|
|
|
|
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
from einops import rearrange |
|
|
|
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder, Mlp, timestep_embedding |
|
from comfy.ldm.modules.attention import optimized_attention |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def modulate(x, shift, scale): |
|
return x * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1) |
|
|
|
def t2i_modulate(x, shift, scale): |
|
return x * (1 + scale) + shift |
|
|
|
class MultiHeadCrossAttention(nn.Module): |
|
def __init__(self, d_model, num_heads, attn_drop=0., proj_drop=0., dtype=None, device=None, operations=None, **kwargs): |
|
super(MultiHeadCrossAttention, self).__init__() |
|
assert d_model % num_heads == 0, "d_model must be divisible by num_heads" |
|
|
|
self.d_model = d_model |
|
self.num_heads = num_heads |
|
self.head_dim = d_model // num_heads |
|
|
|
self.q_linear = operations.Linear(d_model, d_model, dtype=dtype, device=device) |
|
self.kv_linear = operations.Linear(d_model, d_model*2, dtype=dtype, device=device) |
|
self.attn_drop = nn.Dropout(attn_drop) |
|
self.proj = operations.Linear(d_model, d_model, dtype=dtype, device=device) |
|
self.proj_drop = nn.Dropout(proj_drop) |
|
|
|
def forward(self, x, cond, mask=None): |
|
|
|
B, N, C = x.shape |
|
|
|
q = self.q_linear(x).view(1, -1, self.num_heads, self.head_dim) |
|
kv = self.kv_linear(cond).view(1, -1, 2, self.num_heads, self.head_dim) |
|
k, v = kv.unbind(2) |
|
|
|
assert mask is None |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
x = optimized_attention(q.view(B, -1, C), k.view(B, -1, C), v.view(B, -1, C), self.num_heads, mask=None) |
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
|
|
|
|
class AttentionKVCompress(nn.Module): |
|
"""Multi-head Attention block with KV token compression and qk norm.""" |
|
def __init__(self, dim, num_heads=8, qkv_bias=True, sampling='conv', sr_ratio=1, qk_norm=False, dtype=None, device=None, operations=None, **kwargs): |
|
""" |
|
Args: |
|
dim (int): Number of input channels. |
|
num_heads (int): Number of attention heads. |
|
qkv_bias (bool: If True, add a learnable bias to query, key, value. |
|
""" |
|
super().__init__() |
|
assert dim % num_heads == 0, 'dim should be divisible by num_heads' |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.scale = self.head_dim ** -0.5 |
|
|
|
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device) |
|
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device) |
|
|
|
self.sampling=sampling |
|
self.sr_ratio = sr_ratio |
|
if sr_ratio > 1 and sampling == 'conv': |
|
|
|
self.sr = operations.Conv2d(dim, dim, groups=dim, kernel_size=sr_ratio, stride=sr_ratio, dtype=dtype, device=device) |
|
|
|
|
|
self.norm = operations.LayerNorm(dim, dtype=dtype, device=device) |
|
if qk_norm: |
|
self.q_norm = operations.LayerNorm(dim, dtype=dtype, device=device) |
|
self.k_norm = operations.LayerNorm(dim, dtype=dtype, device=device) |
|
else: |
|
self.q_norm = nn.Identity() |
|
self.k_norm = nn.Identity() |
|
|
|
def downsample_2d(self, tensor, H, W, scale_factor, sampling=None): |
|
if sampling is None or scale_factor == 1: |
|
return tensor |
|
B, N, C = tensor.shape |
|
|
|
if sampling == 'uniform_every': |
|
return tensor[:, ::scale_factor], int(N // scale_factor) |
|
|
|
tensor = tensor.reshape(B, H, W, C).permute(0, 3, 1, 2) |
|
new_H, new_W = int(H / scale_factor), int(W / scale_factor) |
|
new_N = new_H * new_W |
|
|
|
if sampling == 'ave': |
|
tensor = F.interpolate( |
|
tensor, scale_factor=1 / scale_factor, mode='nearest' |
|
).permute(0, 2, 3, 1) |
|
elif sampling == 'uniform': |
|
tensor = tensor[:, :, ::scale_factor, ::scale_factor].permute(0, 2, 3, 1) |
|
elif sampling == 'conv': |
|
tensor = self.sr(tensor).reshape(B, C, -1).permute(0, 2, 1) |
|
tensor = self.norm(tensor) |
|
else: |
|
raise ValueError |
|
|
|
return tensor.reshape(B, new_N, C).contiguous(), new_N |
|
|
|
def forward(self, x, mask=None, HW=None, block_id=None): |
|
B, N, C = x.shape |
|
new_N = N |
|
if HW is None: |
|
H = W = int(N ** 0.5) |
|
else: |
|
H, W = HW |
|
qkv = self.qkv(x).reshape(B, N, 3, C) |
|
|
|
q, k, v = qkv.unbind(2) |
|
q = self.q_norm(q) |
|
k = self.k_norm(k) |
|
|
|
|
|
if self.sr_ratio > 1: |
|
k, new_N = self.downsample_2d(k, H, W, self.sr_ratio, sampling=self.sampling) |
|
v, new_N = self.downsample_2d(v, H, W, self.sr_ratio, sampling=self.sampling) |
|
|
|
q = q.reshape(B, N, self.num_heads, C // self.num_heads) |
|
k = k.reshape(B, new_N, self.num_heads, C // self.num_heads) |
|
v = v.reshape(B, new_N, self.num_heads, C // self.num_heads) |
|
|
|
if mask is not None: |
|
raise NotImplementedError("Attn mask logic not added for self attention") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
q, k, v = map(lambda t: t.transpose(1, 2), (q, k, v),) |
|
x = optimized_attention(q, k, v, self.num_heads, mask=None, skip_reshape=True) |
|
|
|
x = x.view(B, N, C) |
|
x = self.proj(x) |
|
return x |
|
|
|
|
|
class FinalLayer(nn.Module): |
|
""" |
|
The final layer of PixArt. |
|
""" |
|
def __init__(self, hidden_size, patch_size, out_channels, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
|
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device) |
|
) |
|
|
|
def forward(self, x, c): |
|
shift, scale = self.adaLN_modulation(c).chunk(2, dim=1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
class T2IFinalLayer(nn.Module): |
|
""" |
|
The final layer of PixArt. |
|
""" |
|
def __init__(self, hidden_size, patch_size, out_channels, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
|
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) |
|
self.scale_shift_table = nn.Parameter(torch.randn(2, hidden_size) / hidden_size ** 0.5) |
|
self.out_channels = out_channels |
|
|
|
def forward(self, x, t): |
|
shift, scale = (self.scale_shift_table[None].to(dtype=x.dtype, device=x.device) + t[:, None]).chunk(2, dim=1) |
|
x = t2i_modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class MaskFinalLayer(nn.Module): |
|
""" |
|
The final layer of PixArt. |
|
""" |
|
def __init__(self, final_hidden_size, c_emb_size, patch_size, out_channels, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.norm_final = operations.LayerNorm(final_hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
|
self.linear = operations.Linear(final_hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
operations.Linear(c_emb_size, 2 * final_hidden_size, bias=True, dtype=dtype, device=device) |
|
) |
|
def forward(self, x, t): |
|
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) |
|
x = modulate(self.norm_final(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class DecoderLayer(nn.Module): |
|
""" |
|
The final layer of PixArt. |
|
""" |
|
def __init__(self, hidden_size, decoder_hidden_size, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.norm_decoder = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device) |
|
self.linear = operations.Linear(hidden_size, decoder_hidden_size, bias=True, dtype=dtype, device=device) |
|
self.adaLN_modulation = nn.Sequential( |
|
nn.SiLU(), |
|
operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device) |
|
) |
|
def forward(self, x, t): |
|
shift, scale = self.adaLN_modulation(t).chunk(2, dim=1) |
|
x = modulate(self.norm_decoder(x), shift, scale) |
|
x = self.linear(x) |
|
return x |
|
|
|
|
|
class SizeEmbedder(TimestepEmbedder): |
|
""" |
|
Embeds scalar timesteps into vector representations. |
|
""" |
|
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None): |
|
super().__init__(hidden_size=hidden_size, frequency_embedding_size=frequency_embedding_size, operations=operations) |
|
self.mlp = nn.Sequential( |
|
operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device), |
|
nn.SiLU(), |
|
operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device), |
|
) |
|
self.frequency_embedding_size = frequency_embedding_size |
|
self.outdim = hidden_size |
|
|
|
def forward(self, s, bs): |
|
if s.ndim == 1: |
|
s = s[:, None] |
|
assert s.ndim == 2 |
|
if s.shape[0] != bs: |
|
s = s.repeat(bs//s.shape[0], 1) |
|
assert s.shape[0] == bs |
|
b, dims = s.shape[0], s.shape[1] |
|
s = rearrange(s, "b d -> (b d)") |
|
s_freq = timestep_embedding(s, self.frequency_embedding_size) |
|
s_emb = self.mlp(s_freq.to(s.dtype)) |
|
s_emb = rearrange(s_emb, "(b d) d2 -> b (d d2)", b=b, d=dims, d2=self.outdim) |
|
return s_emb |
|
|
|
|
|
class LabelEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
def __init__(self, num_classes, hidden_size, dropout_prob, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
use_cfg_embedding = dropout_prob > 0 |
|
self.embedding_table = operations.Embedding(num_classes + use_cfg_embedding, hidden_size, dtype=dtype, device=device), |
|
self.num_classes = num_classes |
|
self.dropout_prob = dropout_prob |
|
|
|
def token_drop(self, labels, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(labels.shape[0]).cuda() < self.dropout_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
labels = torch.where(drop_ids, self.num_classes, labels) |
|
return labels |
|
|
|
def forward(self, labels, train, force_drop_ids=None): |
|
use_dropout = self.dropout_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
labels = self.token_drop(labels, force_drop_ids) |
|
embeddings = self.embedding_table(labels) |
|
return embeddings |
|
|
|
|
|
class CaptionEmbedder(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.y_proj = Mlp( |
|
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, |
|
dtype=dtype, device=device, operations=operations, |
|
) |
|
self.register_buffer("y_embedding", nn.Parameter(torch.randn(token_num, in_channels) / in_channels ** 0.5)) |
|
self.uncond_prob = uncond_prob |
|
|
|
def token_drop(self, caption, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(caption.shape[0]).cuda() < self.uncond_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) |
|
return caption |
|
|
|
def forward(self, caption, train, force_drop_ids=None): |
|
if train: |
|
assert caption.shape[2:] == self.y_embedding.shape |
|
use_dropout = self.uncond_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
caption = self.token_drop(caption, force_drop_ids) |
|
caption = self.y_proj(caption) |
|
return caption |
|
|
|
|
|
class CaptionEmbedderDoubleBr(nn.Module): |
|
""" |
|
Embeds class labels into vector representations. Also handles label dropout for classifier-free guidance. |
|
""" |
|
def __init__(self, in_channels, hidden_size, uncond_prob, act_layer=nn.GELU(approximate='tanh'), token_num=120, dtype=None, device=None, operations=None): |
|
super().__init__() |
|
self.proj = Mlp( |
|
in_features=in_channels, hidden_features=hidden_size, out_features=hidden_size, act_layer=act_layer, |
|
dtype=dtype, device=device, operations=operations, |
|
) |
|
self.embedding = nn.Parameter(torch.randn(1, in_channels) / 10 ** 0.5) |
|
self.y_embedding = nn.Parameter(torch.randn(token_num, in_channels) / 10 ** 0.5) |
|
self.uncond_prob = uncond_prob |
|
|
|
def token_drop(self, global_caption, caption, force_drop_ids=None): |
|
""" |
|
Drops labels to enable classifier-free guidance. |
|
""" |
|
if force_drop_ids is None: |
|
drop_ids = torch.rand(global_caption.shape[0]).cuda() < self.uncond_prob |
|
else: |
|
drop_ids = force_drop_ids == 1 |
|
global_caption = torch.where(drop_ids[:, None], self.embedding, global_caption) |
|
caption = torch.where(drop_ids[:, None, None, None], self.y_embedding, caption) |
|
return global_caption, caption |
|
|
|
def forward(self, caption, train, force_drop_ids=None): |
|
assert caption.shape[2: ] == self.y_embedding.shape |
|
global_caption = caption.mean(dim=2).squeeze() |
|
use_dropout = self.uncond_prob > 0 |
|
if (train and use_dropout) or (force_drop_ids is not None): |
|
global_caption, caption = self.token_drop(global_caption, caption, force_drop_ids) |
|
y_embed = self.proj(global_caption) |
|
return y_embed, caption |
|
|