": 50,
"modal": 250,
"blaxel": 250,
"elevenlabs": 44,
"sambanova": 25,
"local": 9999999
}
def load_credits():
if not os.path.exists(CREDITS_DB_PATH):
with open(CREDITS_DB_PATH, "w") as f:
json.dump(DEFAULT_CREDITS, f)
return DEFAULT_CREDITS.copy()
with open(CREDITS_DB_PATH, "r") as f:
return json.load(f)
def save_credits(data):
with open(CREDITS_DB_PATH, "w") as f:
json.dump(data, f, indent=2)
###########################################################
# BASE PROVIDER INTERFACE
###########################################################
class BaseProvider:
def chat(self, model: str, messages: List[Dict], **kwargs) -> str:
raise NotImplementedError
###########################################################
# PROVIDER: OPENAI
###########################################################
try:
from openai import OpenAI
except Exception:
OpenAI = None
class OpenAIProvider(BaseProvider):
def __init__(self):
if OpenAI is None:
raise RuntimeError("openai library not installed or not importable")
self.client = OpenAI(api_key=os.getenv("OPENAI_API_KEY", ""))
def chat(self, model, messages, **kwargs):
try:
from openai.types.chat import (
ChatCompletionUserMessageParam,
ChatCompletionAssistantMessageParam,
ChatCompletionSystemMessageParam,
)
except Exception:
ChatCompletionUserMessageParam = dict
ChatCompletionAssistantMessageParam = dict
ChatCompletionSystemMessageParam = dict
if not isinstance(messages, list) or not all(isinstance(m, dict) for m in messages):
raise TypeError("messages must be a list of dicts with 'role' and 'content'")
safe_messages = []
for m in messages:
role = str(m.get("role", "user"))
content = str(m.get("content", ""))
if role == "user":
safe_messages.append(ChatCompletionUserMessageParam(role="user", content=content))
elif role == "assistant":
safe_messages.append(ChatCompletionAssistantMessageParam(role="assistant", content=content))
elif role == "system":
safe_messages.append(ChatCompletionSystemMessageParam(role="system", content=content))
else:
safe_messages.append({"role": role, "content": content})
response = self.client.chat.completions.create(model=model, messages=safe_messages)
try:
return response.choices[0].message.content
except Exception:
return str(response)
###########################################################
# PROVIDER: ANTHROPIC
###########################################################
try:
from anthropic import Anthropic
except Exception:
Anthropic = None
class AnthropicProvider(BaseProvider):
def __init__(self):
if Anthropic is None:
raise RuntimeError("anthropic library not installed or not importable")
self.client = Anthropic(api_key=os.getenv("ANTHROPIC_API_KEY", ""))
def chat(self, model, messages, **kwargs):
if not isinstance(messages, list) or not all(isinstance(m, dict) for m in messages):
raise TypeError("messages must be a list of dicts with 'role' and 'content'")
user_text = "\n".join([m.get("content", "") for m in messages if m.get("role") == "user"])
reply = self.client.messages.create(
model=model,
max_tokens=300,
messages=[{"role": "user", "content": user_text}]
)
if hasattr(reply, "content"):
content = reply.content
if isinstance(content, list) and content and len(content) > 0:
block = content[0]
if hasattr(block, "text"):
return getattr(block, "text", str(block))
elif isinstance(block, dict) and "text" in block:
return block["text"]
else:
return str(block)
elif isinstance(content, str):
return content
if isinstance(reply, dict) and "completion" in reply:
return reply["completion"]
return str(reply)
###########################################################
# PROVIDER: HUGGINGFACE INFERENCE API
###########################################################
import requests
class HuggingFaceProvider(BaseProvider):
def __init__(self):
self.key = os.getenv("HF_API_KEY", "")
def chat(self, model, messages, **kwargs):
if not messages:
raise ValueError("messages is empty")
text = messages[-1].get("content", "")
r = requests.post(
f"https://api-inference.huggingface.co/models/{model}",
headers={"Authorization": f"Bearer {self.key}"} if self.key else {},
json={"inputs": text},
timeout=60
)
r.raise_for_status()
out = r.json()
if isinstance(out, list) and out and isinstance(out[0], dict):
return out[0].get("generated_text") or str(out[0])
return str(out)
###########################################################
# PROVIDER: NEBIUS (OpenAI-compatible)
###########################################################
class NebiusProvider(BaseProvider):
def __init__(self):
if OpenAI is None:
raise RuntimeError("openai library not installed; Nebius wrapper expects OpenAI-compatible client")
self.client = OpenAI(
api_key=os.getenv("NEBIUS_API_KEY", ""),
base_url=os.getenv("NEBIUS_BASE_URL", "https://api.studio.nebius.ai/v1")
)
def chat(self, model, messages, **kwargs):
try:
from openai.types.chat import (
ChatCompletionUserMessageParam,
ChatCompletionAssistantMessageParam,
ChatCompletionSystemMessageParam,
)
except Exception:
ChatCompletionUserMessageParam = dict
ChatCompletionAssistantMessageParam = dict
ChatCompletionSystemMessageParam = dict
safe_messages = []
for m in messages:
role = str(m.get("role", "user"))
content = str(m.get("content", ""))
if role == "user":
safe_messages.append(ChatCompletionUserMessageParam(role="user", content=content))
elif role == "assistant":
safe_messages.append(ChatCompletionAssistantMessageParam(role="assistant", content=content))
elif role == "system":
safe_messages.append(ChatCompletionSystemMessageParam(role="system", content=content))
else:
safe_messages.append({"role": role, "content": content})
r = self.client.chat.completions.create(model=model, messages=safe_messages)
try:
return r.choices[0].message.content
except Exception:
return str(r)
###########################################################
# PROVIDER: SAMBANOVA (OpenAI-compatible)
###########################################################
class SambaNovaProvider(BaseProvider):
def __init__(self):
if OpenAI is None:
raise RuntimeError("openai library not installed; SambaNova wrapper expects OpenAI-compatible client")
self.client = OpenAI(
api_key=os.getenv("SAMBANOVA_API_KEY", ""),
base_url=os.getenv("SAMBANOVA_BASE_URL", "https://api.sambanova.ai/v1")
)
def chat(self, model, messages, **kwargs):
try:
from openai.types.chat import (
ChatCompletionUserMessageParam,
ChatCompletionAssistantMessageParam,
ChatCompletionSystemMessageParam,
)
except Exception:
ChatCompletionUserMessageParam = dict
ChatCompletionAssistantMessageParam = dict
ChatCompletionSystemMessageParam = dict
safe_messages = []
for m in messages:
role = str(m.get("role", "user"))
content = str(m.get("content", ""))
if role == "user":
safe_messages.append(ChatCompletionUserMessageParam(role="user", content=content))
elif role == "assistant":
safe_messages.append(ChatCompletionAssistantMessageParam(role="assistant", content=content))
elif role == "system":
safe_messages.append(ChatCompletionSystemMessageParam(role="system", content=content))
else:
safe_messages.append({"role": role, "content": content})
r = self.client.chat.completions.create(model=model, messages=safe_messages)
try:
return r.choices[0].message.content
except Exception:
return str(r)
###########################################################
# PROVIDER: LOCAL TRANSFORMERS (CACHED)
###########################################################
try:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
TRANSFORMERS_AVAILABLE = True
except Exception:
TRANSFORMERS_AVAILABLE = False
class LocalLLMProvider(BaseProvider):
"""
Local LLM provider with caching - MODEL LOADS ONCE
"""
def __init__(self, model_name: str = "meta-llama/Llama-3.2-3B-Instruct"):
print(f"[LocalLLM] Initializing with model: {model_name}")
self.model_name = os.getenv("LOCAL_MODEL", model_name)
self.model = None
self.tokenizer = None
self.device = None
self._initialize_model()
def _initialize_model(self):
"""Initialize model ONCE - this is called only during __init__"""
try:
from transformers import AutoTokenizer, AutoModelForCausalLM
import torch
print(f"[LocalLLM] Loading model {self.model_name}...")
self.device = "cuda" if torch.cuda.is_available() else "cpu"
print(f"[LocalLLM] Using device: {self.device}")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name, trust_remote_code=True)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
device_map="auto" if self.device == "cuda" else None,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
trust_remote_code=True
)
print(f"[LocalLLM] β
Model loaded successfully!")
except Exception as e:
print(f"[LocalLLM] β Failed to load model: {e}")
self.model = None
traceback.print_exc()
def chat(self, model, messages, **kwargs):
"""
Generate response - MODEL ALREADY LOADED
"""
if self.model is None or self.tokenizer is None:
return "Error: Model or tokenizer not loaded."
# Extract text from messages
text = messages[-1]["content"] if isinstance(messages[-1], dict) and "content" in messages[-1] else str(messages[-1])
max_tokens = kwargs.get("max_tokens", 128)
temperature = kwargs.get("temperature", 0.7)
import torch
# Tokenize
inputs = self.tokenizer(
text,
return_tensors="pt",
padding=True,
truncation=True,
max_length=2048
).to(self.device)
# Generate (model is already loaded, just inference)
with torch.no_grad():
outputs = self.model.generate(
**inputs,
max_new_tokens=max_tokens,
temperature=temperature,
top_p=0.9,
do_sample=temperature > 0,
pad_token_id=self.tokenizer.eos_token_id if self.tokenizer and hasattr(self.tokenizer, 'eos_token_id') else None,
eos_token_id=self.tokenizer.eos_token_id if self.tokenizer and hasattr(self.tokenizer, 'eos_token_id') else None
)
# Decode
response = self.tokenizer.decode(
outputs[0][inputs['input_ids'].shape[1]:],
skip_special_tokens=True
).strip() if self.tokenizer else "Error: Tokenizer not loaded."
return response
###########################################################
# PROVIDER CACHE - CRITICAL FIX
###########################################################
class ProviderCache:
"""
Cache provider instances to avoid reloading models
This is the KEY fix - providers are created ONCE and reused
"""
_cache = {}
@classmethod
def get_provider(cls, provider_name: str) -> BaseProvider:
"""Get or create cached provider instance"""
if provider_name not in cls._cache:
print(f"[ProviderCache] Creating new instance of {provider_name}")
provider_class = ProviderFactory.providers[provider_name]
cls._cache[provider_name] = provider_class()
else:
print(f"[ProviderCache] Using cached instance of {provider_name}")
return cls._cache[provider_name]
@classmethod
def clear_cache(cls):
"""Clear all cached providers (useful for debugging)"""
cls._cache.clear()
print("[ProviderCache] Cache cleared")
###########################################################
# PROVIDER FACTORY (IMPROVED WITH CACHING)
###########################################################
class ProviderFactory:
providers = {
"openai": OpenAIProvider,
"anthropic": AnthropicProvider,
"huggingface": HuggingFaceProvider,
"nebius": NebiusProvider,
"sambanova": SambaNovaProvider,
"local": LocalLLMProvider,
}
@staticmethod
def get(provider_name: str) -> BaseProvider:
"""
Get provider instance - NOW USES CACHING
This prevents reloading the model on every call
"""
provider_name = provider_name.lower()
if provider_name not in ProviderFactory.providers:
raise ValueError(f"Unknown provider: {provider_name}")
# USE CACHE instead of creating new instance every time
return ProviderCache.get_provider(provider_name)
###########################################################
# MAIN ENGINE WITH FALLBACK + OPENAI-STYLE API
###########################################################
class LLMEngine:
def __init__(self):
self.credits = load_credits()
def deduct(self, provider, amount):
if provider not in self.credits:
self.credits[provider] = 0
self.credits[provider] = max(0, self.credits[provider] - amount)
save_credits(self.credits)
def chat(self, provider: str, model: str, messages: List[Dict], fallback: bool = True, **kwargs):
"""
Main chat method - providers are now cached
"""
try:
p = ProviderFactory.get(provider) # This now returns cached instance
result = p.chat(model=model, messages=messages, **kwargs)
try:
self.deduct(provider, 0.001)
except Exception:
pass
return result
except Exception as exc:
print(f"β Provider '{provider}' failed β fallback activated: {exc}")
traceback.print_exc()
if fallback:
try:
lp = ProviderFactory.get("local") # Gets cached local provider
return lp.chat(model="local", messages=messages, **kwargs)
except Exception as le:
print("Fallback to local provider failed:", le)
traceback.print_exc()
raise
raise
###########################################################
# EXAMPLES + SIMPLE TESTS
###########################################################
def main():
engine = LLMEngine()
print("=== Testing Provider Caching ===")
print("\nFirst call (should load model):")
result1 = engine.chat(
provider="local",
model="meta-llama/Llama-3.2-3B-Instruct",
messages=[{"role": "user", "content": "Say hello"}]
)
print(f"Response: {result1[:100]}")
print("\nSecond call (should use cached model - NO RELOAD):")
result2 = engine.chat(
provider="local",
model="meta-llama/Llama-3.2-3B-Instruct",
messages=[{"role": "user", "content": "Say goodbye"}]
)
print(f"Response: {result2[:100]}")
print("\nβ
If you didn't see 'Loading model' twice, caching works!")
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--test", action="store_true", help="run examples and simple tests")
args = parser.parse_args()
if args.test:
main()
else:
main() |