Spaces:
Running
on
Zero
Running
on
Zero
Added Video Support (#18)
Browse files- Added Video Support (24f8595f5086f8051c077849203d663bfba52f7e)
- Update requirements.txt (cb25f513b7f5cca52c02e57a1ffadb3d0bbbd80f)
- Added streaming output and error handling (b9caa337fc287469039d003e38787dc4db8123b4)
Co-authored-by: Nishith Jain <[email protected]>
- app.py +89 -69
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -1,79 +1,95 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
-
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor
|
| 4 |
from qwen_vl_utils import process_vision_info
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
import subprocess
|
| 8 |
-
from datetime import datetime
|
| 9 |
import numpy as np
|
| 10 |
import os
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
# Convert numpy array to PIL Image
|
| 21 |
-
img = Image.fromarray(np.uint8(image_array))
|
| 22 |
-
|
| 23 |
-
# Generate a unique filename using timestamp
|
| 24 |
-
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
| 25 |
-
filename = f"image_{timestamp}.png"
|
| 26 |
-
|
| 27 |
-
# Save the image
|
| 28 |
-
img.save(filename)
|
| 29 |
-
|
| 30 |
-
# Get the full path of the saved image
|
| 31 |
-
full_path = os.path.abspath(filename)
|
| 32 |
-
|
| 33 |
-
return full_path
|
| 34 |
-
|
| 35 |
-
models = {
|
| 36 |
-
"Qwen/Qwen2-VL-2B-Instruct": Qwen2VLForConditionalGeneration.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True, torch_dtype="auto").cuda().eval()
|
| 37 |
-
|
| 38 |
-
}
|
| 39 |
-
|
| 40 |
-
processors = {
|
| 41 |
-
"Qwen/Qwen2-VL-2B-Instruct": AutoProcessor.from_pretrained("Qwen/Qwen2-VL-2B-Instruct", trust_remote_code=True)
|
| 42 |
-
}
|
| 43 |
|
| 44 |
DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)"
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
|
| 49 |
-
user_prompt = '<|user|>\n'
|
| 50 |
-
assistant_prompt = '<|assistant|>\n'
|
| 51 |
-
prompt_suffix = "<|end|>\n"
|
| 52 |
|
| 53 |
@spaces.GPU
|
| 54 |
-
def
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
messages = [
|
| 64 |
-
|
| 65 |
"role": "user",
|
| 66 |
"content": [
|
| 67 |
{
|
| 68 |
-
"type":
|
| 69 |
-
|
|
|
|
| 70 |
},
|
| 71 |
{"type": "text", "text": text_input},
|
| 72 |
],
|
| 73 |
}
|
| 74 |
]
|
| 75 |
-
|
| 76 |
-
# Preparation for inference
|
| 77 |
text = processor.apply_chat_template(
|
| 78 |
messages, tokenize=False, add_generation_prompt=True
|
| 79 |
)
|
|
@@ -84,19 +100,20 @@ def run_example(image, text_input=None, model_id="Qwen/Qwen2-VL-2B-Instruct"):
|
|
| 84 |
videos=video_inputs,
|
| 85 |
padding=True,
|
| 86 |
return_tensors="pt",
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
)
|
| 88 |
-
inputs =
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
)
|
| 98 |
-
|
| 99 |
-
return output_text[0]
|
| 100 |
|
| 101 |
css = """
|
| 102 |
#output {
|
|
@@ -108,17 +125,20 @@ css = """
|
|
| 108 |
|
| 109 |
with gr.Blocks(css=css) as demo:
|
| 110 |
gr.Markdown(DESCRIPTION)
|
| 111 |
-
|
|
|
|
| 112 |
with gr.Row():
|
| 113 |
with gr.Column():
|
| 114 |
-
|
| 115 |
-
|
|
|
|
| 116 |
text_input = gr.Textbox(label="Question")
|
| 117 |
submit_btn = gr.Button(value="Submit")
|
| 118 |
with gr.Column():
|
| 119 |
output_text = gr.Textbox(label="Output Text")
|
| 120 |
|
| 121 |
-
submit_btn.click(
|
|
|
|
|
|
|
| 122 |
|
| 123 |
-
demo.queue(api_open=False)
|
| 124 |
demo.launch(debug=True)
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
+
from transformers import Qwen2VLForConditionalGeneration, AutoProcessor, TextIteratorStreamer
|
| 4 |
from qwen_vl_utils import process_vision_info
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
import subprocess
|
|
|
|
| 8 |
import numpy as np
|
| 9 |
import os
|
| 10 |
+
from threading import Thread
|
| 11 |
+
import uuid
|
| 12 |
+
import io
|
| 13 |
|
| 14 |
+
# Model and Processor Loading (Done once at startup)
|
| 15 |
+
MODEL_ID = "Qwen/Qwen2-VL-2B-Instruct"
|
| 16 |
+
model = Qwen2VLForConditionalGeneration.from_pretrained(
|
| 17 |
+
MODEL_ID,
|
| 18 |
+
trust_remote_code=True,
|
| 19 |
+
torch_dtype=torch.float16
|
| 20 |
+
).to("cuda").eval()
|
| 21 |
+
processor = AutoProcessor.from_pretrained(MODEL_ID, trust_remote_code=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
DESCRIPTION = "[Qwen2-VL-2B Demo](https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct)"
|
| 24 |
|
| 25 |
+
image_extensions = Image.registered_extensions()
|
| 26 |
+
video_extensions = ("avi", "mp4", "mov", "mkv", "flv", "wmv", "mjpeg", "wav", "gif", "webm", "m4v", "3gp")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def identify_and_save_blob(blob_path):
|
| 30 |
+
"""Identifies if the blob is an image or video and saves it accordingly."""
|
| 31 |
+
try:
|
| 32 |
+
with open(blob_path, 'rb') as file:
|
| 33 |
+
blob_content = file.read()
|
| 34 |
+
|
| 35 |
+
# Try to identify if it's an image
|
| 36 |
+
try:
|
| 37 |
+
Image.open(io.BytesIO(blob_content)).verify() # Check if it's a valid image
|
| 38 |
+
extension = ".png" # Default to PNG for saving
|
| 39 |
+
media_type = "image"
|
| 40 |
+
except (IOError, SyntaxError):
|
| 41 |
+
# If it's not a valid image, assume it's a video
|
| 42 |
+
extension = ".mp4" # Default to MP4 for saving
|
| 43 |
+
media_type = "video"
|
| 44 |
+
|
| 45 |
+
# Create a unique filename
|
| 46 |
+
filename = f"temp_{uuid.uuid4()}_media{extension}"
|
| 47 |
+
with open(filename, "wb") as f:
|
| 48 |
+
f.write(blob_content)
|
| 49 |
+
|
| 50 |
+
return filename, media_type
|
| 51 |
+
|
| 52 |
+
except FileNotFoundError:
|
| 53 |
+
raise ValueError(f"The file {blob_path} was not found.")
|
| 54 |
+
except Exception as e:
|
| 55 |
+
raise ValueError(f"An error occurred while processing the file: {e}")
|
| 56 |
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
@spaces.GPU
|
| 59 |
+
def qwen_inference(media_input, text_input=None):
|
| 60 |
+
if isinstance(media_input, str): # If it's a filepath
|
| 61 |
+
media_path = media_input
|
| 62 |
+
if media_path.endswith(tuple([i for i, f in image_extensions.items()])):
|
| 63 |
+
media_type = "image"
|
| 64 |
+
elif media_path.endswith(video_extensions):
|
| 65 |
+
media_type = "video"
|
| 66 |
+
else:
|
| 67 |
+
try:
|
| 68 |
+
media_path, media_type = identify_and_save_blob(media_input)
|
| 69 |
+
print(media_path, media_type)
|
| 70 |
+
except Exception as e:
|
| 71 |
+
print(e)
|
| 72 |
+
raise ValueError(
|
| 73 |
+
"Unsupported media type. Please upload an image or video."
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
print(media_path)
|
| 78 |
+
|
| 79 |
messages = [
|
| 80 |
+
{
|
| 81 |
"role": "user",
|
| 82 |
"content": [
|
| 83 |
{
|
| 84 |
+
"type": media_type,
|
| 85 |
+
media_type: media_path,
|
| 86 |
+
**({"fps": 8.0} if media_type == "video" else {}),
|
| 87 |
},
|
| 88 |
{"type": "text", "text": text_input},
|
| 89 |
],
|
| 90 |
}
|
| 91 |
]
|
| 92 |
+
|
|
|
|
| 93 |
text = processor.apply_chat_template(
|
| 94 |
messages, tokenize=False, add_generation_prompt=True
|
| 95 |
)
|
|
|
|
| 100 |
videos=video_inputs,
|
| 101 |
padding=True,
|
| 102 |
return_tensors="pt",
|
| 103 |
+
).to("cuda")
|
| 104 |
+
|
| 105 |
+
streamer = TextIteratorStreamer(
|
| 106 |
+
processor, skip_prompt=True, **{"skip_special_tokens": True}
|
| 107 |
)
|
| 108 |
+
generation_kwargs = dict(inputs, streamer=streamer, max_new_tokens=1024)
|
| 109 |
+
|
| 110 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 111 |
+
thread.start()
|
| 112 |
+
|
| 113 |
+
buffer = ""
|
| 114 |
+
for new_text in streamer:
|
| 115 |
+
buffer += new_text
|
| 116 |
+
yield buffer
|
|
|
|
|
|
|
|
|
|
| 117 |
|
| 118 |
css = """
|
| 119 |
#output {
|
|
|
|
| 125 |
|
| 126 |
with gr.Blocks(css=css) as demo:
|
| 127 |
gr.Markdown(DESCRIPTION)
|
| 128 |
+
|
| 129 |
+
with gr.Tab(label="Image/Video Input"):
|
| 130 |
with gr.Row():
|
| 131 |
with gr.Column():
|
| 132 |
+
input_media = gr.File(
|
| 133 |
+
label="Upload Image or Video", type="filepath"
|
| 134 |
+
)
|
| 135 |
text_input = gr.Textbox(label="Question")
|
| 136 |
submit_btn = gr.Button(value="Submit")
|
| 137 |
with gr.Column():
|
| 138 |
output_text = gr.Textbox(label="Output Text")
|
| 139 |
|
| 140 |
+
submit_btn.click(
|
| 141 |
+
qwen_inference, [input_media, text_input], [output_text]
|
| 142 |
+
)
|
| 143 |
|
|
|
|
| 144 |
demo.launch(debug=True)
|
requirements.txt
CHANGED
|
@@ -5,4 +5,5 @@ torch
|
|
| 5 |
torchvision
|
| 6 |
git+https://github.com/huggingface/transformers.git
|
| 7 |
accelerate
|
| 8 |
-
qwen-vl-utils
|
|
|
|
|
|
| 5 |
torchvision
|
| 6 |
git+https://github.com/huggingface/transformers.git
|
| 7 |
accelerate
|
| 8 |
+
qwen-vl-utils
|
| 9 |
+
av
|