|
|
|
|
|
import math |
|
|
|
import torch |
|
import torch.nn as nn |
|
from einops import repeat |
|
|
|
from comfy.ldm.modules.attention import optimized_attention |
|
from comfy.ldm.flux.layers import EmbedND |
|
from comfy.ldm.flux.math import apply_rope |
|
from comfy.ldm.modules.diffusionmodules.mmdit import RMSNorm |
|
import comfy.ldm.common_dit |
|
import comfy.model_management |
|
|
|
|
|
def sinusoidal_embedding_1d(dim, position): |
|
|
|
assert dim % 2 == 0 |
|
half = dim // 2 |
|
position = position.type(torch.float32) |
|
|
|
|
|
sinusoid = torch.outer( |
|
position, torch.pow(10000, -torch.arange(half).to(position).div(half))) |
|
x = torch.cat([torch.cos(sinusoid), torch.sin(sinusoid)], dim=1) |
|
return x |
|
|
|
|
|
class WanSelfAttention(nn.Module): |
|
|
|
def __init__(self, |
|
dim, |
|
num_heads, |
|
window_size=(-1, -1), |
|
qk_norm=True, |
|
eps=1e-6, operation_settings={}): |
|
assert dim % num_heads == 0 |
|
super().__init__() |
|
self.dim = dim |
|
self.num_heads = num_heads |
|
self.head_dim = dim // num_heads |
|
self.window_size = window_size |
|
self.qk_norm = qk_norm |
|
self.eps = eps |
|
|
|
|
|
self.q = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) |
|
self.k = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) |
|
self.v = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) |
|
self.o = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) |
|
self.norm_q = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() |
|
self.norm_k = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() |
|
|
|
def forward(self, x, freqs): |
|
r""" |
|
Args: |
|
x(Tensor): Shape [B, L, num_heads, C / num_heads] |
|
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] |
|
""" |
|
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim |
|
|
|
|
|
def qkv_fn(x): |
|
q = self.norm_q(self.q(x)).view(b, s, n, d) |
|
k = self.norm_k(self.k(x)).view(b, s, n, d) |
|
v = self.v(x).view(b, s, n * d) |
|
return q, k, v |
|
|
|
q, k, v = qkv_fn(x) |
|
q, k = apply_rope(q, k, freqs) |
|
|
|
x = optimized_attention( |
|
q.view(b, s, n * d), |
|
k.view(b, s, n * d), |
|
v, |
|
heads=self.num_heads, |
|
) |
|
|
|
x = self.o(x) |
|
return x |
|
|
|
|
|
class WanT2VCrossAttention(WanSelfAttention): |
|
|
|
def forward(self, x, context): |
|
r""" |
|
Args: |
|
x(Tensor): Shape [B, L1, C] |
|
context(Tensor): Shape [B, L2, C] |
|
""" |
|
|
|
q = self.norm_q(self.q(x)) |
|
k = self.norm_k(self.k(context)) |
|
v = self.v(context) |
|
|
|
|
|
x = optimized_attention(q, k, v, heads=self.num_heads) |
|
|
|
x = self.o(x) |
|
return x |
|
|
|
|
|
class WanI2VCrossAttention(WanSelfAttention): |
|
|
|
def __init__(self, |
|
dim, |
|
num_heads, |
|
window_size=(-1, -1), |
|
qk_norm=True, |
|
eps=1e-6, operation_settings={}): |
|
super().__init__(dim, num_heads, window_size, qk_norm, eps, operation_settings=operation_settings) |
|
|
|
self.k_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) |
|
self.v_img = operation_settings.get("operations").Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) |
|
|
|
self.norm_k_img = RMSNorm(dim, eps=eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if qk_norm else nn.Identity() |
|
|
|
def forward(self, x, context): |
|
r""" |
|
Args: |
|
x(Tensor): Shape [B, L1, C] |
|
context(Tensor): Shape [B, L2, C] |
|
""" |
|
context_img = context[:, :257] |
|
context = context[:, 257:] |
|
|
|
|
|
q = self.norm_q(self.q(x)) |
|
k = self.norm_k(self.k(context)) |
|
v = self.v(context) |
|
k_img = self.norm_k_img(self.k_img(context_img)) |
|
v_img = self.v_img(context_img) |
|
img_x = optimized_attention(q, k_img, v_img, heads=self.num_heads) |
|
|
|
x = optimized_attention(q, k, v, heads=self.num_heads) |
|
|
|
|
|
x = x + img_x |
|
x = self.o(x) |
|
return x |
|
|
|
|
|
WAN_CROSSATTENTION_CLASSES = { |
|
't2v_cross_attn': WanT2VCrossAttention, |
|
'i2v_cross_attn': WanI2VCrossAttention, |
|
} |
|
|
|
|
|
class WanAttentionBlock(nn.Module): |
|
|
|
def __init__(self, |
|
cross_attn_type, |
|
dim, |
|
ffn_dim, |
|
num_heads, |
|
window_size=(-1, -1), |
|
qk_norm=True, |
|
cross_attn_norm=False, |
|
eps=1e-6, operation_settings={}): |
|
super().__init__() |
|
self.dim = dim |
|
self.ffn_dim = ffn_dim |
|
self.num_heads = num_heads |
|
self.window_size = window_size |
|
self.qk_norm = qk_norm |
|
self.cross_attn_norm = cross_attn_norm |
|
self.eps = eps |
|
|
|
|
|
self.norm1 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) |
|
self.self_attn = WanSelfAttention(dim, num_heads, window_size, qk_norm, |
|
eps, operation_settings=operation_settings) |
|
self.norm3 = operation_settings.get("operations").LayerNorm( |
|
dim, eps, |
|
elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) if cross_attn_norm else nn.Identity() |
|
self.cross_attn = WAN_CROSSATTENTION_CLASSES[cross_attn_type](dim, |
|
num_heads, |
|
(-1, -1), |
|
qk_norm, |
|
eps, operation_settings=operation_settings) |
|
self.norm2 = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) |
|
self.ffn = nn.Sequential( |
|
operation_settings.get("operations").Linear(dim, ffn_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'), |
|
operation_settings.get("operations").Linear(ffn_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) |
|
|
|
|
|
self.modulation = nn.Parameter(torch.empty(1, 6, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) |
|
|
|
def forward( |
|
self, |
|
x, |
|
e, |
|
freqs, |
|
context, |
|
): |
|
r""" |
|
Args: |
|
x(Tensor): Shape [B, L, C] |
|
e(Tensor): Shape [B, 6, C] |
|
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2] |
|
""" |
|
|
|
|
|
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1) |
|
|
|
|
|
|
|
y = self.self_attn( |
|
self.norm1(x) * (1 + e[1]) + e[0], |
|
freqs) |
|
|
|
x = x + y * e[2] |
|
|
|
|
|
x = x + self.cross_attn(self.norm3(x), context) |
|
y = self.ffn(self.norm2(x) * (1 + e[4]) + e[3]) |
|
x = x + y * e[5] |
|
return x |
|
|
|
|
|
class Head(nn.Module): |
|
|
|
def __init__(self, dim, out_dim, patch_size, eps=1e-6, operation_settings={}): |
|
super().__init__() |
|
self.dim = dim |
|
self.out_dim = out_dim |
|
self.patch_size = patch_size |
|
self.eps = eps |
|
|
|
|
|
out_dim = math.prod(patch_size) * out_dim |
|
self.norm = operation_settings.get("operations").LayerNorm(dim, eps, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) |
|
self.head = operation_settings.get("operations").Linear(dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")) |
|
|
|
|
|
self.modulation = nn.Parameter(torch.empty(1, 2, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) |
|
|
|
def forward(self, x, e): |
|
r""" |
|
Args: |
|
x(Tensor): Shape [B, L1, C] |
|
e(Tensor): Shape [B, C] |
|
""" |
|
|
|
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e.unsqueeze(1)).chunk(2, dim=1) |
|
x = (self.head(self.norm(x) * (1 + e[1]) + e[0])) |
|
return x |
|
|
|
|
|
class MLPProj(torch.nn.Module): |
|
|
|
def __init__(self, in_dim, out_dim, operation_settings={}): |
|
super().__init__() |
|
|
|
self.proj = torch.nn.Sequential( |
|
operation_settings.get("operations").LayerNorm(in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), operation_settings.get("operations").Linear(in_dim, in_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), |
|
torch.nn.GELU(), operation_settings.get("operations").Linear(in_dim, out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), |
|
operation_settings.get("operations").LayerNorm(out_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) |
|
|
|
def forward(self, image_embeds): |
|
clip_extra_context_tokens = self.proj(image_embeds) |
|
return clip_extra_context_tokens |
|
|
|
|
|
class WanModel(torch.nn.Module): |
|
r""" |
|
Wan diffusion backbone supporting both text-to-video and image-to-video. |
|
""" |
|
|
|
def __init__(self, |
|
model_type='t2v', |
|
patch_size=(1, 2, 2), |
|
text_len=512, |
|
in_dim=16, |
|
dim=2048, |
|
ffn_dim=8192, |
|
freq_dim=256, |
|
text_dim=4096, |
|
out_dim=16, |
|
num_heads=16, |
|
num_layers=32, |
|
window_size=(-1, -1), |
|
qk_norm=True, |
|
cross_attn_norm=True, |
|
eps=1e-6, |
|
image_model=None, |
|
device=None, |
|
dtype=None, |
|
operations=None, |
|
): |
|
r""" |
|
Initialize the diffusion model backbone. |
|
|
|
Args: |
|
model_type (`str`, *optional*, defaults to 't2v'): |
|
Model variant - 't2v' (text-to-video) or 'i2v' (image-to-video) |
|
patch_size (`tuple`, *optional*, defaults to (1, 2, 2)): |
|
3D patch dimensions for video embedding (t_patch, h_patch, w_patch) |
|
text_len (`int`, *optional*, defaults to 512): |
|
Fixed length for text embeddings |
|
in_dim (`int`, *optional*, defaults to 16): |
|
Input video channels (C_in) |
|
dim (`int`, *optional*, defaults to 2048): |
|
Hidden dimension of the transformer |
|
ffn_dim (`int`, *optional*, defaults to 8192): |
|
Intermediate dimension in feed-forward network |
|
freq_dim (`int`, *optional*, defaults to 256): |
|
Dimension for sinusoidal time embeddings |
|
text_dim (`int`, *optional*, defaults to 4096): |
|
Input dimension for text embeddings |
|
out_dim (`int`, *optional*, defaults to 16): |
|
Output video channels (C_out) |
|
num_heads (`int`, *optional*, defaults to 16): |
|
Number of attention heads |
|
num_layers (`int`, *optional*, defaults to 32): |
|
Number of transformer blocks |
|
window_size (`tuple`, *optional*, defaults to (-1, -1)): |
|
Window size for local attention (-1 indicates global attention) |
|
qk_norm (`bool`, *optional*, defaults to True): |
|
Enable query/key normalization |
|
cross_attn_norm (`bool`, *optional*, defaults to False): |
|
Enable cross-attention normalization |
|
eps (`float`, *optional*, defaults to 1e-6): |
|
Epsilon value for normalization layers |
|
""" |
|
|
|
super().__init__() |
|
self.dtype = dtype |
|
operation_settings = {"operations": operations, "device": device, "dtype": dtype} |
|
|
|
assert model_type in ['t2v', 'i2v'] |
|
self.model_type = model_type |
|
|
|
self.patch_size = patch_size |
|
self.text_len = text_len |
|
self.in_dim = in_dim |
|
self.dim = dim |
|
self.ffn_dim = ffn_dim |
|
self.freq_dim = freq_dim |
|
self.text_dim = text_dim |
|
self.out_dim = out_dim |
|
self.num_heads = num_heads |
|
self.num_layers = num_layers |
|
self.window_size = window_size |
|
self.qk_norm = qk_norm |
|
self.cross_attn_norm = cross_attn_norm |
|
self.eps = eps |
|
|
|
|
|
self.patch_embedding = operations.Conv3d( |
|
in_dim, dim, kernel_size=patch_size, stride=patch_size, device=operation_settings.get("device"), dtype=torch.float32) |
|
self.text_embedding = nn.Sequential( |
|
operations.Linear(text_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.GELU(approximate='tanh'), |
|
operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) |
|
|
|
self.time_embedding = nn.Sequential( |
|
operations.Linear(freq_dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")), nn.SiLU(), operations.Linear(dim, dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) |
|
self.time_projection = nn.Sequential(nn.SiLU(), operations.Linear(dim, dim * 6, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))) |
|
|
|
|
|
cross_attn_type = 't2v_cross_attn' if model_type == 't2v' else 'i2v_cross_attn' |
|
self.blocks = nn.ModuleList([ |
|
WanAttentionBlock(cross_attn_type, dim, ffn_dim, num_heads, |
|
window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings) |
|
for _ in range(num_layers) |
|
]) |
|
|
|
|
|
self.head = Head(dim, out_dim, patch_size, eps, operation_settings=operation_settings) |
|
|
|
d = dim // num_heads |
|
self.rope_embedder = EmbedND(dim=d, theta=10000.0, axes_dim=[d - 4 * (d // 6), 2 * (d // 6), 2 * (d // 6)]) |
|
|
|
if model_type == 'i2v': |
|
self.img_emb = MLPProj(1280, dim, operation_settings=operation_settings) |
|
else: |
|
self.img_emb = None |
|
|
|
def forward_orig( |
|
self, |
|
x, |
|
t, |
|
context, |
|
clip_fea=None, |
|
freqs=None, |
|
): |
|
r""" |
|
Forward pass through the diffusion model |
|
|
|
Args: |
|
x (Tensor): |
|
List of input video tensors with shape [B, C_in, F, H, W] |
|
t (Tensor): |
|
Diffusion timesteps tensor of shape [B] |
|
context (List[Tensor]): |
|
List of text embeddings each with shape [B, L, C] |
|
seq_len (`int`): |
|
Maximum sequence length for positional encoding |
|
clip_fea (Tensor, *optional*): |
|
CLIP image features for image-to-video mode |
|
y (List[Tensor], *optional*): |
|
Conditional video inputs for image-to-video mode, same shape as x |
|
|
|
Returns: |
|
List[Tensor]: |
|
List of denoised video tensors with original input shapes [C_out, F, H / 8, W / 8] |
|
""" |
|
|
|
x = self.patch_embedding(x.float()).to(x.dtype) |
|
grid_sizes = x.shape[2:] |
|
x = x.flatten(2).transpose(1, 2) |
|
|
|
|
|
e = self.time_embedding( |
|
sinusoidal_embedding_1d(self.freq_dim, t).to(dtype=x[0].dtype)) |
|
e0 = self.time_projection(e).unflatten(1, (6, self.dim)) |
|
|
|
|
|
context = self.text_embedding(context) |
|
|
|
if clip_fea is not None and self.img_emb is not None: |
|
context_clip = self.img_emb(clip_fea) |
|
context = torch.concat([context_clip, context], dim=1) |
|
|
|
|
|
kwargs = dict( |
|
e=e0, |
|
freqs=freqs, |
|
context=context) |
|
|
|
for block in self.blocks: |
|
x = block(x, **kwargs) |
|
|
|
|
|
x = self.head(x, e) |
|
|
|
|
|
x = self.unpatchify(x, grid_sizes) |
|
return x |
|
|
|
def forward(self, x, timestep, context, clip_fea=None, **kwargs): |
|
bs, c, t, h, w = x.shape |
|
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size) |
|
patch_size = self.patch_size |
|
t_len = ((t + (patch_size[0] // 2)) // patch_size[0]) |
|
h_len = ((h + (patch_size[1] // 2)) // patch_size[1]) |
|
w_len = ((w + (patch_size[2] // 2)) // patch_size[2]) |
|
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device, dtype=x.dtype) |
|
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).reshape(-1, 1, 1) |
|
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(0, h_len - 1, steps=h_len, device=x.device, dtype=x.dtype).reshape(1, -1, 1) |
|
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).reshape(1, 1, -1) |
|
img_ids = repeat(img_ids, "t h w c -> b (t h w) c", b=bs) |
|
|
|
freqs = self.rope_embedder(img_ids).movedim(1, 2) |
|
return self.forward_orig(x, timestep, context, clip_fea=clip_fea, freqs=freqs)[:, :, :t, :h, :w] |
|
|
|
def unpatchify(self, x, grid_sizes): |
|
r""" |
|
Reconstruct video tensors from patch embeddings. |
|
|
|
Args: |
|
x (List[Tensor]): |
|
List of patchified features, each with shape [L, C_out * prod(patch_size)] |
|
grid_sizes (Tensor): |
|
Original spatial-temporal grid dimensions before patching, |
|
shape [B, 3] (3 dimensions correspond to F_patches, H_patches, W_patches) |
|
|
|
Returns: |
|
List[Tensor]: |
|
Reconstructed video tensors with shape [L, C_out, F, H / 8, W / 8] |
|
""" |
|
|
|
c = self.out_dim |
|
u = x |
|
b = u.shape[0] |
|
u = u[:, :math.prod(grid_sizes)].view(b, *grid_sizes, *self.patch_size, c) |
|
u = torch.einsum('bfhwpqrc->bcfphqwr', u) |
|
u = u.reshape(b, c, *[i * j for i, j in zip(grid_sizes, self.patch_size)]) |
|
return u |
|
|