Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -8,7 +8,7 @@ import numpy as np
|
|
8 |
model = load_model('Densenet.h5')
|
9 |
model.load_weights("pretrained_model.h5")
|
10 |
class_names = ['Cardiomegaly', 'Emphysema', 'Effusion', 'Hernia', 'Infiltration', 'Mass', 'Nodule', 'Atelectasis', 'Pneumothorax', 'Pleural_Thickening', 'Pneumonia', 'Fibrosis', 'Edema', 'Consolidation']
|
11 |
-
def custom_decode_predictions(predictions,
|
12 |
|
13 |
decoded_predictions = []
|
14 |
for pred in predictions:
|
@@ -21,7 +21,7 @@ def custom_decode_predictions(predictions, class_lables):
|
|
21 |
|
22 |
def classify_image(img):
|
23 |
img_array = img_to_array(img)
|
24 |
-
img_array = np.expand_dims(img_array, axis=0)
|
25 |
img_array = preprocess_input(img_array)
|
26 |
predictions = model.predict(img_array)
|
27 |
decoded_predictions = custom_decode_predictions(predictions, class_names)
|
|
|
8 |
model = load_model('Densenet.h5')
|
9 |
model.load_weights("pretrained_model.h5")
|
10 |
class_names = ['Cardiomegaly', 'Emphysema', 'Effusion', 'Hernia', 'Infiltration', 'Mass', 'Nodule', 'Atelectasis', 'Pneumothorax', 'Pleural_Thickening', 'Pneumonia', 'Fibrosis', 'Edema', 'Consolidation']
|
11 |
+
def custom_decode_predictions(predictions, class_labels):
|
12 |
|
13 |
decoded_predictions = []
|
14 |
for pred in predictions:
|
|
|
21 |
|
22 |
def classify_image(img):
|
23 |
img_array = img_to_array(img)
|
24 |
+
img_array = np.expand_dims(img_array, axis=0)
|
25 |
img_array = preprocess_input(img_array)
|
26 |
predictions = model.predict(img_array)
|
27 |
decoded_predictions = custom_decode_predictions(predictions, class_names)
|