Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -5,6 +5,7 @@ import gradio as gr
|
|
5 |
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
6 |
from tensorflow.keras.applications.densenet import preprocess_input, decode_predictions
|
7 |
import numpy as np
|
|
|
8 |
from PIL import Image
|
9 |
import matplotlib.pyplot as plt
|
10 |
model = load_model('Densenet.h5')
|
@@ -64,6 +65,11 @@ def classify_image(img):
|
|
64 |
mean = np.mean(img_array, axis=(0, 1))
|
65 |
std = np.std(img_array, axis=(0, 1))
|
66 |
img_array = (img_array - mean) / std
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
|
69 |
predictions1 = model.predict(img_array)
|
|
|
5 |
from tensorflow.keras.preprocessing.image import load_img, img_to_array
|
6 |
from tensorflow.keras.applications.densenet import preprocess_input, decode_predictions
|
7 |
import numpy as np
|
8 |
+
from scipy import ndimage
|
9 |
from PIL import Image
|
10 |
import matplotlib.pyplot as plt
|
11 |
model = load_model('Densenet.h5')
|
|
|
65 |
mean = np.mean(img_array, axis=(0, 1))
|
66 |
std = np.std(img_array, axis=(0, 1))
|
67 |
img_array = (img_array - mean) / std
|
68 |
+
zoom_factor = 1.2 # 20% zoom
|
69 |
+
img_array = ndimage.zoom(img_array, zoom_factor)
|
70 |
+
|
71 |
+
# Crop the zoomed image to maintain the original size
|
72 |
+
zoomed_img = zoomed_img[:224, :224, :]
|
73 |
|
74 |
|
75 |
predictions1 = model.predict(img_array)
|