MedMagik commited on
Commit
8c7f320
·
verified ·
1 Parent(s): 3debbea

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +7 -3
app.py CHANGED
@@ -8,6 +8,7 @@ import numpy as np
8
  from scipy import ndimage
9
  from PIL import Image
10
  import matplotlib.pyplot as plt
 
11
  model = load_model('Densenet.h5')
12
  model.load_weights("pretrained_model.h5")
13
  layer_name = 'conv5_block16_concat'
@@ -63,11 +64,14 @@ def classify_image(img):
63
  mean = np.mean(img_array, axis=(0, 1))
64
  std = np.std(img_array, axis=(0, 1))
65
  img_array = (img_array - mean) / std
66
- zoom_factor = 1.2 # 20% zoom
 
 
 
 
67
 
68
- img_array = np.expand_dims(img_array, axis=0)
69
  img_array = preprocess_input(img_array)
70
- img_array = ndimage.zoom(img_array, zoom_factor, order=1)
71
 
72
 
73
  predictions1 = model.predict(img_array)
 
8
  from scipy import ndimage
9
  from PIL import Image
10
  import matplotlib.pyplot as plt
11
+ import cv2
12
  model = load_model('Densenet.h5')
13
  model.load_weights("pretrained_model.h5")
14
  layer_name = 'conv5_block16_concat'
 
64
  mean = np.mean(img_array, axis=(0, 1))
65
  std = np.std(img_array, axis=(0, 1))
66
  img_array = (img_array - mean) / std
67
+ zoom_factor = 1.2
68
+ zoomed_img = cv2.resize(img_array, (0, 0), fx=zoom_factor, fy=zoom_factor)
69
+
70
+ # Crop the zoomed image to maintain the original size
71
+ zoomed_img = zoomed_img[:224, :224, :]# 20% zoom
72
 
73
+ img_array = np.expand_dims(zoomed_img, axis=0)
74
  img_array = preprocess_input(img_array)
 
75
 
76
 
77
  predictions1 = model.predict(img_array)