Flux_Prompt_Optimizer / processor.py
Malaji71's picture
Create processor.py
05bb27a verified
"""
Main processing logic for FLUX Prompt Optimizer
Handles image analysis, prompt optimization, and scoring
"""
import logging
import time
from typing import Tuple, Dict, Any, Optional
from PIL import Image
from datetime import datetime
from config import APP_CONFIG, PROCESSING_CONFIG, get_device_config
from utils import (
optimize_image, validate_image, apply_flux_rules,
calculate_prompt_score, get_score_grade, format_analysis_report,
clean_memory, safe_execute
)
from models import analyze_image
logger = logging.getLogger(__name__)
class FluxOptimizer:
"""Main optimizer class for FLUX prompt generation"""
def __init__(self, model_name: str = None):
self.model_name = model_name
self.device_config = get_device_config()
self.processing_stats = {
"total_processed": 0,
"successful_analyses": 0,
"failed_analyses": 0,
"average_processing_time": 0.0
}
logger.info(f"FluxOptimizer initialized - Device: {self.device_config['device']}")
def process_image(self, image: Any) -> Tuple[str, str, str, Dict[str, Any]]:
"""
Complete image processing pipeline
Args:
image: Input image (PIL, numpy array, or file path)
Returns:
Tuple of (optimized_prompt, analysis_report, score_html, metadata)
"""
start_time = time.time()
metadata = {
"processing_time": 0.0,
"success": False,
"model_used": self.model_name or "auto",
"device": self.device_config["device"],
"error": None
}
try:
# Step 1: Validate and optimize input image
logger.info("Starting image processing pipeline...")
if not validate_image(image):
error_msg = "Invalid or unsupported image format"
logger.error(error_msg)
return self._create_error_response(error_msg, metadata)
optimized_image = optimize_image(image)
if optimized_image is None:
error_msg = "Image optimization failed"
logger.error(error_msg)
return self._create_error_response(error_msg, metadata)
logger.info(f"Image optimized to size: {optimized_image.size}")
# Step 2: Analyze image with selected model
logger.info("Running image analysis...")
analysis_success, analysis_result = safe_execute(
analyze_image,
optimized_image,
self.model_name
)
if not analysis_success:
error_msg = f"Image analysis failed: {analysis_result}"
logger.error(error_msg)
return self._create_error_response(error_msg, metadata)
description, analysis_metadata = analysis_result
logger.info(f"Analysis complete: {len(description)} characters")
# Step 3: Apply FLUX optimization rules
logger.info("Applying FLUX optimization rules...")
optimized_prompt = apply_flux_rules(description)
if not optimized_prompt:
optimized_prompt = "A professional photograph"
logger.warning("Empty prompt after optimization, using fallback")
# Step 4: Calculate quality score
logger.info("Calculating quality score...")
score, score_breakdown = calculate_prompt_score(optimized_prompt, analysis_metadata)
grade_info = get_score_grade(score)
# Step 5: Generate analysis report
processing_time = time.time() - start_time
metadata.update({
"processing_time": processing_time,
"success": True,
"prompt_length": len(optimized_prompt),
"score": score,
"grade": grade_info["grade"],
"analysis_metadata": analysis_metadata
})
analysis_report = self._generate_detailed_report(
optimized_prompt, analysis_metadata, score,
score_breakdown, processing_time
)
# Step 6: Create score HTML
score_html = self._generate_score_html(score, grade_info)
# Update statistics
self._update_stats(processing_time, True)
logger.info(f"Processing complete - Score: {score}, Time: {processing_time:.1f}s")
return optimized_prompt, analysis_report, score_html, metadata
except Exception as e:
processing_time = time.time() - start_time
error_msg = f"Unexpected error in processing pipeline: {str(e)}"
logger.error(error_msg, exc_info=True)
metadata.update({
"processing_time": processing_time,
"error": error_msg
})
self._update_stats(processing_time, False)
return self._create_error_response(error_msg, metadata)
finally:
# Always clean up memory
clean_memory()
def _create_error_response(self, error_msg: str, metadata: Dict[str, Any]) -> Tuple[str, str, str, Dict[str, Any]]:
"""Create standardized error response"""
error_prompt = "❌ Processing failed"
error_report = f"**Error:** {error_msg}\n\nPlease try with a different image or check the logs for more details."
error_html = self._generate_score_html(0, get_score_grade(0))
metadata["success"] = False
metadata["error"] = error_msg
return error_prompt, error_report, error_html, metadata
def _generate_detailed_report(self, prompt: str, analysis_metadata: Dict[str, Any],
score: int, breakdown: Dict[str, int],
processing_time: float) -> str:
"""Generate comprehensive analysis report"""
model_used = analysis_metadata.get("model", "Unknown")
device_used = analysis_metadata.get("device", self.device_config["device"])
confidence = analysis_metadata.get("confidence", 0.0)
# Device status emoji
device_emoji = "⚡" if device_used == "cuda" else "💻"
report = f"""**Analysis Complete**
**Processing:** {device_emoji} {device_used.upper()}{processing_time:.1f}s • Model: {model_used}
**Score:** {score}/100 • Confidence: {confidence:.0%}
**Score Breakdown:**
• **Prompt Quality:** {breakdown.get('prompt_quality', 0)}/30 - Content detail and description
• **Technical Details:** {breakdown.get('technical_details', 0)}/25 - Camera and photography settings
• **Artistic Value:** {breakdown.get('artistic_value', 0)}/25 - Creative elements
• **FLUX Optimization:** {breakdown.get('flux_optimization', 0)}/20 - Platform optimizations
**Analysis Summary:**
**Description Length:** {len(prompt)} characters
**Model Used:** {analysis_metadata.get('model', 'N/A')}
**Applied Optimizations:**
✅ Camera settings added
✅ Lighting configuration applied
✅ Technical parameters optimized
✅ FLUX rules implemented
✅ Content cleaned and enhanced
**Performance:**
• **Processing Time:** {processing_time:.1f}s
• **Device:** {device_used.upper()}
• **Model Confidence:** {confidence:.0%}
**Frame 0 Laboratory for MIA**"""
return report
def _generate_score_html(self, score: int, grade_info: Dict[str, str]) -> str:
"""Generate HTML for score display"""
html = f'''
<div style="text-align: center; padding: 2rem; background: linear-gradient(135deg, #f0fdf4 0%, #dcfce7 100%); border: 3px solid {grade_info["color"]}; border-radius: 16px; margin: 1rem 0; box-shadow: 0 8px 25px -5px rgba(0, 0, 0, 0.1);">
<div style="font-size: 3rem; font-weight: 800; color: {grade_info["color"]}; margin: 0; text-shadow: 0 2px 4px rgba(0,0,0,0.1);">{score}</div>
<div style="font-size: 1.25rem; color: #15803d; margin: 0.5rem 0; text-transform: uppercase; letter-spacing: 0.1em; font-weight: 700;">{grade_info["grade"]}</div>
<div style="font-size: 1rem; color: #15803d; margin: 0; text-transform: uppercase; letter-spacing: 0.05em; font-weight: 500;">FLUX Quality Score</div>
</div>
'''
return html
def _update_stats(self, processing_time: float, success: bool) -> None:
"""Update processing statistics"""
self.processing_stats["total_processed"] += 1
if success:
self.processing_stats["successful_analyses"] += 1
else:
self.processing_stats["failed_analyses"] += 1
# Update rolling average of processing time
current_avg = self.processing_stats["average_processing_time"]
total_count = self.processing_stats["total_processed"]
self.processing_stats["average_processing_time"] = (
(current_avg * (total_count - 1) + processing_time) / total_count
)
def get_stats(self) -> Dict[str, Any]:
"""Get current processing statistics"""
stats = self.processing_stats.copy()
if stats["total_processed"] > 0:
stats["success_rate"] = stats["successful_analyses"] / stats["total_processed"]
else:
stats["success_rate"] = 0.0
stats["device_info"] = self.device_config
return stats
def reset_stats(self) -> None:
"""Reset processing statistics"""
self.processing_stats = {
"total_processed": 0,
"successful_analyses": 0,
"failed_analyses": 0,
"average_processing_time": 0.0
}
logger.info("Processing statistics reset")
class BatchProcessor:
"""Handle batch processing of multiple images"""
def __init__(self, optimizer: FluxOptimizer):
self.optimizer = optimizer
self.batch_results = []
def process_batch(self, images: list) -> list:
"""Process multiple images in batch"""
results = []
for i, image in enumerate(images):
logger.info(f"Processing batch item {i+1}/{len(images)}")
try:
result = self.optimizer.process_image(image)
results.append({
"index": i,
"success": result[3]["success"],
"result": result
})
except Exception as e:
logger.error(f"Batch item {i} failed: {e}")
results.append({
"index": i,
"success": False,
"error": str(e)
})
self.batch_results = results
return results
def get_batch_summary(self) -> Dict[str, Any]:
"""Get summary of batch processing results"""
if not self.batch_results:
return {"total": 0, "successful": 0, "failed": 0}
successful = sum(1 for r in self.batch_results if r["success"])
total = len(self.batch_results)
return {
"total": total,
"successful": successful,
"failed": total - successful,
"success_rate": successful / total if total > 0 else 0.0
}
# Global optimizer instance
flux_optimizer = FluxOptimizer()
def process_image_simple(image: Any, model_name: str = None) -> Tuple[str, str, str]:
"""
Simple interface for image processing
Args:
image: Input image
model_name: Optional model name
Returns:
Tuple of (prompt, report, score_html)
"""
if model_name and model_name != flux_optimizer.model_name:
# Create temporary optimizer with specified model
temp_optimizer = FluxOptimizer(model_name)
prompt, report, score_html, _ = temp_optimizer.process_image(image)
else:
prompt, report, score_html, _ = flux_optimizer.process_image(image)
return prompt, report, score_html
# Export main components
__all__ = [
"FluxOptimizer",
"BatchProcessor",
"flux_optimizer",
"process_image_simple"
]