File size: 6,054 Bytes
929083d
d9486d1
 
 
 
 
 
 
 
929083d
 
d9486d1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
import gradio as gr
import uuid
import subprocess
import threading
import os
import time
from fastapi import FastAPI
from fastapi.responses import FileResponse
import asyncio


# A simple in-memory dictionary to track task status.
# For a production system, you'd use a database or Redis.
tasks = {}

def run_video_generation(task_id: str, topic: str, context: str):
    """
    This function runs the main generation script in a separate process.
    """
    tasks[task_id]['status'] = 'running'
    
    # Sanitize topic to create a valid directory name
    file_prefix = "".join(c if c.isalnum() else "_" for c in topic.lower())
    output_dir = os.path.join("output", file_prefix)
    
    command = [
        "python", "generate_video.py",
        "--model", "openai/o3-mini",      # Or get from request
        "--topic", topic,
        "--context", context,
        "--output_dir", "output",
        "--use_langfuse" # Assuming you have secrets set
    ]

    try:
        # Using subprocess to run the existing script
        process = subprocess.run(command, check=True, capture_output=True, text=True)
        
        # Assume the final video is named based on the topic
        # Note: The actual video path might differ. This is an assumption.
        # You may need to parse the stdout from generate_video.py to get the exact path.
        video_path = None
        for file in os.listdir(output_dir):
            if file.endswith("_combined.mp4"):
                video_path = os.path.join(output_dir, file)
                break

        if video_path and os.path.exists(video_path):
            tasks[task_id]['status'] = 'completed'
            tasks[task_id]['video_path'] = video_path
        else:
            tasks[task_id]['status'] = 'failed'
            tasks[task_id]['error'] = "Video file not found after generation."
            tasks[task_id]['stdout'] = process.stdout
            tasks[task_id]['stderr'] = process.stderr
            
    except subprocess.CalledProcessError as e:
        tasks[task_id]['status'] = 'failed'
        tasks[task_id]['error'] = str(e)
        tasks[task_id]['stdout'] = e.stdout
        tasks[task_id]['stderr'] = e.stderr
    except Exception as e:
        tasks[task_id]['status'] = 'failed'
        tasks[task_id]['error'] = str(e)

def start_generation_thread(topic: str, context: str):
    if not topic or not context:
        return "Topic and Context cannot be empty.", "", None

    task_id = str(uuid.uuid4())
    tasks[task_id] = {'status': 'queued'}

    # Use a background thread to run the time-consuming task
    thread = threading.Thread(
        target=run_video_generation,
        args=(task_id, topic, context)
    )
    thread.start()
    
    return f"Task started. Your Task ID is: {task_id}", task_id, None


def check_status(task_id: str):
    if not task_id:
        return "Please provide a Task ID.", None
        
    task = tasks.get(task_id)
    if not task:
        return "Task not found.", None
    
    status = task.get('status')
    if status == 'completed':
        video_path = task.get('video_path')
        return f"Status: {status}", video_path
    elif status == 'failed':
        error = task.get('error', 'Unknown error')
        stdout = task.get('stdout', '')
        stderr = task.get('stderr', '')
        return f"Status: {status}\nError: {error}\nOutput: {stdout}\nStderr: {stderr}", None
    
    return f"Status: {status}", None

# We need a lightweight FastAPI app in the background to serve the video files.
# Gradio can't serve files directly from arbitrary paths in a secure way.
fastapi_app = FastAPI()

@fastapi_app.get("/videos/{task_id}")
def get_video(task_id: str):
    """
    Serves the final generated video file.
    """
    task = tasks.get(task_id)
    if not task or task.get('status') != 'completed':
        return {"error": "Task not completed or not found"}
    
    video_path = task.get('video_path')
    if not os.path.exists(video_path):
        return {"error": "Video file not found."}
        
    return FileResponse(video_path, media_type="video/mp4", filename=os.path.basename(video_path))


# Gradio Interface
with gr.Blocks() as demo:
    gr.Markdown("# Theorem-Explain-Agent Video Generation")
    gr.Markdown("Start a video generation task and check its status.")

    with gr.Tab("Start Generation"):
        topic_input = gr.Textbox(label="Topic", placeholder="e.g., The Pythagorean Theorem")
        context_input = gr.Textbox(label="Context", placeholder="A short explanation of the theorem.")
        start_button = gr.Button("Generate Video")
        
        with gr.Column():
            task_id_output = gr.Textbox(label="Task ID", interactive=False)
            status_output_start = gr.Textbox(label="Status", interactive=False)
    
    with gr.Tab("Check Status"):
        task_id_input = gr.Textbox(label="Task ID", placeholder="Enter the Task ID you received.")
        check_button = gr.Button("Check Status")
        
        with gr.Column():
            status_output_check = gr.Textbox(label="Status", interactive=False)
            video_output = gr.Video(label="Generated Video")

    # Actions
    start_button.click(
        fn=start_generation_thread,
        inputs=[topic_input, context_input],
        outputs=[status_output_start, task_id_output, video_output] # Clear video on new task
    )
    
    check_button.click(
        fn=check_status,
        inputs=[task_id_input],
        outputs=[status_output_check, video_output]
    )

    gr.Markdown("### How to Use")
    gr.Markdown(
        "1.  Enter a `Topic` and `Context` in the 'Start Generation' tab and click 'Generate Video'.\n"
        "2.  Copy the `Task ID` that appears.\n"
        "3.  Go to the 'Check Status' tab, paste the `Task ID`, and click 'Check Status' periodically.\n"
        "4.  When the generation is complete, the video will appear."
    )

# To run both Gradio and FastAPI, we mount the FastAPI app into Gradio's internal FastAPI app.
app = gr.mount_ όπου(demo, fastapi_app, path="/")