{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": { "colab": {}, "colab_type": "code", "id": "Je3yV0Wnn5x8", "scrolled": true }, "outputs": [], "source": [ "import numpy as np\n", "import pandas as pd\n", "import seaborn as sns\n", "import matplotlib.pyplot as plt\n", "\n", "import pandas as pd\n", "import numpy as np\n", "import tensorflow as tf\n", "from tensorflow.keras.applications import ResNet50\n", "from tensorflow.keras.layers import Dense, GlobalAveragePooling2D, Dropout\n", "from tensorflow.keras.models import Model\n", "from tensorflow.keras.optimizers import Adam\n", "from tensorflow.keras.regularizers import l2\n", "from tensorflow.keras.preprocessing.image import ImageDataGenerator\n", "from tensorflow.keras.callbacks import EarlyStopping, ReduceLROnPlateau\n", "from sklearn.model_selection import train_test_split\n", "from tf_keras_vis.gradcam import Gradcam\n", "from tf_keras_vis.utils import normalize\n", "from keras import backend as K\n", "\n", "from keras.models import load_model\n", "\n" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [], "source": [ "import util" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "from keras.applications.densenet import DenseNet121" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "batch_size = 64" ] }, { "cell_type": "code", "execution_count": 5, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 224 }, "colab_type": "code", "id": "5JRSHB7i0t_6", "outputId": "69830050-af47-4ebc-946d-d411d0cbdf5b" }, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
ImageAtelectasisCardiomegalyConsolidationEdemaEffusionEmphysemaFibrosisHerniaInfiltrationMassNodulePatientIdPleural_ThickeningPneumoniaPneumothorax
000008270_015.png000000000008270000
100029855_001.png1000100010029855000
200001297_000.png000000000001297100
300012359_002.png0000000000012359000
400017951_001.png0000000010017951000
\n", "
" ], "text/plain": [ " Image Atelectasis Cardiomegaly Consolidation Edema \\\n", "0 00008270_015.png 0 0 0 0 \n", "1 00029855_001.png 1 0 0 0 \n", "2 00001297_000.png 0 0 0 0 \n", "3 00012359_002.png 0 0 0 0 \n", "4 00017951_001.png 0 0 0 0 \n", "\n", " Effusion Emphysema Fibrosis Hernia Infiltration Mass Nodule \\\n", "0 0 0 0 0 0 0 0 \n", "1 1 0 0 0 1 0 0 \n", "2 0 0 0 0 0 0 0 \n", "3 0 0 0 0 0 0 0 \n", "4 0 0 0 0 1 0 0 \n", "\n", " PatientId Pleural_Thickening Pneumonia Pneumothorax \n", "0 8270 0 0 0 \n", "1 29855 0 0 0 \n", "2 1297 1 0 0 \n", "3 12359 0 0 0 \n", "4 17951 0 0 0 " ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "train_df = pd.read_csv(\"train-small.csv\")\n", "valid_df = pd.read_csv(\"valid-small.csv\")\n", "\n", "test_df = pd.read_csv(\"test.csv\")\n", "\n", "train_df.head()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "import tensorflow as tf" ] }, { "cell_type": "code", "execution_count": 6, "metadata": { "colab": {}, "colab_type": "code", "id": "mrDoMlsun5yE" }, "outputs": [], "source": [ "labels = ['Cardiomegaly', \n", " 'Emphysema', \n", " 'Effusion', \n", " 'Hernia', \n", " 'Infiltration', \n", " 'Mass', \n", " 'Nodule', \n", " 'Atelectasis',\n", " 'Pneumothorax',\n", " 'Pleural_Thickening', \n", " 'Pneumonia', \n", " 'Fibrosis', \n", " 'Edema', \n", " 'Consolidation']" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "
\n", "\n", " Hints\n", "\n", "

\n", "

\n", "

" ] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": {}, "colab_type": "code", "id": "Jz6dwTSrUcKc" }, "outputs": [], "source": [ "# Checking for Data Leakage\n", "def check_for_leakage(df1, df2, patient_col):\n", " \n", " df1_patients_unique = set(df1[patient_col].values)\n", " df2_patients_unique = set(df2[patient_col].values)\n", " \n", " patients_in_both_groups = df1_patients_unique.intersection(df2_patients_unique)\n", "\n", " leakage = len(patients_in_both_groups) > 0\n", " \n", " return leakage" ] }, { "cell_type": "code", "execution_count": 9, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 51 }, "colab_type": "code", "id": "AMF3Wd3yW-RS", "outputId": "e417c9ea-c06b-49a7-af35-d802bc1725eb" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "leakage between train and test: False\n", "leakage between valid and test: False\n" ] } ], "source": [ "print(\"leakage between train and test: {}\".format(check_for_leakage(train_df, test_df, 'PatientId')))\n", "print(\"leakage between valid and test: {}\".format(check_for_leakage(valid_df, test_df, 'PatientId')))" ] }, { "cell_type": "code", "execution_count": 7, "metadata": { "colab": {}, "colab_type": "code", "id": "nAgVGOAju8pX" }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Found 1000 validated image filenames.\n", "Found 200 validated image filenames.\n", "Found 420 validated image filenames.\n" ] } ], "source": [ "datagen = ImageDataGenerator(\n", " preprocessing_function=tf.keras.applications.resnet.preprocess_input,\n", " samplewise_center=True,\n", " samplewise_std_normalization= True,\n", " shear_range=0.2,\n", " zoom_range=0.2,\n", " horizontal_flip=False)\n", "\n", "train_generator = datagen.flow_from_dataframe(\n", " dataframe= train_df,\n", " directory= \"Images/\",\n", " x_col='Image',\n", " y_col=labels,\n", " target_size=(320, 320),\n", " batch_size=batch_size,\n", " class_mode=\"raw\"\n", " \n", ")\n", "\n", "val_generator = datagen.flow_from_dataframe(\n", " dataframe= valid_df,\n", " directory= \"Images/\",\n", " x_col='Image',\n", " y_col=labels,\n", " target_size=(320, 320),\n", " batch_size=batch_size,\n", " class_mode=\"raw\"\n", " \n", ")\n", "\n", "test_generator = datagen.flow_from_dataframe(\n", " dataframe= test_df,\n", " directory= \"Images/\",\n", " x_col='Image',\n", " y_col=labels,\n", " target_size=(320, 320),\n", " batch_size=batch_size,\n", " class_mode = \"raw\", \n", " shuffle=False )\n" ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": {}, "colab_type": "code", "id": "UtWEAfAnrhMq" }, "outputs": [], "source": [ "\n", " " ] }, { "cell_type": "code", "execution_count": null, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 119 }, "colab_type": "code", "id": "rNE3HWRbn5yL", "outputId": "4c6b1c25-a33d-42e0-f442-40971ca52a3f", "scrolled": true }, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 365 }, "colab_type": "code", "id": "-OvyPe5en5yR", "outputId": "077747ad-7ab8-463d-8335-6b243cb29e63" }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAIlCAYAAAAtwwkDAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAB4d0lEQVR4nO3dd3yN5/8/8NfJlkgihAwyqRGEiJkItWLXrBg1KtpPKEHQUrW32nuLULOUqhkrtVUkZuwQIzErUZF9/f7wy/k6zgmC+z5x5/V8PM6DXOc65/3OOued676GSgghQERERPSZM9B3AkRERESfAosaIiIiUgQWNURERKQILGqIiIhIEVjUEBERkSKwqCEiIiJFYFFDREREisCihoiIiBSBRQ0REREpAosaoo8QGhoKlUql8zZ48GB9p5dv7d+/H1WrVoWFhQVUKhW2bt2qs9+tW7dy/P6pVCqMHj1akvyyf25Onz79Uc9z+PBhdOjQAcWLF4eJiQmsra3h4+ODhQsX4sWLF+p+rq6u6NGjx0dmTZT3Gek7ASIlWLlyJcqWLavR5ujoqKds8jchBDp06IDSpUvjzz//hIWFBcqUKfPWx/Tr1w+dO3fWai9RooRUaX60UaNGYezYsfDx8cG4ceNQsmRJJCcn49ixYxg9ejSuXr2KmTNn6jtNIlmxqCH6BCpUqICqVau+V9/09HSoVCoYGfHXTwr379/H06dP0aZNGzRo0OC9HuPs7IyaNWtKnNmns2nTJowdOxaBgYFYunQpVCqV+r6mTZvixx9/xPHjx/WYIZF+8PITkYQOHToElUqF1atXY9CgQShevDhMTU1x/fp1AMC+ffvQoEEDWFlZwdzcHL6+vti/f7/W8+zYsQOVK1eGqakp3NzcMG3aNIwePVrjzSz7UkpoaKjW43VdSrl27Ro6d+6MYsWKwdTUFOXKlcP8+fN15r9u3ToMHz4cjo6OsLKyQsOGDXHlyhWtOLt370aDBg1gbW0Nc3NzlCtXDpMmTQIArF69GiqVSueb7dixY2FsbIz79++/9et55MgRNGjQAJaWljA3N4ePjw927Nihvn/06NHq0ZWffvoJKpUKrq6ub33O9xUeHo5WrVqhRIkSMDMzQ6lSpfC///0Pjx8/1up7+fJldOrUCXZ2djA1NYWzszO6deuG1NRUjX7Pnz9H7969YWtriyJFiqBt27bv/BoAr75eNjY2mDNnjsbPQDZLS0v4+/vn+PiUlBQMGjQIlStXhrW1NQoXLoxatWph27ZtWn03bdqEGjVqqL+n7u7u6Nmzp/r+rKwsjB8/HmXKlEGBAgVQqFAheHp6Yvbs2e/8PIg+NRY1RJ9AZmYmMjIyNG6vGzZsGOLi4rBo0SJs374dxYoVw5o1a+Dv7w8rKyusWrUKGzduROHChdG4cWONwmb//v1o1aoVLC0tsX79evz666/YuHEjVq5c+cH5Xrp0CdWqVcOFCxcwffp0/PXXX2jevDmCg4MxZswYrf4///wzbt++jWXLlmHJkiW4du0aWrZsiczMTHWf5cuXo1mzZsjKylJ/nsHBwbh79y4AICAgAPb29lqFU0ZGBhYvXow2bdq89ZJdREQE6tevj8TERCxfvhzr1q2DpaUlWrZsiQ0bNgAAevXqhS1btgB4dUnp+PHj+OOPP9759cjKytL6/r35Pbxx4wZq1aqFhQsXYu/evRg5ciROnjyJ2rVrIz09Xd3v7NmzqFatGk6cOIGxY8di165dmDRpElJTU5GWlqbxnL169YKxsTHWrl2LqVOn4tChQ/jmm2/emmt8fDwuXLgAf39/mJubv/Nz0yU1NRVPnz7F4MGDsXXrVqxbtw61a9dG27ZtERYWpu53/PhxBAQEwN3dHevXr8eOHTswcuRIja/N1KlTMXr0aHTq1Ak7duzAhg0bEBgYiGfPnn1QbkQfRRDRB1u5cqUAoPOWnp4uDh48KACIOnXqaDzuxYsXonDhwqJly5Ya7ZmZmaJSpUqievXq6rYaNWoIR0dH8fLlS3VbUlKSKFy4sHj9Vzg2NlYAECtXrtTKE4AYNWqU+uPGjRuLEiVKiMTERI1+ffv2FWZmZuLp06dCCKHOv1mzZhr9Nm7cKACI48ePCyGEeP78ubCyshK1a9cWWVlZOX69Ro0aJUxMTMSDBw/UbRs2bBAARERERI6PE0KImjVrimLFionnz5+r2zIyMkSFChVEiRIl1HGzvw6//vrrW5/v9b453Q4fPqzzcVlZWSI9PV3cvn1bABDbtm1T31e/fn1RqFAh8fDhwxzjZv/c9OnTR6N96tSpAoCIj4/P8bEnTpwQAMTQoUPf+fllc3FxEd27d8/x/oyMDJGeni4CAwOFl5eXun3atGkCgHj27FmOj23RooWoXLnye+dCJCWO1BB9AmFhYfjnn380bq/PmWnXrp1G/2PHjuHp06fo3r27xshAVlYWmjRpgn/++QcvXrzAixcv8M8//6Bt27YwMzNTPz57hOJDpKSkYP/+/WjTpg3Mzc014jdr1gwpKSk4ceKExmO++uorjY89PT0BALdv31Z/PklJSejTp4/OyyHZevfuDQBYunSpum3evHmoWLEi6tSpk+PjXrx4gZMnT6J9+/YoWLCgut3Q0BBdu3bF3bt3dV4Oe1/9+/fX+v79888/qFy5srrPw4cPERQUBCcnJxgZGcHY2BguLi4AgJiYGABAcnIyIiIi0KFDBxQtWvSdcd/1dZXSpk2b4Ovri4IFC6o/n+XLl6s/FwCoVq0aAKBDhw7YuHEj7t27p/U81atXx9mzZ9GnTx/s2bMHSUlJkudOlBPOVCT6BMqVK/fWicIODg4aHz948AAA0L59+xwf8/TpU6hUKmRlZcHe3l7rfl1t7+PJkyfIyMjA3LlzMXfuXJ193pwnUqRIEY2PTU1NAQAvX74EADx69AjAu1cL2dnZISAgAIsXL8bQoUNx8eJFHD58GIsXL37r4/79918IIbS+jsD/rTJ78uTJW5/jbUqUKPHW719WVhb8/f1x//59jBgxAhUrVoSFhQWysrJQs2ZN9dfh33//RWZm5nuvmnrX11UXZ2dnAEBsbOx7xdBly5Yt6NChA77++msMGTIE9vb2MDIywsKFC7FixQp1vzp16mDr1q2YM2eOek5Q+fLlMXz4cHTq1AnAq0urFhYWWLNmDRYtWgRDQ0PUqVMHU6ZMee/J80SfCosaIhm8OXpha2sLAJg7d26Oq27s7OzUK6USEhK07n+zLXsk583JqG++2dvY2KhHOH744Qedsd3c3N7y2WjLHpXInj/zNv3798fq1auxbds27N69G4UKFUKXLl3e+hgbGxsYGBggPj5e677sibXZX1MpXLhwAWfPnkVoaCi6d++ubs+e8J2tcOHCMDQ0fK+vw4dycHBAxYoVsXfvXiQnJ3/QvJo1a9bAzc0NGzZs0PjZfPNnBwBatWqFVq1aITU1FSdOnMCkSZPQuXNnuLq6olatWjAyMkJISAhCQkLw7Nkz7Nu3Dz///DMaN26MO3fufPC8H6IPwctPRHrg6+uLQoUK4dKlS6hatarOm4mJCSwsLFC9enVs2bIFKSkp6sc/f/4c27dv13hOOzs7mJmZ4dy5cxrtb65oMTc3R7169RAVFQVPT0+dsd8cQXgXHx8fWFtbY9GiRRBCvLWvt7c3fHx8MGXKFPz222/o0aMHLCws3voYCwsL1KhRA1u2bNEYxcjKysKaNWtQokQJlC5dOlc550b2G3/2SEq2N0eYChQogLp162LTpk06V0V9KiNGjMC///6L4OBgnV/v//77D3v37s3x8SqVCiYmJhoFTUJCgs7VT9lMTU1Rt25dTJkyBQAQFRWl1adQoUJo3749fvjhBzx9+hS3bt3KxWdF9PE4UkOkBwULFsTcuXPRvXt3PH36FO3bt0exYsXw6NEjnD17Fo8ePcLChQsBAOPGjUOTJk3QqFEjDBo0CJmZmZgyZQosLCzw9OlT9XOqVCp88803WLFiBUqWLIlKlSrh1KlTWLt2rVb82bNno3bt2vDz80Pv3r3h6uqK58+f4/r169i+fTsOHDiQ689n+vTp6NWrFxo2bIjvvvsOdnZ2uH79Os6ePYt58+Zp9O/fvz8CAgKgUqnQp0+f94oxadIkNGrUCPXq1cPgwYNhYmKCBQsW4MKFC1i3bt1b5/K8S1xcnNY8IuDVCFTJkiVRtmxZlCxZEkOHDoUQAoULF8b27dsRHh6u9ZgZM2agdu3aqFGjBoYOHYpSpUrhwYMH+PPPP7F48WJYWlp+cJ7Zvv76a4wYMQLjxo3D5cuXERgYqN587+TJk1i8eDECAgJyXNbdokULbNmyBX369EH79u1x584djBs3Dg4ODrh27Zq638iRI3H37l00aNAAJUqUwLNnzzB79mwYGxujbt26AICWLVuq92kqWrQobt++jVmzZsHFxQVffPHFR3+uRLmi33nKRJ+37FUs//zzj877s1cPbdq0Sef9ERERonnz5qJw4cLC2NhYFC9eXDRv3lyr/59//ik8PT2FiYmJcHZ2FpMnTxajRo0Sb/4KJyYmil69egk7OzthYWEhWrZsKW7duqW1+kmIVyt/evbsKYoXLy6MjY1F0aJFhY+Pjxg/fvw7889ppdXOnTtF3bp1hYWFhTA3NxceHh5iypQpWp93amqqMDU1FU2aNNH5dcnJ4cOHRf369YWFhYUoUKCAqFmzpti+fbvO3D7F6qcuXbqo+166dEk0atRIWFpaChsbG/H111+LuLg4nV/bS5cuia+//loUKVJE/T3r0aOHSElJEULk/HOT/fU+ePDge309IiIiRPv27YWDg4MwNjYWVlZWolatWuLXX38VSUlJ6n66Vj9NnjxZuLq6ClNTU1GuXDmxdOlSrZ+pv/76SzRt2lQUL15cmJiYiGLFiolmzZpprAqbPn268PHxEba2turPNTAwUNy6deu9PgeiT0klxDvGiokoTxo9ejTGjBnzzss9edH27dvx1VdfYceOHWjWrJm+0yEiheDlJyKSzaVLl3D79m31brZNmzbVd0pEpCCcKExEsunTpw+++uor2NjYfPQ8GCKiN/HyExERESkCR2qIiIhIEVjUEBERkSKwqCEiIiJFyFern7KysnD//n1YWlpygiIREdFnQgiB58+fw9HREQYGOY/H5Kui5v79+3ByctJ3GkRERPQB7ty589YDY/NVUZO9PfmdO3dgZWWl52yIiIjofSQlJcHJyemdx4zkq6Im+5KTlZUVixoiIqLPzLumjnCiMBERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESKwKKGiIiIFIFFDRERESkCixoiIiJShA8qahYsWAA3NzeYmZnB29sbhw8fzrFvfHw8OnfujDJlysDAwAADBgzQ6vPll19CpVJp3Zo3b67uM3r0aK377e3tPyR9IiIiUqBcFzUbNmzAgAEDMHz4cERFRcHPzw9NmzZFXFyczv6pqakoWrQohg8fjkqVKunss2XLFsTHx6tvFy5cgKGhIb7++muNfuXLl9fod/78+dymT0RERAqV6wMtZ8yYgcDAQPTq1QsAMGvWLOzZswcLFy7EpEmTtPq7urpi9uzZAIAVK1bofM7ChQtrfLx+/XqYm5trFTVGRkYcnSEiIiKdcjVSk5aWhsjISPj7+2u0+/v749ixY58sqeXLl6Njx46wsLDQaL927RocHR3h5uaGjh074ubNm299ntTUVCQlJWnciIiISJlyNVLz+PFjZGZmws7OTqPdzs4OCQkJnyShU6dO4cKFC1i+fLlGe40aNRAWFobSpUvjwYMHGD9+PHx8fHDx4kUUKVJE53NNmjQJY8aM+SR5Eb0v16E7ZIlza3Lzd3ciIspHPmiisEql0vhYCKHV9qGWL1+OChUqoHr16hrtTZs2Rbt27VCxYkU0bNgQO3a8euNYtWpVjs81bNgwJCYmqm937tz5JDkSERFR3pOrkRpbW1sYGhpqjco8fPhQa/TmQyQnJ2P9+vUYO3bsO/taWFigYsWKuHbtWo59TE1NYWpq+tF5ERERUd6Xq5EaExMTeHt7Izw8XKM9PDwcPj4+H53Mxo0bkZqaim+++eadfVNTUxETEwMHB4ePjktERESfv1yvfgoJCUHXrl1RtWpV1KpVC0uWLEFcXByCgoIAvLrkc+/ePYSFhakfEx0dDQD477//8OjRI0RHR8PExAQeHh4az718+XK0bt1a5xyZwYMHo2XLlnB2dsbDhw8xfvx4JCUloXv37rn9FIiIiEiBcl3UBAQE4MmTJxg7dizi4+NRoUIF7Ny5Ey4uLgBebbb35p41Xl5e6v9HRkZi7dq1cHFxwa1bt9TtV69exZEjR7B3716dce/evYtOnTrh8ePHKFq0KGrWrIkTJ06o4xIREVH+phJCCH0nIZekpCRYW1sjMTERVlZW+k6HFIqrn4iIPq33ff/m2U9ERESkCCxqiIiISBFY1BAREZEisKghIiIiRWBRQ0RERIrAooaIiIgUgUUNERERKQKLGiIiIlIEFjVERESkCCxqiIiISBFY1BAREZEisKghIiIiRWBRQ0RERIrAooaIiIgUgUUNERERKQKLGiIiIlIEFjVERESkCCxqiIiISBFY1BAREZEisKghIiIiRWBRQ0RERIrAooaIiIgUgUUNERERKQKLGiIiIlIEFjVERESkCCxqiIiISBFY1BAREZEisKghIiIiRWBRQ0RERIrAooaIiIgUgUUNERERKQKLGiIiIlIEFjVERESkCCxqiIiISBFY1BAREZEisKghIiIiRWBRQ0RERIrAooaIiIgUgUUNERERKQKLGiIiIlKEDypqFixYADc3N5iZmcHb2xuHDx/OsW98fDw6d+6MMmXKwMDAAAMGDNDqExoaCpVKpXVLSUn54LhERESUv+S6qNmwYQMGDBiA4cOHIyoqCn5+fmjatCni4uJ09k9NTUXRokUxfPhwVKpUKcfntbKyQnx8vMbNzMzsg+MSERFR/pLrombGjBkIDAxEr169UK5cOcyaNQtOTk5YuHChzv6urq6YPXs2unXrBmtr6xyfV6VSwd7eXuP2MXGBVwVVUlKSxo2IiIiUKVdFTVpaGiIjI+Hv76/R7u/vj2PHjn1UIv/99x9cXFxQokQJtGjRAlFRUR8dd9KkSbC2tlbfnJycPipHIiIiyrtyVdQ8fvwYmZmZsLOz02i3s7NDQkLCBydRtmxZhIaG4s8//8S6detgZmYGX19fXLt27aPiDhs2DImJierbnTt3PjhHIiIiytuMPuRBKpVK42MhhFZbbtSsWRM1a9ZUf+zr64sqVapg7ty5mDNnzgfHNTU1hamp6QfnRURERJ+PXI3U2NrawtDQUGt05OHDh1qjKB+VlIEBqlWrph6pkSsuERERfb5yVdSYmJjA29sb4eHhGu3h4eHw8fH5ZEkJIRAdHQ0HBwdZ4xIREdHnK9eXn0JCQtC1a1dUrVoVtWrVwpIlSxAXF4egoCAAr+ax3Lt3D2FhYerHREdHA3g1GfjRo0eIjo6GiYkJPDw8AABjxoxBzZo18cUXXyApKQlz5sxBdHQ05s+f/95xiYiIKH/LdVETEBCAJ0+eYOzYsYiPj0eFChWwc+dOuLi4AHi12d6be8d4eXmp/x8ZGYm1a9fCxcUFt27dAgA8e/YM33//PRISEmBtbQ0vLy/8/fffqF69+nvHJSIiovxNJYQQ+k5CLklJSbC2tkZiYiKsrKz0nQ4plOvQHbLEuTW5uSxxiIj07X3fv3n2ExERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESKwKKGiIiIFIFFDRERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESKwKKGiIiIFIFFDRERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESKwKKGiIiIFIFFDRERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESKwKKGiIiIFIFFDRERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIhjpOwFSDtehO2SLdWtyc9liERHR54EjNURERKQIH1TULFiwAG5ubjAzM4O3tzcOHz6cY9/4+Hh07twZZcqUgYGBAQYMGKDVZ+nSpfDz84ONjQ1sbGzQsGFDnDp1SqPP6NGjoVKpNG729vYfkj4REREpUK6Lmg0bNmDAgAEYPnw4oqKi4Ofnh6ZNmyIuLk5n/9TUVBQtWhTDhw9HpUqVdPY5dOgQOnXqhIMHD+L48eNwdnaGv78/7t27p9GvfPnyiI+PV9/Onz+f2/SJiIhIoXJd1MyYMQOBgYHo1asXypUrh1mzZsHJyQkLFy7U2d/V1RWzZ89Gt27dYG1trbPPb7/9hj59+qBy5cooW7Ysli5diqysLOzfv1+jn5GREezt7dW3okWL5jZ9IiIiUqhcFTVpaWmIjIyEv7+/Rru/vz+OHTv2yZJKTk5Geno6ChcurNF+7do1ODo6ws3NDR07dsTNmzff+jypqalISkrSuBEREZEy5aqoefz4MTIzM2FnZ6fRbmdnh4SEhE+W1NChQ1G8eHE0bNhQ3VajRg2EhYVhz549WLp0KRISEuDj44MnT57k+DyTJk2CtbW1+ubk5PTJciQiIqK85YMmCqtUKo2PhRBabR9q6tSpWLduHbZs2QIzMzN1e9OmTdGuXTtUrFgRDRs2xI4dr5YPr1q1KsfnGjZsGBITE9W3O3fufJIciYiIKO/J1T41tra2MDQ01BqVefjwodbozYeYNm0aJk6ciH379sHT0/OtfS0sLFCxYkVcu3Ytxz6mpqYwNTX96LyIiIgo78vVSI2JiQm8vb0RHh6u0R4eHg4fH5+PSuTXX3/FuHHjsHv3blStWvWd/VNTUxETEwMHB4ePiktERETKkOsdhUNCQtC1a1dUrVoVtWrVwpIlSxAXF4egoCAAry753Lt3D2FhYerHREdHAwD+++8/PHr0CNHR0TAxMYGHhweAV5ecRowYgbVr18LV1VU9ElSwYEEULFgQADB48GC0bNkSzs7OePjwIcaPH4+kpCR07979o74AREREpAy5LmoCAgLw5MkTjB07FvHx8ahQoQJ27twJFxcXAK8223tzzxovLy/1/yMjI7F27Vq4uLjg1q1bAF5t5peWlob27dtrPG7UqFEYPXo0AODu3bvo1KkTHj9+jKJFi6JmzZo4ceKEOi4RERHlbyohhNB3EnJJSkqCtbU1EhMTYWVlpe90FIdnP70i19chL38NiIg+pfd9/+bZT0RERKQILGqIiIhIEVjUEBERkSKwqCEiIiJFYFFDREREisCihoiIiBSBRQ0REREpAosaIiIiUgQWNURERKQILGqIiIhIEVjUEBERkSKwqCEiIiJFYFFDREREisCihoiIiBSBRQ0REREpAosaIiIiUgQWNURERKQILGqIiIhIEVjUEBERkSKwqCEiIiJFYFFDREREisCihoiIiBSBRQ0REREpAosaIiIiUgQWNURERKQILGqIiIhIEVjUEBERkSKwqCEiIiJFYFFDREREisCihoiIiBSBRQ0REREpgpG+EyAikoLr0B2yxLk1ubkscYjo3ThSQ0RERIrAooaIiIgUgUUNERERKQKLGiIiIlIEFjVERESkCCxqiIiISBFY1BAREZEifFBRs2DBAri5ucHMzAze3t44fPhwjn3j4+PRuXNnlClTBgYGBhgwYIDOfps3b4aHhwdMTU3h4eGBP/7446PiEhERUf6S66Jmw4YNGDBgAIYPH46oqCj4+fmhadOmiIuL09k/NTUVRYsWxfDhw1GpUiWdfY4fP46AgAB07doVZ8+eRdeuXdGhQwecPHnyg+MSERFR/qISQojcPKBGjRqoUqUKFi5cqG4rV64cWrdujUmTJr31sV9++SUqV66MWbNmabQHBAQgKSkJu3btUrc1adIENjY2WLdu3UfHzZaUlARra2skJibCysrqvR5D70+uHVyBvL2LK3eyzRv4fSBSjvd9/87VSE1aWhoiIyPh7++v0e7v749jx459WKZ4NVLz5nM2btxY/ZwfGjc1NRVJSUkaNyIiIlKmXBU1jx8/RmZmJuzs7DTa7ezskJCQ8MFJJCQkvPU5PzTupEmTYG1trb45OTl9cI5ERESUt33QRGGVSqXxsRBCq02K58xt3GHDhiExMVF9u3PnzkflSERERHlXrk7ptrW1haGhodboyMOHD7VGUXLD3t7+rc/5oXFNTU1hamr6wXkRERHR5yNXIzUmJibw9vZGeHi4Rnt4eDh8fHw+OIlatWppPefevXvVzylVXCIiIlKOXI3UAEBISAi6du2KqlWrolatWliyZAni4uIQFBQE4NUln3v37iEsLEz9mOjoaADAf//9h0ePHiE6OhomJibw8PAAAPTv3x916tTBlClT0KpVK2zbtg379u3DkSNH3jsuERER5W+5LmoCAgLw5MkTjB07FvHx8ahQoQJ27twJFxcXAK8223tz7xgvLy/1/yMjI7F27Vq4uLjg1q1bAAAfHx+sX78ev/zyC0aMGIGSJUtiw4YNqFGjxnvHJSIiovwt1/vUfM64T420uE/NK9wfJW/g94FIOSTZp4aIiIgor2JRQ0RERIrAooaIiIgUgUUNERERKQKLGiIiIlIEFjVERESkCCxqiIiISBFY1BAREZEisKghIiIiRWBRQ0RERIrAooaIiIgUgUUNERERKQKLGiIiIlIEFjVERESkCCxqiIiISBFY1BAREZEisKghIiIiRWBRQ0RERIrAooaIiIgUgUUNERERKQKLGiIiIlIEFjVERESkCCxqiIiISBFY1BAREZEisKghIiIiRWBRQ0RERIrAooaIiIgUgUUNERERKQKLGiIiIlIEFjVERESkCCxqiIiISBFY1BAREZEisKghIiIiRWBRQ0RERIrAooaIiIgUgUUNERERKQKLGiIiIlIEFjVERESkCCxqiIiISBFY1BAREZEifFBRs2DBAri5ucHMzAze3t44fPjwW/tHRETA29sbZmZmcHd3x6JFizTu//LLL6FSqbRuzZs3V/cZPXq01v329vYfkj4REREpUK6Lmg0bNmDAgAEYPnw4oqKi4Ofnh6ZNmyIuLk5n/9jYWDRr1gx+fn6IiorCzz//jODgYGzevFndZ8uWLYiPj1ffLly4AENDQ3z99dcaz1W+fHmNfufPn89t+kRERKRQRrl9wIwZMxAYGIhevXoBAGbNmoU9e/Zg4cKFmDRpklb/RYsWwdnZGbNmzQIAlCtXDqdPn8a0adPQrl07AEDhwoU1HrN+/XqYm5trFTVGRka5Gp1JTU1Famqq+uOkpKT3fiwRERF9XnI1UpOWlobIyEj4+/trtPv7++PYsWM6H3P8+HGt/o0bN8bp06eRnp6u8zHLly9Hx44dYWFhodF+7do1ODo6ws3NDR07dsTNmzffmu+kSZNgbW2tvjk5Ob3rUyQiIqLPVK6KmsePHyMzMxN2dnYa7XZ2dkhISND5mISEBJ39MzIy8PjxY63+p06dwoULF9QjQdlq1KiBsLAw7NmzB0uXLkVCQgJ8fHzw5MmTHPMdNmwYEhMT1bc7d+6876dKREREn5lcX34CAJVKpfGxEEKr7V39dbUDr0ZpKlSogOrVq2u0N23aVP3/ihUrolatWihZsiRWrVqFkJAQnXFNTU1hamr69k+GiIiIFCFXIzW2trYwNDTUGpV5+PCh1mhMNnt7e539jYyMUKRIEY325ORkrF+/XmuURhcLCwtUrFgR165dy82nQERERAqVq6LGxMQE3t7eCA8P12gPDw+Hj4+PzsfUqlVLq//evXtRtWpVGBsba7Rv3LgRqamp+Oabb96ZS2pqKmJiYuDg4JCbT4GIiIgUKtdLukNCQrBs2TKsWLECMTExGDhwIOLi4hAUFATg1TyWbt26qfsHBQXh9u3bCAkJQUxMDFasWIHly5dj8ODBWs+9fPlytG7dWmsEBwAGDx6MiIgIxMbG4uTJk2jfvj2SkpLQvXv33H4KREREpEC5nlMTEBCAJ0+eYOzYsYiPj0eFChWwc+dOuLi4AADi4+M19qxxc3PDzp07MXDgQMyfPx+Ojo6YM2eOejl3tqtXr+LIkSPYu3evzrh3795Fp06d8PjxYxQtWhQ1a9bEiRMn1HGJiIgof/ugicJ9+vRBnz59dN4XGhqq1Va3bl2cOXPmrc9ZunRp9QRiXdavX5+rHImIiCh/4dlPREREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESKwKKGiIiIFIFFDRERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESKwKKGiIiIFIFFDRERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESKwKKGiIiIFIFFDRERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESKwKKGiIiIFIFFDRERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIhjpOwEiUh7XoTtkiXNrcnNZ4hDR54EjNURERKQILGqIiIhIEVjUEBERkSJ8UFGzYMECuLm5wczMDN7e3jh8+PBb+0dERMDb2xtmZmZwd3fHokWLNO4PDQ2FSqXSuqWkpHxUXCIiIso/cl3UbNiwAQMGDMDw4cMRFRUFPz8/NG3aFHFxcTr7x8bGolmzZvDz80NUVBR+/vlnBAcHY/PmzRr9rKysEB8fr3EzMzP74LhERESUv+S6qJkxYwYCAwPRq1cvlCtXDrNmzYKTkxMWLlyos/+iRYvg7OyMWbNmoVy5cujVqxd69uyJadOmafRTqVSwt7fXuH1MXCIiIspfclXUpKWlITIyEv7+/hrt/v7+OHbsmM7HHD9+XKt/48aNcfr0aaSnp6vb/vvvP7i4uKBEiRJo0aIFoqKiPiouAKSmpiIpKUnjRkRERMqUq6Lm8ePHyMzMhJ2dnUa7nZ0dEhISdD4mISFBZ/+MjAw8fvwYAFC2bFmEhobizz//xLp162BmZgZfX19cu3btg+MCwKRJk2Btba2+OTk55ebTJSIios/IB00UVqlUGh8LIbTa3tX/9faaNWvim2++QaVKleDn54eNGzeidOnSmDt37kfFHTZsGBITE9W3O3fuvPuTIyIios9SrnYUtrW1haGhodboyMOHD7VGUbLZ29vr7G9kZIQiRYrofIyBgQGqVaumHqn5kLgAYGpqClNT03d+XkRERPT5y9VIjYmJCby9vREeHq7RHh4eDh8fH52PqVWrllb/vXv3omrVqjA2Ntb5GCEEoqOj4eDg8MFxiYiIKH/J9dlPISEh6Nq1K6pWrYpatWphyZIliIuLQ1BQEIBXl3zu3buHsLAwAEBQUBDmzZuHkJAQfPfddzh+/DiWL1+OdevWqZ9zzJgxqFmzJr744gskJSVhzpw5iI6Oxvz58987LhEREeVvuS5qAgIC8OTJE4wdOxbx8fGoUKECdu7cCRcXFwBAfHy8xt4xbm5u2LlzJwYOHIj58+fD0dERc+bMQbt27dR9nj17hu+//x4JCQmwtraGl5cX/v77b1SvXv294xIREVH+phLZs3bzgaSkJFhbWyMxMRFWVlb6Tkdx5DqZGcjbpzPzhOq88TXICzkQ0afxvu/fPPuJiIiIFIFFDRERESkCixoiIiJShFxPFCaivI/zSYgoP+JIDRERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESKwKKGiIiIFIFFDRERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIvCUbiIiifC0dCJ5caSGiIiIFIFFDRERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESKwKKGiIiIFIE7ChMRESlcftndmiM1REREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESKwKKGiIiIFIFFDRERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRInxQUbNgwQK4ubnBzMwM3t7eOHz48Fv7R0REwNvbG2ZmZnB3d8eiRYs07l+6dCn8/PxgY2MDGxsbNGzYEKdOndLoM3r0aKhUKo2bvb39h6RPRERECpTrombDhg0YMGAAhg8fjqioKPj5+aFp06aIi4vT2T82NhbNmjWDn58foqKi8PPPPyM4OBibN29W9zl06BA6deqEgwcP4vjx43B2doa/vz/u3bun8Vzly5dHfHy8+nb+/Pncpk9EREQKletTumfMmIHAwED06tULADBr1izs2bMHCxcuxKRJk7T6L1q0CM7Ozpg1axYAoFy5cjh9+jSmTZuGdu3aAQB+++03jccsXboUv//+O/bv349u3br9X7JGRhydISIiIp1yNVKTlpaGyMhI+Pv7a7T7+/vj2LFjOh9z/Phxrf6NGzfG6dOnkZ6ervMxycnJSE9PR+HChTXar127BkdHR7i5uaFjx464efPmW/NNTU1FUlKSxo2IiIiUKVdFzePHj5GZmQk7OzuNdjs7OyQkJOh8TEJCgs7+GRkZePz4sc7HDB06FMWLF0fDhg3VbTVq1EBYWBj27NmDpUuXIiEhAT4+Pnjy5EmO+U6aNAnW1tbqm5OT0/t+qkRERPSZ+aCJwiqVSuNjIYRW27v662oHgKlTp2LdunXYsmULzMzM1O1NmzZFu3btULFiRTRs2BA7duwAAKxatSrHuMOGDUNiYqL6dufOnXd/ckRERPRZytWcGltbWxgaGmqNyjx8+FBrNCabvb29zv5GRkYoUqSIRvu0adMwceJE7Nu3D56enm/NxcLCAhUrVsS1a9dy7GNqagpTU9O3Pg8REREpQ65GakxMTODt7Y3w8HCN9vDwcPj4+Oh8TK1atbT67927F1WrVoWxsbG67ddff8W4ceOwe/duVK1a9Z25pKamIiYmBg4ODrn5FIiIiEihcn35KSQkBMuWLcOKFSsQExODgQMHIi4uDkFBQQBeXfJ5fcVSUFAQbt++jZCQEMTExGDFihVYvnw5Bg8erO4zdepU/PLLL1ixYgVcXV2RkJCAhIQE/Pfff+o+gwcPRkREBGJjY3Hy5Em0b98eSUlJ6N69+8d8/kRERKQQuV7SHRAQgCdPnmDs2LGIj49HhQoVsHPnTri4uAAA4uPjNfascXNzw86dOzFw4EDMnz8fjo6OmDNnjno5N/BqM7+0tDS0b99eI9aoUaMwevRoAMDdu3fRqVMnPH78GEWLFkXNmjVx4sQJdVwiIiLK33Jd1ABAnz590KdPH533hYaGarXVrVsXZ86cyfH5bt269c6Y69evf9/0iIiIKB/i2U9ERESkCB80UkNERHmf69AdssS5Nbm5LHGI3oUjNURERKQIHKn5RPgXERERkX5xpIaIiIgUgUUNERERKQKLGiIiIlIEFjVERESkCCxqiIiISBFY1BAREZEisKghIiIiReA+NURERBLiPmby4UgNERERKQKLGiIiIlIEFjVERESkCJxTQ0REisY5LfkHR2qIiIhIEThSoyD8a4SIiPIzjtQQERGRIrCoISIiIkVgUUNERESKwKKGiIiIFIFFDRERESkCVz8REZFkuCqT5MSRGiIiIlIEFjVERESkCCxqiIiISBFY1BAREZEisKghIiIiRWBRQ0RERIrAooaIiIgUgUUNERERKQKLGiIiIlIEFjVERESkCCxqiIiISBFY1BAREZEisKghIiIiRWBRQ0RERIrAooaIiIgUwehDHrRgwQL8+uuviI+PR/ny5TFr1iz4+fnl2D8iIgIhISG4ePEiHB0d8eOPPyIoKEijz+bNmzFixAjcuHEDJUuWxIQJE9CmTZuPikv5j+vQHbLEuTW5uSxxiIjo/eV6pGbDhg0YMGAAhg8fjqioKPj5+aFp06aIi4vT2T82NhbNmjWDn58foqKi8PPPPyM4OBibN29W9zl+/DgCAgLQtWtXnD17Fl27dkWHDh1w8uTJD45LRERE+Uuui5oZM2YgMDAQvXr1Qrly5TBr1iw4OTlh4cKFOvsvWrQIzs7OmDVrFsqVK4devXqhZ8+emDZtmrrPrFmz0KhRIwwbNgxly5bFsGHD0KBBA8yaNeuD4xIREVH+kqvLT2lpaYiMjMTQoUM12v39/XHs2DGdjzl+/Dj8/f012ho3bozly5cjPT0dxsbGOH78OAYOHKjVJ7uo+ZC4AJCamorU1FT1x4mJiQCApKSkt3+iHyArNfmTP6cub8td3znIFT8v5JCXvw95IQd9x2cOeSM+c8gb8fNKDp/ieYUQb+2Xq6Lm8ePHyMzMhJ2dnUa7nZ0dEhISdD4mISFBZ/+MjAw8fvwYDg4OOfbJfs4PiQsAkyZNwpgxY7TanZyccv4k8zjrWfrOgDnkhfgAc8gL8QHmkBfiA8whL8QHpM/h+fPnsLa2zvH+D5oorFKpND4WQmi1vav/m+3v85y5jTts2DCEhISoP87KysLTp09RpEiRtz5ODklJSXBycsKdO3dgZWXFHPSUg77jM4e8EZ855I34zCFvxM8rObxOCIHnz5/D0dHxrf1yVdTY2trC0NBQa3Tk4cOHWqMo2ezt7XX2NzIyQpEiRd7aJ/s5PyQuAJiamsLU1FSjrVChQjl/gnpgZWWl9x8Y5qD/+Mwhb8RnDnkjPnPIG/HzSg7Z3jZCky1XE4VNTEzg7e2N8PBwjfbw8HD4+PjofEytWrW0+u/duxdVq1aFsbHxW/tkP+eHxCUiIqL8JdeXn0JCQtC1a1dUrVoVtWrVwpIlSxAXF6fed2bYsGG4d+8ewsLCAABBQUGYN28eQkJC8N133+H48eNYvnw51q1bp37O/v37o06dOpgyZQpatWqFbdu2Yd++fThy5Mh7xyUiIqJ8TnyA+fPnCxcXF2FiYiKqVKkiIiIi1Pd1795d1K1bV6P/oUOHhJeXlzAxMRGurq5i4cKFWs+5adMmUaZMGWFsbCzKli0rNm/enKu4n5uUlBQxatQokZKSwhz0mIO+4zOHvBGfOeSN+Mwhb8TPKzl8CJUQ71gfRURERPQZ4NlPREREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESKwKJGRrGxsfpOgYiISLG4pFtGhoaGqFOnDgIDA9G+fXuYmZnpOyWifGv37t0oWLAgateuDQCYP38+li5dCg8PD8yfPx82NjZ6zvDd59sRfWrPnj3DqVOn8PDhQ2RlZWnc161bNz1l9f5Y1MjowoULWLFiBX777TekpqYiICAAgYGBqF69ur5Tk93+/fuxf/9+nb84K1askC2PS5cuIS4uDmlpaRrtX331lWw55BWZmZk4f/48XFxcZH9DT0tLQ2xsLEqWLAkjow86ZzfXKlasiClTpqBZs2Y4f/48qlWrhpCQEBw4cADlypXDypUrZcmja9euWLhwIQoWLKjRfuvWLXTt2hWHDx+WJY+8IDk5Wefvo6enp+y56PP3QV+2b9+OLl264MWLF7C0tNQ6dPrp06d6zO79sKjRg4yMDGzfvh2hoaHYtWsXvvjiCwQGBqJr164oWrSo5PHv3r2LP//8U+eLx4wZMySPP2bMGIwdOxZVq1aFg4OD1l+if/zxh+Q53Lx5E23atMH58+ehUqm0To7PzMyUNP6LFy8wefLkHAu7mzdvShofAAYMGICKFSsiMDAQmZmZqFu3Lo4dOwZzc3P89ddf+PLLLyXPITk5Gf369cOqVasAAFevXoW7uzuCg4Ph6OiIoUOHSha7YMGCuHDhAlxdXTF69GhcuHABv//+O86cOYNmzZppHaArFW9vbzx9+hRr1qyBr68vAGDVqlUIDg5Go0aN8Pvvv0ueg5eXl84RIZVKBTMzM5QqVQo9evRAvXr1JIn/6NEjfPvtt9i1a5fO+6X+fQTyxu9DZmYmZs6ciY0bN+p8fZa6qChdujSaNWuGiRMnwtzcXNJYktHXVsb0ahvqGTNmCFNTU6FSqYSJiYno2rWruH//vmQx9+3bJ8zNzUX58uWFkZGRqFy5sihUqJCwtrYW9erVkyzu6+zt7UVYWJgssXLSokUL0apVK/Hw4UNRsGBBcenSJXH48GFRvXp18ffff0sev2PHjsLBwUH8+OOPYubMmWLWrFkaNzkUL15c/PPPP0IIIf744w/h6Ogorly5IoYPHy58fHxkySE4OFh4e3uLw4cPCwsLC3Hjxg0hhBDbtm0TlStXljS2jY2NuHjxohBCCF9fX7F48WIhhBCxsbGiQIECksZ+XXp6uvjpp5+EiYmJGDZsmGjfvr0oWLCgWL58uWw5DB06VFhbW4vatWuLkJAQMXDgQOHn5yesra1F//79RaNGjYSBgYHYunWrJPE7d+4sfHx8xKlTp4SFhYXYu3evWL16tShTpoz466+/JIn5przw+zBixAjh4OAgfv31V2FmZibGjRsnAgMDRZEiRcTs2bMlj29ubq7+HfxcsajRg3/++Uf07t1b2NjYiBIlSojhw4eLmzdviiNHjoj69euLatWqSRa7WrVqYsSIEUIIIQoWLChu3Lghnj9/Lr766iuxYMECyeK+rnDhwuL69euyxMpJkSJFxNmzZ4UQQlhZWYnLly8LIYTYv3+/5G+mQghhbW0tjhw5InmctzE1NRV37twRQgjx3Xffif79+wshhLh586awtLSUJQdnZ2dx/PhxIcT//TwKIcS1a9ckz6Fly5aicePGYuzYscLY2FjcvXtXCCHEnj17xBdffCFpbF1GjhwpVCqVMDY2FseOHZM1dq9evcTYsWO12seNGyd69eqlzs/b21uS+Pb29uLkyZNCCCEsLS3FlStXhBCviltfX19JYr4pL/w+uLu7q4u4ggULql8nZ8+eLTp16iR5/DZt2ogNGzZIHkdKLGpkNH36dFGhQgVhbGwsWrVqJbZv3y4yMzM1+ly7dk0YGhpKlsPrvyiFChUSFy5cEEIIER0dLVxcXCSL+7off/xR5wuonAoVKqR+A3V3dxcHDhwQQghx/fp1Wf5Kd3V1FZcuXZI8zts4OzuLPXv2iIyMDOHk5CS2b98uhBDiwoULolChQrLkUKBAAfX34fWiJjo6WlhZWUka+/bt26J58+bC09NTLFu2TN0+YMAA0a9fP0ljvy4tLU2EhIQIU1NT8fPPP4s6deoIOzs7sWPHDtlysLKyEteuXdNqv3btmvr7EBMTIwoWLChJfEtLSxEbGyuEEMLFxUVd8N+8eVO2UbO88Ptgbm4ubt++LYR4VehFRkYKIYS4ceOG5L8PQgixbNky4ezsLEaNGiV+//13sW3bNo3b50CeGXkEAFi4cCF69uyJb7/9Fvb29jr7ODs7Y/ny5ZLlYGFhgdTUVACAo6Mjbty4gfLlywMAHj9+LFnc16WkpGDJkiXYt28fPD09YWxsrHG/HPN6KlSogHPnzsHd3R01atTA1KlTYWJigiVLlsDd3V3y+OPGjcPIkSOxatUqvV27/vbbb9GhQwf1vKZGjRoBAE6ePImyZcvKkkO1atWwY8cO9OvXD8D/zWlaunQpatWqJWlsZ2dn/PXXX1rtM2fOlDTum6pWrYrk5GQcOnQINWvWhBACU6dORdu2bdGzZ08sWLBA8hzMzMxw7NgxlCpVSqP92LFj6lWaWVlZMDU1lSR+mTJlcOXKFbi6uqJy5cpYvHgxXF1dsWjRIjg4OEgS80154fehRIkSiI+Ph7OzM0qVKoW9e/eiSpUq+OeffyT72r/uu+++AwCMHTtW6z6VSiXL3KaPxaJGRteuXXtnHxMTE3Tv3l2yHGrWrImjR4/Cw8MDzZs3x6BBg3D+/Hls2bIFNWvWlCzu686dO4fKlSsDeLUi7HVyLV/95Zdf8OLFCwDA+PHj0aJFC/j5+aFIkSLYsGGD5PGnT5+OGzduwM7ODq6urlqF3ZkzZyTPYfTo0ahQoQLu3LmDr7/+Wv2iaWhoKOkE3ddNmjQJTZo0waVLl5CRkYHZs2fj4sWLOH78OCIiIj55vKSkJFhZWan//zbZ/aRWtWpVzJkzBxYWFgBe/Q789NNPaNy4Mb755htZcujXrx+CgoIQGRmJatWqQaVS4dSpU1i2bBl+/vlnAMCePXvg5eUlSfwBAwYgPj4eADBq1Cg0btwYv/32G0xMTBAaGipJzDflhd+HNm3aYP/+/ahRowb69++PTp06Yfny5YiLi8PAgQMlj//mgoXPEVc/SezcuXPv3VeOZYs3b97Ef//9B09PTyQnJ2Pw4ME4cuQISpUqhZkzZ8LFxUXyHPKqp0+fwsbGRpbCasyYMW+9f9SoUZLnoMuzZ89QqFAhWWOeP38e06ZNQ2RkJLKyslClShX89NNPqFix4iePZWhoiPj4eBQrVgwGBgY6v9fi/+8Nkxf+Kk1NTZXlL3QA+O233zBv3jxcuXIFwKvRk379+qFz584AgJcvX6pXQ0ktOTkZly9fhrOzM2xtbSWPl1edOHFCPYKWH7eZ+BAsaiSW/cKZ05c5+7688iIqt7t370KlUqF48eL6TiXfmTJlClxdXREQEAAA6NChAzZv3gwHBwfs3LlTL3uDSC0iIgK+vr4wMjJ650hQ3bp1Zcrq/7x8+RLp6ekabXKNGOVHc+bMwffffw8zMzPMmTPnrX2Dg4Nlykq/IiIiMG3aNMTExEClUqFcuXIYMmQI/Pz89J3ae2FRI7Hbt2+/d1+5R0n+++8/reFGOV5As7KyMH78eEyfPh3//fcfAMDS0hKDBg3C8OHDYWAgzekdbdu2RWhoKKysrNC2bdu39t2yZYskObwpMjJS/eLh4eEh2fC+Lu7u7lizZg18fHwQHh6ODh06YMOGDeo9Mvbu3StJ3Hdd9nldfnhDf/HiBX766Sds3LgRT5480bpfzj920tLSdO6b5Ozs/MljhYSEYNy4cbCwsEBISMhb+0o1z87NzQ2nT59GkSJF4ObmlmM/lUoly95RAHDv3j0cPXpU5/dB6sJqzZo1+Pbbb9G2bVv4+vpCCIFjx47hjz/+QGhoqHrULi/jnBqJ5bXLObGxsejbty8OHTqElJQUdbuco0XDhw/H8uXLMXnyZPUvztGjRzF69GikpKRgwoQJksS1trZWX26wtraWJMb7evjwITp27IhDhw6hUKFCEEIgMTER9erVw/r162XZhDE+Ph5OTk4AgL/++gsdOnSAv78/XF1dUaNGDcniFipU6J2X+OT4ecwrxyT8+OOPOHjwIBYsWIBu3bph/vz5uHfvHhYvXozJkyfLksO1a9fQs2dPHDt2TKNdyu9DVFSUelQqKioqx35SXg5+/Ty+vHA238qVKxEUFAQTExMUKVJEa0dfqYuaCRMmYOrUqRrzd/r3748ZM2Zg3Lhxn0VRw5EaPdDn1vw+Pj4AXv2g2tnZab1gyDHk7ujoiEWLFml9vtu2bUOfPn1w7949yXPQt4CAANy4cQOrV69GuXLlALz6uejevTtKlSqFdevWSZ6Do6Mjfv/9d/j4+KBMmTIYP348vv76a1y5cgXVqlXL1YhKbuRmArCUP49vHpNQtWpVDBo0SPZjEpydnREWFoYvv/wSVlZWOHPmDEqVKoXVq1dj3bp12Llzp+Q5ZF+SGzp0qM5dvitVqiR5DnmNPo5JcHJyQlBQEIYNGybZiPXbmJqa4uLFi1qr4K5fv44KFSpo/CGcZ8m9hjw/u3HjhvD09BQqlUoYGBgIlUql/r+BgYEsOVhYWKg3mtMXU1NT9eZar7t8+bIwMzPTQ0bys7KyEqdOndJqP3nypLC2tpYlhx9++EG4uLiIhg0biiJFiojnz58LIYRYv3698PLykiUHfbKwsFDvjTJq1CjRrl07IYQQkZGRws7OTtY8bt26JYR4tatt9iZ0N2/eFBYWFrLkYG5uLmJiYmSJlVf1799fvV9RRkaG8PHxESqVSlhYWIiDBw/KkoO+NyYtWbKkWLRokVb7okWLRKlSpfSQUe7x8pOM+vfvDzc3N+zbtw/u7u44deoUnjx5gkGDBmHatGmy5FCtWjXcuXMHZcqUkSWeLpUqVcK8efO0JubNmzdPtr8IHzx4gMGDB6vPXhJvDFhKfRkuKytLaxk3ABgbG8u2rHLmzJlwdXXFnTt3MHXqVPWBivHx8ejTp48sOfz9999vvb9OnTqSxTYxMUFycjIAYN++feoTiAsXLizZKJUu7u7uuHXrFlxcXODh4YGNGzeievXq2L59u2wr0Tw8PGTbp0qXvHAW2u+//65eQr99+3bcunULly9fRlhYGIYPH46jR49KnkNgYCA2bdok2xLyNw0aNAjBwcGIjo6Gj48PVCoVjhw5gtDQUMyePVsvOeUWLz/JyNbWFgcOHICnpyesra1x6tQplClTBgcOHMCgQYPeel35U7lx4waCgoLwzTffoEKFClpvrHKseImIiEDz5s3h7OyMWrVqQaVS4dixY7hz5w527twpyyz7pk2bIi4uDn379tU53N6qVStJ47dq1QrPnj3DunXr4OjoCODVBMEuXbrAxsZGlkM98wJdQ+yvfy+kLC6/+uorpKWlwdfXF+PGjUNsbCyKFy+OvXv3om/fvrh69apksV83c+ZMGBoaIjg4GAcPHkTz5s2RmZmJjIwMzJgxA/3795c8hwMHDuCXX37BxIkTUbFiRa3XBaknbHfq1AkRERHo2rWrzt9HOb4GZmZmuH79OkqUKIHvv/8e5ubmmDVrFmJjY1GpUiVZCt3MzEy0aNECL1++1Pl9kGNj0j/++APTp09HTEwMAKhXP0n9mvipsKiRkY2NDSIjI+Hu7o6SJUti2bJlqFevHm7cuIGKFSuq/2qU0okTJ9C5c2fcunVL3aaPZeX379/H/PnzcfnyZQgh4OHhgT59+qjf4KVmaWmJw4cPqzcBlNudO3fQqlUrXLhwAU5OTlCpVIiLi0PFihWxbds2lChRQrZc9DnHKzExUePj9PR0REVFYcSIEZgwYQIaNGggWey4uDj06dMHd+7cQXBwMAIDAwEAAwcORGZm5juX+EqZ1+nTp1GyZEnZRi6zi8s3iwm5XhcKFSqEHTt2qE8p1wcXFxcsXboUDRo0gJubGxYsWIAWLVrg4sWLqF27Nv7991/Jcxg3bhxGjRqFMmXKaM15VKlUOHDggOQ5fO54+UlG+t6aHwB69uwJLy8vrFu3TudEYbk4OjpKtsrpfTg5OeW4d5Bc8c+cOYPw8HCNwq5hw4ay5XDz5k20adMG58+f19hLKftnQo4CV9cqtEaNGsHU1BQDBw5EZGSkZLHzwjEJ6enp8Pf3x+LFi1G6dGl1XlIsoX6bgwcPyhrvTTY2NihcuLBec8gLxyTMmDEDK1asQI8ePWSJp0QcqZHRnj178OLFC7Rt2xY3b95EixYtcPnyZfXW/PXr15c8BwsLC5w9e1ZrdrvUzp07hwoVKsDAwOCduyzLcQls7969mD59uvqMmfyoZcuWMDQ0xNKlS3XO8dLnZlsxMTGoVq2aeh8jqelz07uiRYvi2LFj+OKLL2SJlxetWbMG27Zt0+tZaMCreTXZxyRkj5auWrUKhQoVkuXyi729PQ4fPizrz0LhwoVx9epV2NravnNH9adPn8qW14diUaNncm7ND7x6I+vRowfatWsnS7xsBgYGSEhI0NieXtePnlyXwGxsbJCcnIyMjAyYm5trXbuW4pc3r+1emhfmeL1Z4AohEB8fj8mTJyM9PV3SyZl5ZdO7QYMGwdjYWLY9abLlpT80vLy8cOPGDQgh9HYWWl4wadIkxMfHy3rpc9WqVejYsSNMTU0RGhr61vciKc8l/FR4+UnP5B5ybdmyJQYOHIjz58/rnIgm1TyK2NhY9YZyeWGTq1mzZskec+bMmejSpQvMzMzeeolDjk22gFdv2tkrnmxtbXH//n2UKVMGLi4u6vN/pFa5cmWdBW7NmjWxYsUKSWPnhU3vgFe7+C5btgzh4eGoWrWq+mDLbFJNDq1cubL6D42cvg+APH9otG7dWtLnf1/6PiLg1KlTOHDgAP766y+UL19e6/VZip3OXy9UlHDZiyM1MmrTpo3OKjj7kLhSpUqhc+fOki63ftuGTvnl/Kn09HR8//33GDFihGxzmfIiPz8/DBo0CK1bt0bnzp3x77//4pdffsGSJUsQGRmpdYK6FN48RsTAwABFixaV5dDEvLDpHQDUq1cvx/uknBx6+/ZtODs7Q6VSvfM4l7y2M7oU8sIRAd9+++1b75d6Q8jXD3x93ZMnT1CsWLHP4/1Bxj1x8r3u3bsLa2tr4eLiItq2bSvatGkjXF1dRaFChUSHDh1EmTJlhKmpqThy5Ii+U5VUaGio+Ouvv9QfDxkyRFhbW4tatWqpNyGTmrW1tbhx44YssXQZM2aMePHihVZ7cnKyGDNmjCw57N69W2zevFkI8WpjyHLlygmVSiVsbW3Fvn37ZMlBn/LCpnek6fTp02L16tVizZo14syZM7LGLlu2rJgxY4ZW+/Tp00XZsmVlzUVfVCqVePDggVb7vXv3PpuNUTlSI6OhQ4ciKSkJ8+bNU4+YZGVloX///rC0tMSECRMQFBSEixcv4siRI5Lnk5KSIstfxG8qU6YMFi5ciPr16+P48eNo0KABZs2ahb/++gtGRkayHCb57bffomLFiu88SE8qefUvIjnmeOVmvoCUl+E8PT0xd+5c1K1bF/7+/vD09MS0adMwZ84cTJ06FXfv3pUsdk70eWr91atXcejQIZ2b340cOVLS2HnhLLS8ckRARkYGDh06hBs3bqBz586wtLTE/fv3YWVlpb5c/Kll/04OHDgQ48aN04iTmZmJv//+G7du3ZJlnt3HYlEjo6JFi+Lo0aPqpZvZrl69Ch8fHzx+/Bjnz5+Hn58fnj17JkkOmZmZmDhxIhYtWoQHDx7g6tWrcHd3x4gRI+Dq6qreq0NK5ubmuHz5MpydnfHTTz8hPj4eYWFhuHjxIr788ks8evRI8hwmTJiAadOmoUGDBvD29taaxyD1nBYDAwM8ePBA68X6wIEDCAgIkPRr0LNnz/fqJ9WcljdPQ3706BGSk5PVu+c+e/YM5ubmKFasmKQ7yeaFTe8A/Z1a/7qlS5eid+/esLW1hb29vdb+KFJP1M0LZ6GVKlUKQ4YMwf/+9z+N9sWLF2PatGm4du2a5Dncvn0bTZo0QVxcHFJTU9WvzwMGDEBKSgoWLVokSdzs38nbt2+jRIkSMDQ0VN9nYmICV1dXjB07VtKDbj8ZvY4T5TOFChUS27Zt02rftm2bKFSokBBCiKtXr6r/L4UxY8YId3d3sWbNGlGgQAH1JZgNGzaImjVrShb3dUWLFlUPLVeuXFmsWrVKCCHE9evXZRv2d3V1zfHm5uYmWdxChQoJGxsbYWBgoP5/9s3KykoYGBiIPn36SBZfiFdDzK6urqJNmzaidevWOd7k8NtvvwlfX1+N88guX74s/Pz8xJo1a2TJIdvt27fF5s2bRXR0tKxxhw4dKooWLSoWLFggzp49K6Kjo8X8+fNF0aJFxc8//yxLDs7OzmLy5MmyxNIlL5yFtmDBAmFiYiKCgoJEWFiYWL16tfjf//4nTE1NdZ6HJIVWrVqJb775RqSmpoqCBQuqX58PHToky9lLX375pXj69KnkcaTEokZG/fr1E7a2tmLGjBni8OHD4siRI2LGjBnC1tZWBAcHCyGEWLp0qfD19ZUsh5IlS6rnS7z+SxMTEyNpMfW6zp07iypVqojAwEBhbm4uHj9+LIR4VdyVL19elhz0JTQ0VKxcuVKoVCoxe/ZsERoaqr6tXbtWHDt2TPIcevfuLWxsbESlSpXE7NmzxZMnTySPmRN3d3edcydOnz4tXF1dJY29atUqkZKSotWempqqLrTl4ODgoPOPna1btwpHR0dZcrC0tNTrHLOCBQuKqKgorfYzZ84IS0tL2fLYsmWL8PX1FYULFxaFCxcWvr6+YuvWrbLFL1KkiLrAf/31OTY2VhQoUEC2PD5nLGpklJGRIcaPHy/s7e3VJ3Tb29uLCRMmiIyMDCHEq78W79y5I1kOZmZm6smRr//SXLx4UbZRkn///Vf88MMP4quvvhK7du1St48cOVKMHz9elhyypaamisuXL4v09HRZ4x46dEikpaXJGvN1KSkpYu3ataJhw4bC3NxcfP3112L37t0iKytL1jwKFCignqD7upMnT0r+Im5gYKBzUuTjx4+FgYGBpLFflxdOre/Zs6dYuHChLLF0+eqrr0SdOnXEvXv31G13794VdevWlWXUMD09XYwePVrExcVJHuttbGxsxMWLF4UQmq/Phw8fFsWKFZMlhzt37oj58+eLn376SQwcOFDj9jlgUaMniYmJIjExUfa43t7eYvXq1UIIzV+a0aNHi9q1a8uej768ePFC9OzZUxgaGgpDQ0P116Ffv35i0qRJsuaSnJys/nnQx8/FrVu3xOjRo4W7u7twcnISz58/ly12ixYthKenp/jnn3/UBdU///wjKleuLFq2bClpbJVKJR4+fKjVHh0dLWxsbCSN/brq1auLfv36abX37dtX1KhRQ5YcJk6cKGxtbUX37t3FtGnTxOzZszVuUouLixNeXl7C2NhYuLu7i5IlSwpjY2NRpUoVSf/Ie52FhYWIjY2VJVZOOnToIL777jshxKvX55s3b4rnz5+L+vXrix49ekgef9++fcLc3FyUL19eGBkZicqVK4tChQoJa2trUa9ePcnjfwrcfE9mb85sByD5zPbXjRo1Cl27dsW9e/eQlZWFLVu24MqVKwgLC9N5Do4U/v7777feX6dOHclzGDZsGM6ePYtDhw6hSZMm6vaGDRti1KhRGDp0qKTxk5OT8eOPP+p9N1vg1UTQ7I3X3lz1IrUVK1age/fuqF69unqjsYyMDDRu3BjLli2TJKaXl5f6c27QoAGMjP7vZTAzMxOxsbEaPxNSmzp1Kpo3b459+/bpPLVeDkuWLEHBggURERGBiIgIjfvk2AwyL5yF1rBhQxw6dEivG9DNnDkT9erVg4eHB1JSUtC5c2dcu3YNtra2skyWHjZsGAYNGoSxY8fC0tISmzdvRrFixdClSxdZfyc+Blc/yUhfM9vftGfPHkycOBGRkZHIyspClSpVMHLkSPj7+8sSX9dqjtdXW8jxhu7i4oINGzagZs2asLS0xNmzZ+Hu7o7r16+jSpUqSEpKkjT+Dz/8gIMHD2Ls2LE6d7Pt0qWLpPFTU1OxZcsWrFixAkeOHEGLFi3w7bffokmTJrKstnnT1atXERMTAwAoV66c1grBT2nMmDHqfwcNGqTxx0T2So927drBxMREshzepO9T6+nVKqfRo0ejS5cuOldEynFqPfDqHLJ169bhzJkz6tfnLl26oECBApLHtrS0RHR0NEqWLAkbGxscOXIE5cuXx9mzZ9GqVSvcunVL8hw+FosaGbVu3RqWlpZYvnw5ihQpon4jjYiIQK9evWRZMpgXJCYmanycnp6OqKgojBgxAhMmTECDBg0kz8Hc3BwXLlyAu7u7RlFz9uxZ1KlTRyvHT02fu9n26dMH69evh7OzM7799lt88803KFKkiGTx3pd445Rwqb1+5g29kpaWhtjYWJQsWVJjBEsOp06dynGfHKmOingdd1t/daDmgQMH4OHhgfLly2PSpEn46quvcPbsWfj6+sp2wOzH4OUnGR05cgRHjx7V+gvQxcUF9+7dkyWHO3fuQKVSqU+gPXXqFNauXQsPDw98//33suRgbW2t1daoUSOYmppi4MCBiIyMlDyHatWqYceOHejXrx+A/3sjXbp0KWrVqiV5/KdPn6r3hrCyslIfoFm7dm307t1b0tiLFi2Cs7Mz3NzcdF5uyCbHJogAEBYWhl9//VVd1JcuXRpDhgxB165dJY3r4eGB6Ohorb03Tp48CUNDQ1StWlXS+K979uwZTp06pfMNvVu3bpLHT05ORr9+/bBq1SoAUI8iBwcHw9HRUfLLsRMnTsQvv/yCMmXKwM7OTmufHDnIfek1259//vnefaUeLapZsyaOHj0KDw8PNG/eHIMGDcL58+exZcsW1KxZU9LYnwqLGhllZWXprPbv3r0LS0tLWXLo3Lkzvv/+e3Tt2hUJCQlo2LAhKlSogDVr1iAhIUHynUPfpmjRorIdpDhp0iQ0adIEly5dQkZGBmbPno2LFy/i+PHjOb7Jf0ru7u64desWXFxc4OHhgY0bN6J69erYvn27ehM6qXTr1k22N4p3mTFjBkaMGIG+ffuqz9s5evQogoKC8PjxYwwcOFCy2D/88AN+/PFHraLm3r17mDJlCk6ePClZ7Ndt374dXbp0wYsXL2Bpaan1hi5HUaPvOWazZ8/GihUrFHGgYm69eZinroNFs38mpB4tmjFjhno0ZvTo0fjvv/+wYcMGlCpV6q2H8OYp+pqhnB/pe2a7EK82f8veB2H27NnCx8dHCCHEnj17JN107nVnz57VuEVHR4tdu3aJunXrqvORw7lz50S3bt1E+fLlRbly5USXLl3EuXPnZIk9Y8YM9aqSAwcOiAIFCggTExNhYGAgZs2aJUsOeYGrq6vOPWFCQ0Ml36fGwsJC594sN2/eFAULFpQ09uu++OIL0b9/f51ngcnF2dlZHD9+XAihuSry2rVrsuwTY29vL65evSp5nHfZt2+faN68uXoFVvPmzUV4eLhs8cPDw0WVKlXE7t27RWJiokhKShK7d+8WVatWFXv37pUtj88ZixoZ3bt3T5QuXVqUK1dOGBkZiZo1a4oiRYqIMmXK6NwvQwqvL1ts2bKlehfR27dvy7YnhkqlEgYGBuq9erJvtWrVEjExMZLGfnPpdE43uelrN1t9MzU1FdeuXdNqv3r1qjA1NZU0duHChXVudnj06FHZNqIUQghzc3O9bnwnhNDYXfz1oiY6OlpYWVlJHn/KlCmif//+ksd5m7lz5wojIyPRsWNH9VL2Tp06CWNjYzF37lxZcihfvrw4fPiwVvvff/+dbw7V/FicKCwzfc5sB4AaNWqgXr16aN68Ofz9/XHixAlUqlQJJ06cQPv27WU5xO/27dsaHxsYGKBo0aKyHK5pYGDw1ksvQgjJJwWmp6fD398fixcvlnSVz+egQoUK6Ny5M37++WeN9vHjx2PDhg04f/68ZLE7duyIhIQEbNu2TT3P69mzZ2jdujWKFSuGjRs3Shb7dW3btkXHjh3RoUMHWeLpUrduXbRv3x79+vWDpaUlzp07Bzc3N/Tt2xfXr1/H7t27JY2flZWF5s2b4+rVq/Dw8FAv788mx/yu4sWLY9iwYejbt69G+/z58zFhwgTcv39f8hwKFCiAU6dOoWLFihrt586dQ40aNfDy5ctPHjM3B9hmz/3LyzinRmYFChRAz5493/tQwU9typQpaNOmDX799Vd0794dlSpVAvBqslr16tUli1u4cGFcvXoVtra2GDNmDGbPni3bPKLXHTx4UP1/IQSaNWuGZcuWyXoqsrGxMS5cuJBn5rXo05gxYxAQEIC///4bvr6+UKlUOHLkCPbv3y95UTF9+nTUqVMHLi4u8PLyAgBER0fDzs4Oq1evljT265NDmzdvjiFDhuDSpUuoWLGi1hu6HEuJ9T3HrF+/fjh48CDq1auHIkWK6OV3IykpSedeLP7+/vjpp59kyaFatWoYMGAA1qxZAwcHBwBAQkICBg0aJNnr86xZs9T/f/LkCcaPH4/GjRurF0wcP34ce/bswYgRIySJ/6lxpEZm9+7dw9GjR3WucpB6g6tsmZmZSEpKgo2Njbrt1q1b6pORpVCwYEGcO3cO7u7uMDQ0REJCgtYJ1frw+nJuOQ0aNAjGxsaYPHmyrHHzosjISMyYMUNjj5ZBgwapCw0pvXjxAr/99hvOnj2LAgUKwNPTE506ddIqLD61990LSM6lxOfPn8e0adM09q/66aeftEYNpGBpaYn169ejefPmksfKSZcuXVC5cmUMGTJEoz37ayLH5nfXr19HmzZtcOXKFTg7OwMA4uLiULp0afzxxx/44osvJI3frl071KtXT2u0at68edi3bx+2bt0qafxPgUWNjFauXImgoCCYmJho/TWiUqlw8+ZNyXMYPXo0vv32W7i4uEge63WNGjXCgwcP4O3tjVWrViEgICDHS24rVqyQLS99FTX9+vVDWFgYSpUqhapVq2pt9CXHvhxE2c6dOwdPT0+d923dulVrhc6n5uLigj179qBs2bKSxnnTnDlz1P9PSkrCtGnT4Ovrqx6lOHHiBI4ePYpBgwbhl19+kSUnIQT27duHmJgYjZ2V5Ri9KliwIKKjo1GqVCmN9mvXrsHLy+uz2KeGRY2MnJycEBQUhGHDhull11YA8Pb2xtmzZ1G3bl0EBgaibdu2ssxlefDgAWbOnIkbN25g8+bNaNKkSY6bnv3xxx+S55NNX0VNvXr13nr/65fJlOhdc5uAV4V+RkaGpHmsXr0aixcvxs2bN3H8+HG4uLhg5syZcHd3R6tWrSSNnS0sLAwBAQFavw9paWlYv369LEu6HRwccPToUa3fg82bN6Nbt2548eKFpPFXrlyJ3bt3Y+XKlTA3N5c01uuy94p6F6n/6GzWrBnWrVunnts1YcIE/PDDD+rtHZ48eQI/Pz9cunRJshyAV8Vl3759tUarfv31V8ybN09rPmRexKJGRkWKFMGpU6dQsmRJveZx7tw5rFy5EmvXrkVaWho6duyInj17olq1arLEd3Nzw+nTp/PELravT4ok+Wzbti3H+44dO4a5c+dCCCHJxMhsCxcuxMiRIzFgwACMHz8eFy9ehLu7O0JDQ7Fq1SrZCktDQ0PEx8drXfp98uQJihUrJsvlp7Fjx2LlypU4duyYei7Hhg0b0LNnT4SGhuLrr7+WNL6Xlxdu3LgBIQRcXV21Lv+dOXNG0vj69ubPgJWVFaKjo9VF5oMHD+Do6Cj5z0JoaCgCAwPRpEkTjdGq3bt3Y9myZZ/FPkKcKCyjwMBAbNq0SfKNrN7F09MTM2fOxK+//ort27dj5cqV8PX1RZkyZdCrVy/06NFD566/H+P1icL16tWT9Vyd17Vt21bj45SUFAQFBWld/pF6tUXPnj11TpZ+8eIF+vXrJ+slOH3QNQpy+fJlDBs2TL0Z3bhx4yTNYe7cuVi6dClat26tMbepatWqGDx4sKSxX5e94u5Nd+/e/eS/hzkZOXIknjx5goYNG+Lw4cPYvXs3evXqhdWrV6Ndu3aSx5f68lZe9+bYgr7GGnr06IFy5cphzpw52LJli/ry19GjR7U2qcyrOFIjo8zMTLRo0QIvX77UucpB7nkUaWlp+OOPP7BixQocOHAAPj4+ePDgAe7fv4+lS5ciICDgk8XKKxOFv/322/fqt3LlSknzyOmv88ePH8Pe3l7yyy55yf379zFq1CisWrUKjRs3xqRJk1ChQgXJ4xYoUACXL1+Gi4uLxmXIa9euwdPTU9JRIuD/Tgs/e/Ysypcvn+Np4XItLQeArl274uTJk7h37x7Wrl0r2yU4fQkJCcG4ceNgYWGBkJCQt/aV8vXZwMAACQkJ6teDNy+LyzVSowQcqZHRxIkTsWfPHpQpUwYA9HK+CfBqtcnKlSuxbt06mJqaqk+Jzp4cNn36dAQHB3/SoqZWrVpo3bo1vL29IYRAcHCwXiYKS12svEtSUhLEq00v8fz5c435TJmZmdi5c6dkK9DymsTEREycOBFz585F5cqVsX//fvj5+ckW383NDdHR0VqT5nft2gUPDw/J42ePTkRHR6Nx48Y5nhYuFV1nDrVu3RoRERHo1KkTVCqVuo9cJ1TLLSoqCpcvX4aXlxeioqJy7Cf167NKpdKKIdd7QlJSEqysrNT/f5vsfnkZR2pkZGNjg5kzZ+r1uqSnpydiYmLg7++P7777Di1btoShoaFGn0ePHsHOzu6THvD2+kThLVu2oHHjxnliorDc3jVBVqVSYcyYMRg+fLiMWclv6tSpmDJlCuzt7TFx4kS9jAisXLkSI0aMwPTp0xEYGIhly5bhxo0bmDRpEpYtW4aOHTvKkkf2akA5Juy/Li8tK3/X74WU8d8cNQ0ICMCcOXNgZ2cnWcw3GRgYoGnTpurXxO3bt6N+/frqy+KpqanYvXu3JF+H1z//nL4PcmxK+qmwqJGRvb09Dh8+LPleA28zbtw49OzZU9bN5t6UlyYKyy0iIgJCCNSvXx+bN29G4cKF1feZmJjAxcUFjo6OesxQHgYGBihQoAAaNmyoVVS/Tuq5TUuXLsX48eNx584dAK92lR09ejQCAwMljatLZGQkYmJioFKp4OHhIcs+PXnFmxPH09PTERUVhVWrVmHMmDGSfj/evPTz5iRdOejzsnhERAR8fX1hZGT0zo0W69at+8njf2osamQ0adIkxMfHa+yNkJ/klWWLecHt27fh7Oycb3cV7tGjx3t97nJdLnz8+DGysrL0cunv4cOH6NixIw4dOoRChQpBCIHExETUq1cP69evzxObVOrL2rVrsWHDhreulvtY75rPQp8XFjUyatOmDQ4cOIAiRYqgfPnyejnfJDMzE6Ghodi/f7/OXY0PHDggWex3/UWk9Mlw586de+++OW2ERsoTEBCAGzduYPXq1ShXrhwA4NKlS+jevTtKlSoly062wcHBKFWqlNau5vPmzcP169c1ttKX040bN+Dp6SnpPjlvLlzIb9s8KO11iROFZVSoUCGtJcVy69+/P0JDQ9G8eXNUqFBBryMF+a2erly5MlQq1Ts/78/l2vXnKHvF0fuQa2+U3bt3Y9++feqCBgA8PDwwf/58+Pv7y5LD5s2bdU4c9vHxweTJk/VS1Lx8+RJz585FiRIlJI0jhECPHj3U81n0tc2DvijtdYlFjYz0vfIGANavX4+NGzeiWbNm+k4l34mNjdV3CvleXtwPJSsrS+dZU8bGxp90sv7bPHnyROeeOFZWVnj8+LHk8d88KTp7daC5uTnWrFkjaezu3btrfPzNN99IGi+vUdrrEosaPXj06BGuXLkClUqF0qVLy3rN3MTEROtcD7noc9liXiD3eVukbdSoUfpOQUv9+vXRv39/rFu3Tj1J/N69exg4cCAaNGggSw6lSpXC7t27tQ4y3LVrlyxzS94cCTIwMEDRokVRo0YNjYN3pZAX/tjUJ6W9LrGokVH2brFhYWHqv8AMDQ3RrVs3zJ07V5YzTwYNGoTZs2dj3rx5shcU7xrmTU1NlTUfuf35559o2rQpjI2NdQ71v06p+4LkNc+ePcPvv/+OGzduYMiQIShcuDDOnDkDOzs72VYIzps3D61atYKrqyucnJygUqkQFxeHihUrSj5KkS0kJAR9+/bFo0ePUL9+fQDA/v37MX36dFkuPb05WkL6c+PGDcyaNUu9Eq9cuXLo37+/3o/3eV+cKCyj//3vf9i3bx/mzZsHX19fAMCRI0cQHByMRo0aYeHChZLEfXMez4EDB1C4cGHZJyvnld189eX1idJv2yPkc7l2/bk7d+4cGjZsCGtra9y6dQtXrlyBu7s7RowYgdu3byMsLEzWfMLDw3H58mWNk5nltHDhQkyYMAH3798HALi6umL06NGyHKgJAIcPH1YfLrpp0yYUL14cq1evhpubG2rXri1LDvndnj178NVXX6Fy5crw9fWFEALHjh3D2bNnsX37djRq1EjfKb4TixoZ2dra4vfff8eXX36p0X7w4EF06NABjx49kiTu+xYTgHILCqI3NWzYEFWqVMHUqVM1lvEeO3YMnTt3xq1bt/Sdol48evQIBQoU0NjhWGqbN29G165d0aVLF6xevRqXLl2Cu7s7FixYgL/++gs7d+6ULZf8zMvLC40bN9Y4Cw0Ahg4dir17934WB4uyqJGRubk5IiMjNVY5AMDFixdRvXp1SZctkv69fqhnTgdaknysra1x5swZlCxZUqOouX37NsqUKYOUlBTZcjl16hQOHTqkc5sFuc+E0wcvLy8MHDgQ3bp10/heREdHo0mTJkhISNB3ivmCmZkZzp8/r7VB7NWrV+Hp6Snr78SH4pwaGdWqVQujRo1CWFiYekv0ly9fYsyYMepj3uXy8OFDjcnK+eW8IX1KS0tDUlISbG1tsWrVKkyZMoVFjR6ZmZnpPOvmypUrsk7enzhxIn755ReUKVMGdnZ2sp0JV6VKFezfvx82NjbvXOou9V/oV65cQZ06dbTarays8OzZM0lj0/8pWrQooqOjtYqa6Ojoz+Y9gkWNjGbPno0mTZqgRIkSqFSpElQqFaKjo2FmZoY9e/bIkkNSUhJ++OEHrF+/Xj1vw9DQEAEBAZg/f77OZZ30aeSVQz3plVatWmHs2LHqU7CzJ+gOHTpU0oMk3zR79mysWLFC9jPhWrVqpZ60r++l7g4ODrh+/TpcXV012o8cOcKdfWX03Xff4fvvv8fNmzfh4+MDlUqFI0eOYMqUKRg0aJC+03svvPwks5cvX2LNmjUaEwK7dOmS45vbp9ahQwdER0dj7ty5qFWrFlQqFY4dO4b+/fvD09NT/QJPnx4P9cxbkpKS0KxZM1y8eBHPnz+Ho6MjEhISUKtWLezcuVNr8zWpODg44O+//9brmXD6NnXqVKxatQorVqxAo0aNsHPnTty+fRsDBw7EyJEjtZaakzSEEJg1axamT5+unjDu6OiIIUOGIDg4+LPYgoNFTT5jYWGBPXv2aK0mOHz4MJo0acJ5PTLJz4d65jUHDhzAmTNnkJWVhSpVqsi+6mjq1Km4f/++3o4ieF1aWprOeT3Ozs6Sxx4+fDhmzpypnrdhamqKwYMHY9y4cZLHJm3Pnz8HgM/uEjmLGonltb1JnJ2dsWPHDlSsWFGj/dy5c2jWrBnu3r0reQ5EeUFYWBgCAgK0RsvS0tKwfv162ZYyZ2VloXnz5rh69So8PDz0cibc1atXERgYiGPHjmm0CyFk3WIgOTkZly5dQlZWFjw8PGRdgUWvriQIIdR7pt2+fRt//PEHPDw8ZDuy42OxqJFYXtubZMmSJdi0aRPCwsLg4OAAAEhISED37t3Rtm1b/O9//5M8B3pl//79OR4syjk10jM0NER8fLzWBMgnT56gWLFisr2R//DDD1i+fDnq1aunNVEYkGebBV9fXxgZGWHo0KFwcHDQyqFSpUqS50D65+/vj7Zt2yIoKAjPnj1DmTJlYGJigsePH2PGjBno3bu3vlN8JxY1+YyXlxeuX7+O1NRU9ZByXFwcTE1Nta7pfw57EnyuxowZg7Fjx6Jq1ao630Q4p0Z6BgYGePDggdZKp7Nnz6JevXp4+vSpLHlYWlpi/fr1aN68uSzxdLGwsEBkZCTKli2rl/gvXrzA5MmTcyzyb968qZe88htbW1tERESgfPnyWLZsGebOnYuoqChs3rwZI0eORExMjL5TfCeufspn9L3KgV5ZtGgRQkND0bVrV32nku9kL19WqVRo0KABjIz+72UwMzMTsbGxaNKkiWz5FC5cWO9b0Ht4eMhycGVOevXqhYiICHTt2lVnkU/ySE5OVs+h2bt3L9q2bQsDAwPUrFkTt2/f1nN274dFjcTmzJnz3n2Dg4MlzOSVvHigX36UlpYGHx8ffaeRL2UX9tHR0WjcuLHGvA0TExO4urrKeujr6NGjMWrUKKxcuVKW89+yvb5Hz5QpU/Djjz9i4sSJqFixota8HisrK0lz2bVrF3bs2KE+Pob0o1SpUti6dSvatGmDPXv2YODAgQBe7Wsm9c/Ap8LLTxJzc3PT+PjRo0dITk5GoUKFALw6UM/c3BzFihWTfYj1v//+0xrm/Vx+cD93P/30EwoWLIgRI0boO5V8a9WqVQgICFBvhJmYmIjffvsNy5Ytw9mzZ2WbU+Pl5YUbN25ACAFXV1etgkKqy8AGBgYaIyLZk4JfJ9dEYTc3N+zcuVNrt3WS1++//47OnTsjMzMTDRo0wN69ewEAkyZNwt9//41du3bpOcN340iNxGJjY9X/X7t2LRYsWIDly5ejTJkyAF7tpPndd9/JNkE3NjYWffv2xaFDhzS2vJZ7lUN+l5KSgiVLlmDfvn3w9PTUeiPLD1vj61v2ydAHDhzAihUrsGXLFri4uKBdu3ZYvny5bHno65LwwYMH9RJXl3HjxmHkyJFYtWqVrKNVpKl9+/aoXbs24uPjNSaHN2jQAG3atNFjZu+PIzUyKlmyJH7//Xd4eXlptEdGRqJ9+/YaBZBUsi959O/fX+dKi7p160qeAwH16tV76/156Q1Hie7evYvQ0FCsWLECL168QIcOHbBo0SKcPXsWHh4e+k5PNmPHjsXgwYP1Xkjoa7SKlIcjNTKKj49Henq6VntmZiYePHggSw7nzp1DZGSkeqSI9INFi/40a9YMR44cQfPmzTF37lw0adIEhoaGWLRokb5Tk92YMWMQFBSk96KmdevWUKlU4N/Y+qWEVWgsamTUoEEDfPfdd1i+fDm8vb2hUqlw+vRp/O9//5NtF9Nq1arhzp07LGr0pG3btu/so1KpsHnzZhmyyZ/27t2L4OBg9O7dO08cTfDm3JY3SXlJWN9FRHJyMoYMGYKtW7ciPT0dDRo0wNy5c2Fra6vXvPIrJaxCY1EjoxUrVqB79+6oXr26eng1IyMDjRs3xrJly2TJYdmyZQgKCsK9e/dQoUIFrWFeT09PWfLIr3hgqP4dPnwYK1asQNWqVVG2bFl07doVAQEBesvnzT2J0tPTERUVhVWrVmHMmDGSx9fnG9eoUaMQGhqqPv9u7dq16N27NzZt2qS3nPIzJaxC45wamQghEBcXh6JFi+LevXuIiYmBEALlypVD6dKlZcvjxIkT6Ny5M27duqVuyx725URhyk+Sk5Oxfv16rFixAqdOnUJmZiZmzJiBnj175onzbtauXYsNGzZg27ZtksUwMDBAhQoVNPbq0UWqOS0lS5bEhAkT0LFjRwDAqVOn4Ovri5SUFBgaGkoSk3KmhFVoLGpkkpWVBTMzM1y8eFGvQ94eHh4oV64cfvzxR50ThV1cXPSUGZH+XLlyBcuXL8fq1avx7NkzNGrU6J1ntUntxo0b8PT0lPSQWQMDAwwaNOidZyxJtb+ViYkJYmNjUbx4cXVbgQIFcPXqVTg5OUkSk3K2Zs0abNu27bNehcaiRkbly5fH8uXLUbNmTb3lYGFhgbNnz8q6uRjR5yIzMxPbt2/HihUr9FrUvHz5EsOGDcOuXbtw5coVyeK8fjadPhgaGiIhIUHjqApLS0ucO3dOa48vkp4SVqFxTo2Mpk6diiFDhmDhwoWoUKGCXnKoX78+ixqiHBgaGqJ169ay7h1jY2OjtQne8+fPYW5ujjVr1kgaW98TQYUQ6NGjh8ZJ6SkpKQgKCoKFhYW6TY6TykkZx+hwpEZGNjY2SE5ORkZGBkxMTFCgQAGN++U4QG/JkiUYP348evbsqXM79K+++kryHIjo/6xatUrjYwMDAxQtWhQ1atSAjY2NpLH1PVLz7bffvlc/OU4qJ2VgUSOjN1+83pS9w6mUDAwMcryPE4WJ8pfbt2/D2dn5vUdsrKysEB0dDXd3d4kzI32KjIxETEwMVCoVPDw8tDaMzctY1BAR6dnhw4exePFi3Lx5E5s2bULx4sWxevVquLm5oXbt2vpOT83S0hJnz55lUaNQDx8+RMeOHXHo0CEUKlQIQggkJiaiXr16WL9+vcbcp7wq5z/bSVIvX75EUlKSxk1KzZo1Q2JiovrjCRMm4NmzZ+qPnzx5kq+2hyfKKzZv3ozGjRujQIECOHPmDFJTUwEAz58/x8SJE/WcHeUn/fr1Q1JSEi5evIinT5/i33//xYULF5CUlITg4GB9p/deOFIjoxcvXuCnn37Cxo0b8eTJE637pbz0Y2hoiPj4ePW18zeHkR88eABHR0defiKSmZeXFwYOHIhu3bppjIRER0ejSZMmSEhI0HeKahypUTZra2vs27cP1apV02g/deoU/P39Nf4Qzqs4UiOjH3/8EQcOHMCCBQtgamqKZcuWYcyYMXB0dERYWJiksd+sXVnLEuUNV65cQZ06dbTaraysPos3EVKOrKwsrcUjAGBsbKx1DlRexaJGRtu3b8eCBQvQvn17GBkZwc/PD7/88gsmTpyI3377Td/pEZEeODg44Pr161rtR44cyXMjIvpeAk7Sql+/Pvr374/79++r2+7du4eBAweiQYMGeszs/bGokdHTp0/VG0pZWVmpl3DXrl0bf//9t6SxVSqV1gsSX6CI9O9///sf+vfvj5MnT0KlUuH+/fv47bffMHjwYPTp00ff6WngCK+yzZs3D8+fP4erqytKliyJUqVKwc3NDc+fP8fcuXP1nd574eZ7MnJ3d8etW7fg4uICDw8PbNy4EdWrV8f27dtRqFAhSWO/ucnVmxtcZU9OJCJ5/fjjj+oVJikpKahTpw5MTU0xePBg9O3bV9/padi1a5fGkQakLE5OTjhz5gzCw8Nx+fJlCCHg4eGBhg0b6ju198aJwjKaOXMmDA0NERwcjIMHD6J58+bIzMxEeno6Zs6cif79+0sWm5tcEeVtycnJuHTpErKysuDh4fHO85g+VkhIyHv3nTFjhoSZkL4dOHAAffv2xYkTJ2BlZaVxX2JiInx8fLBo0SL4+fnpKcP3x6JGj+Li4nD69GmUKlUKnp6e+k6HiPKRevXqvVc/lUqFAwcOSJwN6dNXX32FevXqYeDAgTrvnzNnDg4ePIg//vhD5sxyj0WNDJRUBRPRp/XixQtMnjwZ+/fvx8OHD7VWmdy8eVNPmVF+4eLigt27d6NcuXI67798+TL8/f0RFxcnc2a5xzk1Mpg1axa+++47rYIGeLUvwP/+9z/MmDGDRQ1RPtSrVy9ERESga9eucHBw4AR+kt2DBw90LuXOZmRkhEePHsmY0YdjUSODs2fPYsqUKTne7+/vj2nTpsmYERHlFbt27cKOHTvg6+ur1zz++ecfbNq0CXFxcUhLS9O4j6dkK1vx4sVx/vx5lCpVSuf9586dg4ODg8xZfRgu6ZaBkqpgIvq0bGxsULhwYb3msH79evj6+uLSpUv4448/kJ6ejkuXLuHAgQOwtrbWa24kvWbNmmHkyJFISUnRuu/ly5cYNWoUWrRooYfMco9FjQyyq+CcfE5VMBF9WuPGjcPIkSORnJystxwmTpyImTNn4q+//oKJiQlmz56NmJgYdOjQAc7OznrLi+Txyy+/4OnTpyhdujSmTp2Kbdu24c8//8SUKVNQpkwZPH36FMOHD9d3mu+FE4Vl0K9fPxw6dAj//PMPzMzMNO57+fIlqlevjnr16mHOnDl6ypCI9MXLyws3btyAEAKurq5ao7pnzpyRPAcLCwtcvHgRrq6usLW1xcGDB1GxYkXExMSgfv36iI+PlzwH0q/bt2+jd+/e2LNnj3qTRZVKhcaNG2PBggVwdXXVb4LviXNqZPDLL79gy5YtKF26NPr27YsyZcpApVIhJiYG8+fPR2Zm5mdTBRPRp9W6dWuoVCq97tZbuHBhPH/+HMCrkeULFy6gYsWKePbsmV5HkEg+Li4u2LlzJ/79919cv34dQgh88cUXsLGx0XdqucKiRgZ2dnY4duwYevfujWHDhumsgu3s7PScJRHJKTk5GUOGDMHWrVuRnp6OBg0aYO7cubC1tZU9Fz8/P4SHh6NixYro0KED+vfvjwMHDiA8PPyzOfOHPg0bGxutU7o/J7z8JLPPvQomok9jyJAhWLBgAbp06YICBQpg7dq1+PLLL7Fp0ybZc3n69ClSUlLg6OiIrKwsTJs2DUeOHEGpUqUwYsQIvk7RZ4NFDRGRHpQsWRITJkxAx44dAQCnTp2Cr68vUlJSYGhoKFseGRkZ+O2339C4cWPY29vLFpdICixqiIj0wMTEBLGxsRoHRBYoUABXr16Fk5OTrLmYm5sjJiYGLi4ussYl+tS4pJuISA8yMzNhYmKi0WZkZISMjAzZc6lRowaioqJkj0v0qXGiMBGRHggh0KNHD5iamqrbUlJSEBQUBAsLC3WbHLv59unTB4MGDcLdu3fh7e2tER8AD9ylzwYvPxER6cG33377Xv1WrlwpcSaAgYH2oH32MnOVSoXMzEzJcyD6FFjUEBHlc7dv337r/ZxrQ58LFjVERESkCJxTQ0SUz4WFhb31/m7dusmUCdHH4UgNEVE+9+bmeunp6UhOToaJiQnMzc3x9OlTPWVGlDtc0k1ElM/9+++/Grf//vsPV65cQe3atbFu3Tp9p0f03jhSQ0REOp0+fRrffPMNLl++rO9UiN4LR2qIiEgnQ0ND3L9/X99pEL03ThQmIsrn/vzzT42PhRCIj4/HvHnz4Ovrq6esiHKPl5+IiPK5NzffU6lUKFq0KOrXr4/p06fDwcFBT5kR5Q6LGiIiIlIEzqkhIiIAQFpaGq5cuaKXQzWJPgUWNURE+VxycjJ69uwJc3NzlC9fHnFxcQCA4OBgTJ48Wc/ZEb0/FjVERPncsGHDcO7cORw6dAhmZmbq9oYNG2LDhg16zIwod7j6iYgon9u6dSs2bNiAmjVrQqVSqds9PDxw48YNPWZGlDscqSEiyucePXqEYsWKabW/ePFCo8ghyutY1BAR5XPVqlXDjh071B9nFzJLly5FrVq19JUWUa7x8hMRUT43adIkNGnSBJcuXUJGRgZmz56Nixcv4vjx44iIiNB3ekTvjSM1RET5nI+PD44ePYrk5GSULFkSe/fuhZ2dHY4fPw5vb299p0f03rj5HhERESkCLz8REeVDSUlJ793XyspKwkyIPh2O1BAR5UMGBgbvXNkkhIBKpUJmZqZMWRF9HI7UEBHlQwcPHtR3CkSfHEdqiIjyqeTkZAwZMgRbt25Feno6GjZsiDlz5sDW1lbfqRF9EK5+IiLKp0aNGoXQ0FA0b94cnTp1Qnh4OHr37q3vtIg+GEdqiIjyqZIlS2LChAno2LEjAODUqVPw9fVFSkoKDA0N9ZwdUe6xqCEiyqdMTEwQGxuL4sWLq9sKFCiAq1evwsnJSY+ZEX0YXn4iIsqnMjMzYWJiotFmZGSEjIwMPWVE9HG4+omIKJ8SQqBHjx4wNTVVt6WkpCAoKAgWFhbqti1btugjPaJcY1FDRJRPde/eXavtm2++0UMmRJ8G59QQERGRInBODRERESkCixoiIiJSBBY1REREpAgsaoiIiEgRWNQQERGRIrCoISIiIkVgUUNERESK8P8AIB5yslAa6WgAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "plt.xticks(rotation=90)\n", "plt.bar(x=labels, height=np.mean(train_generator.labels, axis=0))\n", "plt.title(\"Frequency of Each Class\")\n", "plt.show()" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "colab": {}, "colab_type": "code", "id": "TpDGeY2cChYD" }, "outputs": [], "source": [ "def compute_class_freqs(labels):\n", " \n", " # total number of patients (rows)\n", " N = labels.shape[0]\n", " \n", " positive_frequencies = np.sum(labels, axis=0) / N\n", " negative_frequencies = 1 - positive_frequencies\n", "\n", " return positive_frequencies, negative_frequencies" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "colab": {}, "colab_type": "code", "id": "LoxM5jQ0E30D" }, "outputs": [ { "data": { "text/plain": [ "array([0.02 , 0.013, 0.128, 0.002, 0.175, 0.045, 0.054, 0.106, 0.038,\n", " 0.021, 0.01 , 0.014, 0.016, 0.033])" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "freq_pos, freq_neg = compute_class_freqs(train_generator.labels)\n", "freq_pos" ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [], "source": [ "pos_weights = freq_neg\n", "neg_weights = freq_pos\n", "pos_contribution = freq_pos * pos_weights \n", "neg_contribution = freq_neg * neg_weights" ] }, { "cell_type": "code", "execution_count": 15, "metadata": { "colab": {}, "colab_type": "code", "id": "pPIBVAasn5yd" }, "outputs": [], "source": [ "def get_weighted_loss(pos_weights, neg_weights, epsilon=1e-7):\n", " \n", " def weighted_loss(y_true, y_pred):\n", " \n", " loss = 0.0\n", "\n", " for i in range(len(pos_weights)):\n", " loss_pos = -1 * tf.reduce_mean(pos_weights[i] * y_true[:, i] * tf.math.log(y_pred[:, i] + epsilon))\n", " loss_neg = -1 * tf.reduce_mean(neg_weights[i] * (1 - y_true[:, i]) * tf.math.log(1 - y_pred[:, i] + epsilon))\n", " loss += loss_pos + loss_neg\n", " \n", " return loss\n", " \n", " ### END CODE HERE ###\n", " return weighted_loss" ] }, { "cell_type": "code", "execution_count": 12, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 71 }, "colab_type": "code", "id": "gZlxoCTgn5yi", "outputId": "7e12120b-8aab-403c-b5ca-2ff77ef978b1", "scrolled": true }, "outputs": [], "source": [ "base_model = DenseNet121(weights='densenet.hdf5', include_top=False)\n", "\n", "x = base_model.output\n", "\n", "# add a global spatial average pooling layer\n", "x = GlobalAveragePooling2D()(x)\n", "\n", "# and a logistic layer\n", "predictions = Dense(len(labels), activation=\"sigmoid\")(x)\n", "\n", "model = Model(inputs=base_model.input, outputs=predictions)\n", "model.compile(optimizer='adam', loss='categorical_crossentropy')" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "BcwhQdOAn5ym" }, "source": [ "\n", "## 4 Training [optional]\n", "\n", "**Note** that we have already provided a pre-trained model, so you don't need to run the following training cell (as it will take some time).\n", "\n", "With our model ready for training, we will use the `model.fit()` function in Keras to train our model. \n", "- We are training on a small subset of the dataset (~1%). \n" ] }, { "cell_type": "code", "execution_count": 17, "metadata": { "colab": { "base_uri": "https://localhost:8080/", "height": 449 }, "colab_type": "code", "id": "YdZQTlGvn5ym", "outputId": "7d5009a0-1a00-4b45-8100-f1681691cbb8" }, "outputs": [ { "ename": "IndentationError", "evalue": "unexpected indent (2502662138.py, line 7)", "output_type": "error", "traceback": [ "\u001b[1;36m Cell \u001b[1;32mIn[17], line 7\u001b[1;36m\u001b[0m\n\u001b[1;33m validation_data=val_generator,\u001b[0m\n\u001b[1;37m ^\u001b[0m\n\u001b[1;31mIndentationError\u001b[0m\u001b[1;31m:\u001b[0m unexpected indent\n" ] } ], "source": [ "# \"\"\"\n", "# OPTIONAL: uncomment this code to practice training the model.\n", "# This is optional because we have loaded pre-trained weights after this.\n", "# \"\"\"\n", "\n", "#history = model.fit(train_generator, \n", " validation_data=val_generator,\n", " \n", " epochs = 5)\n", "#plt.plot(history.history['loss'])\n", "##plt.ylabel(\"loss\")\n", "#plt.xlabel(\"epoch\")\n", "#plt.title(\"Training Loss Curve\")\n", "#plt.show()" ] }, { "cell_type": "code", "execution_count": 13, "metadata": { "colab": {}, "colab_type": "code", "id": "887bSajLn5yq", "scrolled": true }, "outputs": [], "source": [ "model.load_weights(\"pretrained_model.h5\")" ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
Model: \"functional_1\"\n",
       "
\n" ], "text/plain": [ "\u001b[1mModel: \"functional_1\"\u001b[0m\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n",
       "┃ Layer (type)         Output Shape          Param #  Connected to      ┃\n",
       "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n",
       "│ input_layer         │ (None, None,      │          0 │ -                 │\n",
       "│ (InputLayer)        │ None, 3)          │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ zero_padding2d      │ (None, None,      │          0 │ input_layer[0][0] │\n",
       "│ (ZeroPadding2D)     │ None, 3)          │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv1_conv (Conv2D) │ (None, None,      │      9,408 │ zero_padding2d[0… │\n",
       "│                     │ None, 64)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv1_bn            │ (None, None,      │        256 │ conv1_conv[0][0]  │\n",
       "│ (BatchNormalizatio…None, 64)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv1_relu          │ (None, None,      │          0 │ conv1_bn[0][0]    │\n",
       "│ (Activation)        │ None, 64)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ zero_padding2d_1    │ (None, None,      │          0 │ conv1_relu[0][0]  │\n",
       "│ (ZeroPadding2D)     │ None, 64)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ pool1               │ (None, None,      │          0 │ zero_padding2d_1… │\n",
       "│ (MaxPooling2D)      │ None, 64)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block1_0_bn   │ (None, None,      │        256 │ pool1[0][0]       │\n",
       "│ (BatchNormalizatio…None, 64)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block1_0_relu │ (None, None,      │          0 │ conv2_block1_0_b… │\n",
       "│ (Activation)        │ None, 64)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block1_1_conv │ (None, None,      │      8,192 │ conv2_block1_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block1_1_bn   │ (None, None,      │        512 │ conv2_block1_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block1_1_relu │ (None, None,      │          0 │ conv2_block1_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block1_2_conv │ (None, None,      │     36,864 │ conv2_block1_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block1_concat │ (None, None,      │          0 │ pool1[0][0],      │\n",
       "│ (Concatenate)       │ None, 96)         │            │ conv2_block1_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block2_0_bn   │ (None, None,      │        384 │ conv2_block1_con… │\n",
       "│ (BatchNormalizatio…None, 96)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block2_0_relu │ (None, None,      │          0 │ conv2_block2_0_b… │\n",
       "│ (Activation)        │ None, 96)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block2_1_conv │ (None, None,      │     12,288 │ conv2_block2_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block2_1_bn   │ (None, None,      │        512 │ conv2_block2_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block2_1_relu │ (None, None,      │          0 │ conv2_block2_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block2_2_conv │ (None, None,      │     36,864 │ conv2_block2_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block2_concat │ (None, None,      │          0 │ conv2_block1_con… │\n",
       "│ (Concatenate)       │ None, 128)        │            │ conv2_block2_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block3_0_bn   │ (None, None,      │        512 │ conv2_block2_con… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block3_0_relu │ (None, None,      │          0 │ conv2_block3_0_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block3_1_conv │ (None, None,      │     16,384 │ conv2_block3_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block3_1_bn   │ (None, None,      │        512 │ conv2_block3_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block3_1_relu │ (None, None,      │          0 │ conv2_block3_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block3_2_conv │ (None, None,      │     36,864 │ conv2_block3_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block3_concat │ (None, None,      │          0 │ conv2_block2_con… │\n",
       "│ (Concatenate)       │ None, 160)        │            │ conv2_block3_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block4_0_bn   │ (None, None,      │        640 │ conv2_block3_con… │\n",
       "│ (BatchNormalizatio…None, 160)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block4_0_relu │ (None, None,      │          0 │ conv2_block4_0_b… │\n",
       "│ (Activation)        │ None, 160)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block4_1_conv │ (None, None,      │     20,480 │ conv2_block4_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block4_1_bn   │ (None, None,      │        512 │ conv2_block4_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block4_1_relu │ (None, None,      │          0 │ conv2_block4_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block4_2_conv │ (None, None,      │     36,864 │ conv2_block4_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block4_concat │ (None, None,      │          0 │ conv2_block3_con… │\n",
       "│ (Concatenate)       │ None, 192)        │            │ conv2_block4_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block5_0_bn   │ (None, None,      │        768 │ conv2_block4_con… │\n",
       "│ (BatchNormalizatio…None, 192)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block5_0_relu │ (None, None,      │          0 │ conv2_block5_0_b… │\n",
       "│ (Activation)        │ None, 192)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block5_1_conv │ (None, None,      │     24,576 │ conv2_block5_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block5_1_bn   │ (None, None,      │        512 │ conv2_block5_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block5_1_relu │ (None, None,      │          0 │ conv2_block5_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block5_2_conv │ (None, None,      │     36,864 │ conv2_block5_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block5_concat │ (None, None,      │          0 │ conv2_block4_con… │\n",
       "│ (Concatenate)       │ None, 224)        │            │ conv2_block5_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block6_0_bn   │ (None, None,      │        896 │ conv2_block5_con… │\n",
       "│ (BatchNormalizatio…None, 224)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block6_0_relu │ (None, None,      │          0 │ conv2_block6_0_b… │\n",
       "│ (Activation)        │ None, 224)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block6_1_conv │ (None, None,      │     28,672 │ conv2_block6_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block6_1_bn   │ (None, None,      │        512 │ conv2_block6_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block6_1_relu │ (None, None,      │          0 │ conv2_block6_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block6_2_conv │ (None, None,      │     36,864 │ conv2_block6_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv2_block6_concat │ (None, None,      │          0 │ conv2_block5_con… │\n",
       "│ (Concatenate)       │ None, 256)        │            │ conv2_block6_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ pool2_bn            │ (None, None,      │      1,024 │ conv2_block6_con… │\n",
       "│ (BatchNormalizatio…None, 256)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ pool2_relu          │ (None, None,      │          0 │ pool2_bn[0][0]    │\n",
       "│ (Activation)        │ None, 256)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ pool2_conv (Conv2D) │ (None, None,      │     32,768 │ pool2_relu[0][0]  │\n",
       "│                     │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ pool2_pool          │ (None, None,      │          0 │ pool2_conv[0][0]  │\n",
       "│ (AveragePooling2D)  │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block1_0_bn   │ (None, None,      │        512 │ pool2_pool[0][0]  │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block1_0_relu │ (None, None,      │          0 │ conv3_block1_0_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block1_1_conv │ (None, None,      │     16,384 │ conv3_block1_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block1_1_bn   │ (None, None,      │        512 │ conv3_block1_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block1_1_relu │ (None, None,      │          0 │ conv3_block1_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block1_2_conv │ (None, None,      │     36,864 │ conv3_block1_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block1_concat │ (None, None,      │          0 │ pool2_pool[0][0], │\n",
       "│ (Concatenate)       │ None, 160)        │            │ conv3_block1_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block2_0_bn   │ (None, None,      │        640 │ conv3_block1_con… │\n",
       "│ (BatchNormalizatio…None, 160)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block2_0_relu │ (None, None,      │          0 │ conv3_block2_0_b… │\n",
       "│ (Activation)        │ None, 160)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block2_1_conv │ (None, None,      │     20,480 │ conv3_block2_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block2_1_bn   │ (None, None,      │        512 │ conv3_block2_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block2_1_relu │ (None, None,      │          0 │ conv3_block2_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block2_2_conv │ (None, None,      │     36,864 │ conv3_block2_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block2_concat │ (None, None,      │          0 │ conv3_block1_con… │\n",
       "│ (Concatenate)       │ None, 192)        │            │ conv3_block2_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block3_0_bn   │ (None, None,      │        768 │ conv3_block2_con… │\n",
       "│ (BatchNormalizatio…None, 192)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block3_0_relu │ (None, None,      │          0 │ conv3_block3_0_b… │\n",
       "│ (Activation)        │ None, 192)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block3_1_conv │ (None, None,      │     24,576 │ conv3_block3_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block3_1_bn   │ (None, None,      │        512 │ conv3_block3_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block3_1_relu │ (None, None,      │          0 │ conv3_block3_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block3_2_conv │ (None, None,      │     36,864 │ conv3_block3_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block3_concat │ (None, None,      │          0 │ conv3_block2_con… │\n",
       "│ (Concatenate)       │ None, 224)        │            │ conv3_block3_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block4_0_bn   │ (None, None,      │        896 │ conv3_block3_con… │\n",
       "│ (BatchNormalizatio…None, 224)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block4_0_relu │ (None, None,      │          0 │ conv3_block4_0_b… │\n",
       "│ (Activation)        │ None, 224)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block4_1_conv │ (None, None,      │     28,672 │ conv3_block4_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block4_1_bn   │ (None, None,      │        512 │ conv3_block4_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block4_1_relu │ (None, None,      │          0 │ conv3_block4_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block4_2_conv │ (None, None,      │     36,864 │ conv3_block4_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block4_concat │ (None, None,      │          0 │ conv3_block3_con… │\n",
       "│ (Concatenate)       │ None, 256)        │            │ conv3_block4_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block5_0_bn   │ (None, None,      │      1,024 │ conv3_block4_con… │\n",
       "│ (BatchNormalizatio…None, 256)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block5_0_relu │ (None, None,      │          0 │ conv3_block5_0_b… │\n",
       "│ (Activation)        │ None, 256)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block5_1_conv │ (None, None,      │     32,768 │ conv3_block5_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block5_1_bn   │ (None, None,      │        512 │ conv3_block5_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block5_1_relu │ (None, None,      │          0 │ conv3_block5_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block5_2_conv │ (None, None,      │     36,864 │ conv3_block5_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block5_concat │ (None, None,      │          0 │ conv3_block4_con… │\n",
       "│ (Concatenate)       │ None, 288)        │            │ conv3_block5_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block6_0_bn   │ (None, None,      │      1,152 │ conv3_block5_con… │\n",
       "│ (BatchNormalizatio…None, 288)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block6_0_relu │ (None, None,      │          0 │ conv3_block6_0_b… │\n",
       "│ (Activation)        │ None, 288)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block6_1_conv │ (None, None,      │     36,864 │ conv3_block6_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block6_1_bn   │ (None, None,      │        512 │ conv3_block6_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block6_1_relu │ (None, None,      │          0 │ conv3_block6_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block6_2_conv │ (None, None,      │     36,864 │ conv3_block6_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block6_concat │ (None, None,      │          0 │ conv3_block5_con… │\n",
       "│ (Concatenate)       │ None, 320)        │            │ conv3_block6_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block7_0_bn   │ (None, None,      │      1,280 │ conv3_block6_con… │\n",
       "│ (BatchNormalizatio…None, 320)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block7_0_relu │ (None, None,      │          0 │ conv3_block7_0_b… │\n",
       "│ (Activation)        │ None, 320)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block7_1_conv │ (None, None,      │     40,960 │ conv3_block7_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block7_1_bn   │ (None, None,      │        512 │ conv3_block7_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block7_1_relu │ (None, None,      │          0 │ conv3_block7_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block7_2_conv │ (None, None,      │     36,864 │ conv3_block7_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block7_concat │ (None, None,      │          0 │ conv3_block6_con… │\n",
       "│ (Concatenate)       │ None, 352)        │            │ conv3_block7_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block8_0_bn   │ (None, None,      │      1,408 │ conv3_block7_con… │\n",
       "│ (BatchNormalizatio…None, 352)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block8_0_relu │ (None, None,      │          0 │ conv3_block8_0_b… │\n",
       "│ (Activation)        │ None, 352)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block8_1_conv │ (None, None,      │     45,056 │ conv3_block8_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block8_1_bn   │ (None, None,      │        512 │ conv3_block8_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block8_1_relu │ (None, None,      │          0 │ conv3_block8_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block8_2_conv │ (None, None,      │     36,864 │ conv3_block8_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block8_concat │ (None, None,      │          0 │ conv3_block7_con… │\n",
       "│ (Concatenate)       │ None, 384)        │            │ conv3_block8_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block9_0_bn   │ (None, None,      │      1,536 │ conv3_block8_con… │\n",
       "│ (BatchNormalizatio…None, 384)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block9_0_relu │ (None, None,      │          0 │ conv3_block9_0_b… │\n",
       "│ (Activation)        │ None, 384)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block9_1_conv │ (None, None,      │     49,152 │ conv3_block9_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block9_1_bn   │ (None, None,      │        512 │ conv3_block9_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block9_1_relu │ (None, None,      │          0 │ conv3_block9_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block9_2_conv │ (None, None,      │     36,864 │ conv3_block9_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block9_concat │ (None, None,      │          0 │ conv3_block8_con… │\n",
       "│ (Concatenate)       │ None, 416)        │            │ conv3_block9_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block10_0_bn  │ (None, None,      │      1,664 │ conv3_block9_con… │\n",
       "│ (BatchNormalizatio…None, 416)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block10_0_re… │ (None, None,      │          0 │ conv3_block10_0_… │\n",
       "│ (Activation)        │ None, 416)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block10_1_co… │ (None, None,      │     53,248 │ conv3_block10_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block10_1_bn  │ (None, None,      │        512 │ conv3_block10_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block10_1_re… │ (None, None,      │          0 │ conv3_block10_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block10_2_co… │ (None, None,      │     36,864 │ conv3_block10_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block10_conc… │ (None, None,      │          0 │ conv3_block9_con… │\n",
       "│ (Concatenate)       │ None, 448)        │            │ conv3_block10_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block11_0_bn  │ (None, None,      │      1,792 │ conv3_block10_co… │\n",
       "│ (BatchNormalizatio…None, 448)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block11_0_re… │ (None, None,      │          0 │ conv3_block11_0_… │\n",
       "│ (Activation)        │ None, 448)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block11_1_co… │ (None, None,      │     57,344 │ conv3_block11_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block11_1_bn  │ (None, None,      │        512 │ conv3_block11_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block11_1_re… │ (None, None,      │          0 │ conv3_block11_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block11_2_co… │ (None, None,      │     36,864 │ conv3_block11_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block11_conc… │ (None, None,      │          0 │ conv3_block10_co… │\n",
       "│ (Concatenate)       │ None, 480)        │            │ conv3_block11_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block12_0_bn  │ (None, None,      │      1,920 │ conv3_block11_co… │\n",
       "│ (BatchNormalizatio…None, 480)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block12_0_re… │ (None, None,      │          0 │ conv3_block12_0_… │\n",
       "│ (Activation)        │ None, 480)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block12_1_co… │ (None, None,      │     61,440 │ conv3_block12_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block12_1_bn  │ (None, None,      │        512 │ conv3_block12_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block12_1_re… │ (None, None,      │          0 │ conv3_block12_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block12_2_co… │ (None, None,      │     36,864 │ conv3_block12_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv3_block12_conc… │ (None, None,      │          0 │ conv3_block11_co… │\n",
       "│ (Concatenate)       │ None, 512)        │            │ conv3_block12_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ pool3_bn            │ (None, None,      │      2,048 │ conv3_block12_co… │\n",
       "│ (BatchNormalizatio…None, 512)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ pool3_relu          │ (None, None,      │          0 │ pool3_bn[0][0]    │\n",
       "│ (Activation)        │ None, 512)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ pool3_conv (Conv2D) │ (None, None,      │    131,072 │ pool3_relu[0][0]  │\n",
       "│                     │ None, 256)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ pool3_pool          │ (None, None,      │          0 │ pool3_conv[0][0]  │\n",
       "│ (AveragePooling2D)  │ None, 256)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block1_0_bn   │ (None, None,      │      1,024 │ pool3_pool[0][0]  │\n",
       "│ (BatchNormalizatio…None, 256)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block1_0_relu │ (None, None,      │          0 │ conv4_block1_0_b… │\n",
       "│ (Activation)        │ None, 256)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block1_1_conv │ (None, None,      │     32,768 │ conv4_block1_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block1_1_bn   │ (None, None,      │        512 │ conv4_block1_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block1_1_relu │ (None, None,      │          0 │ conv4_block1_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block1_2_conv │ (None, None,      │     36,864 │ conv4_block1_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block1_concat │ (None, None,      │          0 │ pool3_pool[0][0], │\n",
       "│ (Concatenate)       │ None, 288)        │            │ conv4_block1_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block2_0_bn   │ (None, None,      │      1,152 │ conv4_block1_con… │\n",
       "│ (BatchNormalizatio…None, 288)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block2_0_relu │ (None, None,      │          0 │ conv4_block2_0_b… │\n",
       "│ (Activation)        │ None, 288)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block2_1_conv │ (None, None,      │     36,864 │ conv4_block2_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block2_1_bn   │ (None, None,      │        512 │ conv4_block2_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block2_1_relu │ (None, None,      │          0 │ conv4_block2_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block2_2_conv │ (None, None,      │     36,864 │ conv4_block2_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block2_concat │ (None, None,      │          0 │ conv4_block1_con… │\n",
       "│ (Concatenate)       │ None, 320)        │            │ conv4_block2_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block3_0_bn   │ (None, None,      │      1,280 │ conv4_block2_con… │\n",
       "│ (BatchNormalizatio…None, 320)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block3_0_relu │ (None, None,      │          0 │ conv4_block3_0_b… │\n",
       "│ (Activation)        │ None, 320)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block3_1_conv │ (None, None,      │     40,960 │ conv4_block3_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block3_1_bn   │ (None, None,      │        512 │ conv4_block3_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block3_1_relu │ (None, None,      │          0 │ conv4_block3_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block3_2_conv │ (None, None,      │     36,864 │ conv4_block3_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block3_concat │ (None, None,      │          0 │ conv4_block2_con… │\n",
       "│ (Concatenate)       │ None, 352)        │            │ conv4_block3_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block4_0_bn   │ (None, None,      │      1,408 │ conv4_block3_con… │\n",
       "│ (BatchNormalizatio…None, 352)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block4_0_relu │ (None, None,      │          0 │ conv4_block4_0_b… │\n",
       "│ (Activation)        │ None, 352)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block4_1_conv │ (None, None,      │     45,056 │ conv4_block4_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block4_1_bn   │ (None, None,      │        512 │ conv4_block4_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block4_1_relu │ (None, None,      │          0 │ conv4_block4_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block4_2_conv │ (None, None,      │     36,864 │ conv4_block4_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block4_concat │ (None, None,      │          0 │ conv4_block3_con… │\n",
       "│ (Concatenate)       │ None, 384)        │            │ conv4_block4_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block5_0_bn   │ (None, None,      │      1,536 │ conv4_block4_con… │\n",
       "│ (BatchNormalizatio…None, 384)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block5_0_relu │ (None, None,      │          0 │ conv4_block5_0_b… │\n",
       "│ (Activation)        │ None, 384)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block5_1_conv │ (None, None,      │     49,152 │ conv4_block5_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block5_1_bn   │ (None, None,      │        512 │ conv4_block5_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block5_1_relu │ (None, None,      │          0 │ conv4_block5_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block5_2_conv │ (None, None,      │     36,864 │ conv4_block5_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block5_concat │ (None, None,      │          0 │ conv4_block4_con… │\n",
       "│ (Concatenate)       │ None, 416)        │            │ conv4_block5_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block6_0_bn   │ (None, None,      │      1,664 │ conv4_block5_con… │\n",
       "│ (BatchNormalizatio…None, 416)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block6_0_relu │ (None, None,      │          0 │ conv4_block6_0_b… │\n",
       "│ (Activation)        │ None, 416)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block6_1_conv │ (None, None,      │     53,248 │ conv4_block6_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block6_1_bn   │ (None, None,      │        512 │ conv4_block6_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block6_1_relu │ (None, None,      │          0 │ conv4_block6_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block6_2_conv │ (None, None,      │     36,864 │ conv4_block6_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block6_concat │ (None, None,      │          0 │ conv4_block5_con… │\n",
       "│ (Concatenate)       │ None, 448)        │            │ conv4_block6_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block7_0_bn   │ (None, None,      │      1,792 │ conv4_block6_con… │\n",
       "│ (BatchNormalizatio…None, 448)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block7_0_relu │ (None, None,      │          0 │ conv4_block7_0_b… │\n",
       "│ (Activation)        │ None, 448)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block7_1_conv │ (None, None,      │     57,344 │ conv4_block7_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block7_1_bn   │ (None, None,      │        512 │ conv4_block7_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block7_1_relu │ (None, None,      │          0 │ conv4_block7_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block7_2_conv │ (None, None,      │     36,864 │ conv4_block7_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block7_concat │ (None, None,      │          0 │ conv4_block6_con… │\n",
       "│ (Concatenate)       │ None, 480)        │            │ conv4_block7_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block8_0_bn   │ (None, None,      │      1,920 │ conv4_block7_con… │\n",
       "│ (BatchNormalizatio…None, 480)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block8_0_relu │ (None, None,      │          0 │ conv4_block8_0_b… │\n",
       "│ (Activation)        │ None, 480)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block8_1_conv │ (None, None,      │     61,440 │ conv4_block8_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block8_1_bn   │ (None, None,      │        512 │ conv4_block8_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block8_1_relu │ (None, None,      │          0 │ conv4_block8_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block8_2_conv │ (None, None,      │     36,864 │ conv4_block8_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block8_concat │ (None, None,      │          0 │ conv4_block7_con… │\n",
       "│ (Concatenate)       │ None, 512)        │            │ conv4_block8_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block9_0_bn   │ (None, None,      │      2,048 │ conv4_block8_con… │\n",
       "│ (BatchNormalizatio…None, 512)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block9_0_relu │ (None, None,      │          0 │ conv4_block9_0_b… │\n",
       "│ (Activation)        │ None, 512)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block9_1_conv │ (None, None,      │     65,536 │ conv4_block9_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block9_1_bn   │ (None, None,      │        512 │ conv4_block9_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block9_1_relu │ (None, None,      │          0 │ conv4_block9_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block9_2_conv │ (None, None,      │     36,864 │ conv4_block9_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block9_concat │ (None, None,      │          0 │ conv4_block8_con… │\n",
       "│ (Concatenate)       │ None, 544)        │            │ conv4_block9_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block10_0_bn  │ (None, None,      │      2,176 │ conv4_block9_con… │\n",
       "│ (BatchNormalizatio…None, 544)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block10_0_re… │ (None, None,      │          0 │ conv4_block10_0_… │\n",
       "│ (Activation)        │ None, 544)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block10_1_co… │ (None, None,      │     69,632 │ conv4_block10_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block10_1_bn  │ (None, None,      │        512 │ conv4_block10_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block10_1_re… │ (None, None,      │          0 │ conv4_block10_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block10_2_co… │ (None, None,      │     36,864 │ conv4_block10_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block10_conc… │ (None, None,      │          0 │ conv4_block9_con… │\n",
       "│ (Concatenate)       │ None, 576)        │            │ conv4_block10_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block11_0_bn  │ (None, None,      │      2,304 │ conv4_block10_co… │\n",
       "│ (BatchNormalizatio…None, 576)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block11_0_re… │ (None, None,      │          0 │ conv4_block11_0_… │\n",
       "│ (Activation)        │ None, 576)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block11_1_co… │ (None, None,      │     73,728 │ conv4_block11_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block11_1_bn  │ (None, None,      │        512 │ conv4_block11_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block11_1_re… │ (None, None,      │          0 │ conv4_block11_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block11_2_co… │ (None, None,      │     36,864 │ conv4_block11_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block11_conc… │ (None, None,      │          0 │ conv4_block10_co… │\n",
       "│ (Concatenate)       │ None, 608)        │            │ conv4_block11_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block12_0_bn  │ (None, None,      │      2,432 │ conv4_block11_co… │\n",
       "│ (BatchNormalizatio…None, 608)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block12_0_re… │ (None, None,      │          0 │ conv4_block12_0_… │\n",
       "│ (Activation)        │ None, 608)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block12_1_co… │ (None, None,      │     77,824 │ conv4_block12_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block12_1_bn  │ (None, None,      │        512 │ conv4_block12_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block12_1_re… │ (None, None,      │          0 │ conv4_block12_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block12_2_co… │ (None, None,      │     36,864 │ conv4_block12_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block12_conc… │ (None, None,      │          0 │ conv4_block11_co… │\n",
       "│ (Concatenate)       │ None, 640)        │            │ conv4_block12_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block13_0_bn  │ (None, None,      │      2,560 │ conv4_block12_co… │\n",
       "│ (BatchNormalizatio…None, 640)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block13_0_re… │ (None, None,      │          0 │ conv4_block13_0_… │\n",
       "│ (Activation)        │ None, 640)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block13_1_co… │ (None, None,      │     81,920 │ conv4_block13_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block13_1_bn  │ (None, None,      │        512 │ conv4_block13_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block13_1_re… │ (None, None,      │          0 │ conv4_block13_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block13_2_co… │ (None, None,      │     36,864 │ conv4_block13_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block13_conc… │ (None, None,      │          0 │ conv4_block12_co… │\n",
       "│ (Concatenate)       │ None, 672)        │            │ conv4_block13_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block14_0_bn  │ (None, None,      │      2,688 │ conv4_block13_co… │\n",
       "│ (BatchNormalizatio…None, 672)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block14_0_re… │ (None, None,      │          0 │ conv4_block14_0_… │\n",
       "│ (Activation)        │ None, 672)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block14_1_co… │ (None, None,      │     86,016 │ conv4_block14_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block14_1_bn  │ (None, None,      │        512 │ conv4_block14_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block14_1_re… │ (None, None,      │          0 │ conv4_block14_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block14_2_co… │ (None, None,      │     36,864 │ conv4_block14_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block14_conc… │ (None, None,      │          0 │ conv4_block13_co… │\n",
       "│ (Concatenate)       │ None, 704)        │            │ conv4_block14_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block15_0_bn  │ (None, None,      │      2,816 │ conv4_block14_co… │\n",
       "│ (BatchNormalizatio…None, 704)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block15_0_re… │ (None, None,      │          0 │ conv4_block15_0_… │\n",
       "│ (Activation)        │ None, 704)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block15_1_co… │ (None, None,      │     90,112 │ conv4_block15_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block15_1_bn  │ (None, None,      │        512 │ conv4_block15_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block15_1_re… │ (None, None,      │          0 │ conv4_block15_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block15_2_co… │ (None, None,      │     36,864 │ conv4_block15_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block15_conc… │ (None, None,      │          0 │ conv4_block14_co… │\n",
       "│ (Concatenate)       │ None, 736)        │            │ conv4_block15_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block16_0_bn  │ (None, None,      │      2,944 │ conv4_block15_co… │\n",
       "│ (BatchNormalizatio…None, 736)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block16_0_re… │ (None, None,      │          0 │ conv4_block16_0_… │\n",
       "│ (Activation)        │ None, 736)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block16_1_co… │ (None, None,      │     94,208 │ conv4_block16_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block16_1_bn  │ (None, None,      │        512 │ conv4_block16_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block16_1_re… │ (None, None,      │          0 │ conv4_block16_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block16_2_co… │ (None, None,      │     36,864 │ conv4_block16_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block16_conc… │ (None, None,      │          0 │ conv4_block15_co… │\n",
       "│ (Concatenate)       │ None, 768)        │            │ conv4_block16_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block17_0_bn  │ (None, None,      │      3,072 │ conv4_block16_co… │\n",
       "│ (BatchNormalizatio…None, 768)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block17_0_re… │ (None, None,      │          0 │ conv4_block17_0_… │\n",
       "│ (Activation)        │ None, 768)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block17_1_co… │ (None, None,      │     98,304 │ conv4_block17_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block17_1_bn  │ (None, None,      │        512 │ conv4_block17_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block17_1_re… │ (None, None,      │          0 │ conv4_block17_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block17_2_co… │ (None, None,      │     36,864 │ conv4_block17_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block17_conc… │ (None, None,      │          0 │ conv4_block16_co… │\n",
       "│ (Concatenate)       │ None, 800)        │            │ conv4_block17_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block18_0_bn  │ (None, None,      │      3,200 │ conv4_block17_co… │\n",
       "│ (BatchNormalizatio…None, 800)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block18_0_re… │ (None, None,      │          0 │ conv4_block18_0_… │\n",
       "│ (Activation)        │ None, 800)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block18_1_co… │ (None, None,      │    102,400 │ conv4_block18_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block18_1_bn  │ (None, None,      │        512 │ conv4_block18_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block18_1_re… │ (None, None,      │          0 │ conv4_block18_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block18_2_co… │ (None, None,      │     36,864 │ conv4_block18_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block18_conc… │ (None, None,      │          0 │ conv4_block17_co… │\n",
       "│ (Concatenate)       │ None, 832)        │            │ conv4_block18_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block19_0_bn  │ (None, None,      │      3,328 │ conv4_block18_co… │\n",
       "│ (BatchNormalizatio…None, 832)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block19_0_re… │ (None, None,      │          0 │ conv4_block19_0_… │\n",
       "│ (Activation)        │ None, 832)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block19_1_co… │ (None, None,      │    106,496 │ conv4_block19_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block19_1_bn  │ (None, None,      │        512 │ conv4_block19_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block19_1_re… │ (None, None,      │          0 │ conv4_block19_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block19_2_co… │ (None, None,      │     36,864 │ conv4_block19_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block19_conc… │ (None, None,      │          0 │ conv4_block18_co… │\n",
       "│ (Concatenate)       │ None, 864)        │            │ conv4_block19_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block20_0_bn  │ (None, None,      │      3,456 │ conv4_block19_co… │\n",
       "│ (BatchNormalizatio…None, 864)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block20_0_re… │ (None, None,      │          0 │ conv4_block20_0_… │\n",
       "│ (Activation)        │ None, 864)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block20_1_co… │ (None, None,      │    110,592 │ conv4_block20_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block20_1_bn  │ (None, None,      │        512 │ conv4_block20_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block20_1_re… │ (None, None,      │          0 │ conv4_block20_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block20_2_co… │ (None, None,      │     36,864 │ conv4_block20_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block20_conc… │ (None, None,      │          0 │ conv4_block19_co… │\n",
       "│ (Concatenate)       │ None, 896)        │            │ conv4_block20_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block21_0_bn  │ (None, None,      │      3,584 │ conv4_block20_co… │\n",
       "│ (BatchNormalizatio…None, 896)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block21_0_re… │ (None, None,      │          0 │ conv4_block21_0_… │\n",
       "│ (Activation)        │ None, 896)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block21_1_co… │ (None, None,      │    114,688 │ conv4_block21_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block21_1_bn  │ (None, None,      │        512 │ conv4_block21_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block21_1_re… │ (None, None,      │          0 │ conv4_block21_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block21_2_co… │ (None, None,      │     36,864 │ conv4_block21_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block21_conc… │ (None, None,      │          0 │ conv4_block20_co… │\n",
       "│ (Concatenate)       │ None, 928)        │            │ conv4_block21_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block22_0_bn  │ (None, None,      │      3,712 │ conv4_block21_co… │\n",
       "│ (BatchNormalizatio…None, 928)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block22_0_re… │ (None, None,      │          0 │ conv4_block22_0_… │\n",
       "│ (Activation)        │ None, 928)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block22_1_co… │ (None, None,      │    118,784 │ conv4_block22_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block22_1_bn  │ (None, None,      │        512 │ conv4_block22_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block22_1_re… │ (None, None,      │          0 │ conv4_block22_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block22_2_co… │ (None, None,      │     36,864 │ conv4_block22_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block22_conc… │ (None, None,      │          0 │ conv4_block21_co… │\n",
       "│ (Concatenate)       │ None, 960)        │            │ conv4_block22_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block23_0_bn  │ (None, None,      │      3,840 │ conv4_block22_co… │\n",
       "│ (BatchNormalizatio…None, 960)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block23_0_re… │ (None, None,      │          0 │ conv4_block23_0_… │\n",
       "│ (Activation)        │ None, 960)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block23_1_co… │ (None, None,      │    122,880 │ conv4_block23_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block23_1_bn  │ (None, None,      │        512 │ conv4_block23_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block23_1_re… │ (None, None,      │          0 │ conv4_block23_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block23_2_co… │ (None, None,      │     36,864 │ conv4_block23_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block23_conc… │ (None, None,      │          0 │ conv4_block22_co… │\n",
       "│ (Concatenate)       │ None, 992)        │            │ conv4_block23_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block24_0_bn  │ (None, None,      │      3,968 │ conv4_block23_co… │\n",
       "│ (BatchNormalizatio…None, 992)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block24_0_re… │ (None, None,      │          0 │ conv4_block24_0_… │\n",
       "│ (Activation)        │ None, 992)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block24_1_co… │ (None, None,      │    126,976 │ conv4_block24_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block24_1_bn  │ (None, None,      │        512 │ conv4_block24_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block24_1_re… │ (None, None,      │          0 │ conv4_block24_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block24_2_co… │ (None, None,      │     36,864 │ conv4_block24_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv4_block24_conc… │ (None, None,      │          0 │ conv4_block23_co… │\n",
       "│ (Concatenate)       │ None, 1024)       │            │ conv4_block24_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ pool4_bn            │ (None, None,      │      4,096 │ conv4_block24_co… │\n",
       "│ (BatchNormalizatio…None, 1024)       │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ pool4_relu          │ (None, None,      │          0 │ pool4_bn[0][0]    │\n",
       "│ (Activation)        │ None, 1024)       │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ pool4_conv (Conv2D) │ (None, None,      │    524,288 │ pool4_relu[0][0]  │\n",
       "│                     │ None, 512)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ pool4_pool          │ (None, None,      │          0 │ pool4_conv[0][0]  │\n",
       "│ (AveragePooling2D)  │ None, 512)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block1_0_bn   │ (None, None,      │      2,048 │ pool4_pool[0][0]  │\n",
       "│ (BatchNormalizatio…None, 512)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block1_0_relu │ (None, None,      │          0 │ conv5_block1_0_b… │\n",
       "│ (Activation)        │ None, 512)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block1_1_conv │ (None, None,      │     65,536 │ conv5_block1_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block1_1_bn   │ (None, None,      │        512 │ conv5_block1_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block1_1_relu │ (None, None,      │          0 │ conv5_block1_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block1_2_conv │ (None, None,      │     36,864 │ conv5_block1_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block1_concat │ (None, None,      │          0 │ pool4_pool[0][0], │\n",
       "│ (Concatenate)       │ None, 544)        │            │ conv5_block1_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block2_0_bn   │ (None, None,      │      2,176 │ conv5_block1_con… │\n",
       "│ (BatchNormalizatio…None, 544)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block2_0_relu │ (None, None,      │          0 │ conv5_block2_0_b… │\n",
       "│ (Activation)        │ None, 544)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block2_1_conv │ (None, None,      │     69,632 │ conv5_block2_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block2_1_bn   │ (None, None,      │        512 │ conv5_block2_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block2_1_relu │ (None, None,      │          0 │ conv5_block2_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block2_2_conv │ (None, None,      │     36,864 │ conv5_block2_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block2_concat │ (None, None,      │          0 │ conv5_block1_con… │\n",
       "│ (Concatenate)       │ None, 576)        │            │ conv5_block2_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block3_0_bn   │ (None, None,      │      2,304 │ conv5_block2_con… │\n",
       "│ (BatchNormalizatio…None, 576)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block3_0_relu │ (None, None,      │          0 │ conv5_block3_0_b… │\n",
       "│ (Activation)        │ None, 576)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block3_1_conv │ (None, None,      │     73,728 │ conv5_block3_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block3_1_bn   │ (None, None,      │        512 │ conv5_block3_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block3_1_relu │ (None, None,      │          0 │ conv5_block3_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block3_2_conv │ (None, None,      │     36,864 │ conv5_block3_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block3_concat │ (None, None,      │          0 │ conv5_block2_con… │\n",
       "│ (Concatenate)       │ None, 608)        │            │ conv5_block3_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block4_0_bn   │ (None, None,      │      2,432 │ conv5_block3_con… │\n",
       "│ (BatchNormalizatio…None, 608)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block4_0_relu │ (None, None,      │          0 │ conv5_block4_0_b… │\n",
       "│ (Activation)        │ None, 608)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block4_1_conv │ (None, None,      │     77,824 │ conv5_block4_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block4_1_bn   │ (None, None,      │        512 │ conv5_block4_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block4_1_relu │ (None, None,      │          0 │ conv5_block4_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block4_2_conv │ (None, None,      │     36,864 │ conv5_block4_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block4_concat │ (None, None,      │          0 │ conv5_block3_con… │\n",
       "│ (Concatenate)       │ None, 640)        │            │ conv5_block4_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block5_0_bn   │ (None, None,      │      2,560 │ conv5_block4_con… │\n",
       "│ (BatchNormalizatio…None, 640)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block5_0_relu │ (None, None,      │          0 │ conv5_block5_0_b… │\n",
       "│ (Activation)        │ None, 640)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block5_1_conv │ (None, None,      │     81,920 │ conv5_block5_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block5_1_bn   │ (None, None,      │        512 │ conv5_block5_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block5_1_relu │ (None, None,      │          0 │ conv5_block5_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block5_2_conv │ (None, None,      │     36,864 │ conv5_block5_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block5_concat │ (None, None,      │          0 │ conv5_block4_con… │\n",
       "│ (Concatenate)       │ None, 672)        │            │ conv5_block5_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block6_0_bn   │ (None, None,      │      2,688 │ conv5_block5_con… │\n",
       "│ (BatchNormalizatio…None, 672)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block6_0_relu │ (None, None,      │          0 │ conv5_block6_0_b… │\n",
       "│ (Activation)        │ None, 672)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block6_1_conv │ (None, None,      │     86,016 │ conv5_block6_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block6_1_bn   │ (None, None,      │        512 │ conv5_block6_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block6_1_relu │ (None, None,      │          0 │ conv5_block6_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block6_2_conv │ (None, None,      │     36,864 │ conv5_block6_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block6_concat │ (None, None,      │          0 │ conv5_block5_con… │\n",
       "│ (Concatenate)       │ None, 704)        │            │ conv5_block6_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block7_0_bn   │ (None, None,      │      2,816 │ conv5_block6_con… │\n",
       "│ (BatchNormalizatio…None, 704)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block7_0_relu │ (None, None,      │          0 │ conv5_block7_0_b… │\n",
       "│ (Activation)        │ None, 704)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block7_1_conv │ (None, None,      │     90,112 │ conv5_block7_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block7_1_bn   │ (None, None,      │        512 │ conv5_block7_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block7_1_relu │ (None, None,      │          0 │ conv5_block7_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block7_2_conv │ (None, None,      │     36,864 │ conv5_block7_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block7_concat │ (None, None,      │          0 │ conv5_block6_con… │\n",
       "│ (Concatenate)       │ None, 736)        │            │ conv5_block7_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block8_0_bn   │ (None, None,      │      2,944 │ conv5_block7_con… │\n",
       "│ (BatchNormalizatio…None, 736)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block8_0_relu │ (None, None,      │          0 │ conv5_block8_0_b… │\n",
       "│ (Activation)        │ None, 736)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block8_1_conv │ (None, None,      │     94,208 │ conv5_block8_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block8_1_bn   │ (None, None,      │        512 │ conv5_block8_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block8_1_relu │ (None, None,      │          0 │ conv5_block8_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block8_2_conv │ (None, None,      │     36,864 │ conv5_block8_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block8_concat │ (None, None,      │          0 │ conv5_block7_con… │\n",
       "│ (Concatenate)       │ None, 768)        │            │ conv5_block8_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block9_0_bn   │ (None, None,      │      3,072 │ conv5_block8_con… │\n",
       "│ (BatchNormalizatio…None, 768)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block9_0_relu │ (None, None,      │          0 │ conv5_block9_0_b… │\n",
       "│ (Activation)        │ None, 768)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block9_1_conv │ (None, None,      │     98,304 │ conv5_block9_0_r… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block9_1_bn   │ (None, None,      │        512 │ conv5_block9_1_c… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block9_1_relu │ (None, None,      │          0 │ conv5_block9_1_b… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block9_2_conv │ (None, None,      │     36,864 │ conv5_block9_1_r… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block9_concat │ (None, None,      │          0 │ conv5_block8_con… │\n",
       "│ (Concatenate)       │ None, 800)        │            │ conv5_block9_2_c… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block10_0_bn  │ (None, None,      │      3,200 │ conv5_block9_con… │\n",
       "│ (BatchNormalizatio…None, 800)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block10_0_re… │ (None, None,      │          0 │ conv5_block10_0_… │\n",
       "│ (Activation)        │ None, 800)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block10_1_co… │ (None, None,      │    102,400 │ conv5_block10_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block10_1_bn  │ (None, None,      │        512 │ conv5_block10_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block10_1_re… │ (None, None,      │          0 │ conv5_block10_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block10_2_co… │ (None, None,      │     36,864 │ conv5_block10_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block10_conc… │ (None, None,      │          0 │ conv5_block9_con… │\n",
       "│ (Concatenate)       │ None, 832)        │            │ conv5_block10_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block11_0_bn  │ (None, None,      │      3,328 │ conv5_block10_co… │\n",
       "│ (BatchNormalizatio…None, 832)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block11_0_re… │ (None, None,      │          0 │ conv5_block11_0_… │\n",
       "│ (Activation)        │ None, 832)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block11_1_co… │ (None, None,      │    106,496 │ conv5_block11_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block11_1_bn  │ (None, None,      │        512 │ conv5_block11_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block11_1_re… │ (None, None,      │          0 │ conv5_block11_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block11_2_co… │ (None, None,      │     36,864 │ conv5_block11_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block11_conc… │ (None, None,      │          0 │ conv5_block10_co… │\n",
       "│ (Concatenate)       │ None, 864)        │            │ conv5_block11_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block12_0_bn  │ (None, None,      │      3,456 │ conv5_block11_co… │\n",
       "│ (BatchNormalizatio…None, 864)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block12_0_re… │ (None, None,      │          0 │ conv5_block12_0_… │\n",
       "│ (Activation)        │ None, 864)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block12_1_co… │ (None, None,      │    110,592 │ conv5_block12_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block12_1_bn  │ (None, None,      │        512 │ conv5_block12_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block12_1_re… │ (None, None,      │          0 │ conv5_block12_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block12_2_co… │ (None, None,      │     36,864 │ conv5_block12_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block12_conc… │ (None, None,      │          0 │ conv5_block11_co… │\n",
       "│ (Concatenate)       │ None, 896)        │            │ conv5_block12_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block13_0_bn  │ (None, None,      │      3,584 │ conv5_block12_co… │\n",
       "│ (BatchNormalizatio…None, 896)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block13_0_re… │ (None, None,      │          0 │ conv5_block13_0_… │\n",
       "│ (Activation)        │ None, 896)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block13_1_co… │ (None, None,      │    114,688 │ conv5_block13_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block13_1_bn  │ (None, None,      │        512 │ conv5_block13_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block13_1_re… │ (None, None,      │          0 │ conv5_block13_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block13_2_co… │ (None, None,      │     36,864 │ conv5_block13_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block13_conc… │ (None, None,      │          0 │ conv5_block12_co… │\n",
       "│ (Concatenate)       │ None, 928)        │            │ conv5_block13_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block14_0_bn  │ (None, None,      │      3,712 │ conv5_block13_co… │\n",
       "│ (BatchNormalizatio…None, 928)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block14_0_re… │ (None, None,      │          0 │ conv5_block14_0_… │\n",
       "│ (Activation)        │ None, 928)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block14_1_co… │ (None, None,      │    118,784 │ conv5_block14_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block14_1_bn  │ (None, None,      │        512 │ conv5_block14_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block14_1_re… │ (None, None,      │          0 │ conv5_block14_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block14_2_co… │ (None, None,      │     36,864 │ conv5_block14_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block14_conc… │ (None, None,      │          0 │ conv5_block13_co… │\n",
       "│ (Concatenate)       │ None, 960)        │            │ conv5_block14_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block15_0_bn  │ (None, None,      │      3,840 │ conv5_block14_co… │\n",
       "│ (BatchNormalizatio…None, 960)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block15_0_re… │ (None, None,      │          0 │ conv5_block15_0_… │\n",
       "│ (Activation)        │ None, 960)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block15_1_co… │ (None, None,      │    122,880 │ conv5_block15_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block15_1_bn  │ (None, None,      │        512 │ conv5_block15_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block15_1_re… │ (None, None,      │          0 │ conv5_block15_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block15_2_co… │ (None, None,      │     36,864 │ conv5_block15_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block15_conc… │ (None, None,      │          0 │ conv5_block14_co… │\n",
       "│ (Concatenate)       │ None, 992)        │            │ conv5_block15_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block16_0_bn  │ (None, None,      │      3,968 │ conv5_block15_co… │\n",
       "│ (BatchNormalizatio…None, 992)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block16_0_re… │ (None, None,      │          0 │ conv5_block16_0_… │\n",
       "│ (Activation)        │ None, 992)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block16_1_co… │ (None, None,      │    126,976 │ conv5_block16_0_… │\n",
       "│ (Conv2D)            │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block16_1_bn  │ (None, None,      │        512 │ conv5_block16_1_… │\n",
       "│ (BatchNormalizatio…None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block16_1_re… │ (None, None,      │          0 │ conv5_block16_1_… │\n",
       "│ (Activation)        │ None, 128)        │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block16_2_co… │ (None, None,      │     36,864 │ conv5_block16_1_… │\n",
       "│ (Conv2D)            │ None, 32)         │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ conv5_block16_conc… │ (None, None,      │          0 │ conv5_block15_co… │\n",
       "│ (Concatenate)       │ None, 1024)       │            │ conv5_block16_2_… │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ bn                  │ (None, None,      │      4,096 │ conv5_block16_co… │\n",
       "│ (BatchNormalizatio…None, 1024)       │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ relu (Activation)   │ (None, None,      │          0 │ bn[0][0]          │\n",
       "│                     │ None, 1024)       │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ global_average_poo… │ (None, 1024)      │          0 │ relu[0][0]        │\n",
       "│ (GlobalAveragePool… │                   │            │                   │\n",
       "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n",
       "│ dense (Dense)       │ (None, 14)        │     14,350 │ global_average_p… │\n",
       "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n",
       "
\n" ], "text/plain": [ "┏━━━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┳━━━━━━━━━━━━┳━━━━━━━━━━━━━━━━━━━┓\n", "┃\u001b[1m \u001b[0m\u001b[1mLayer (type) \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mOutput Shape \u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1m Param #\u001b[0m\u001b[1m \u001b[0m┃\u001b[1m \u001b[0m\u001b[1mConnected to \u001b[0m\u001b[1m \u001b[0m┃\n", "┡━━━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━╇━━━━━━━━━━━━╇━━━━━━━━━━━━━━━━━━━┩\n", "│ input_layer │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ - │\n", "│ (\u001b[38;5;33mInputLayer\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ zero_padding2d │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ input_layer[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mZeroPadding2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m3\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv1_conv (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m9,408\u001b[0m │ zero_padding2d[\u001b[38;5;34m0\u001b[0m… │\n", "│ │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m256\u001b[0m │ conv1_conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv1_bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ zero_padding2d_1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv1_relu[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mZeroPadding2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ pool1 │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ zero_padding2d_1… │\n", "│ (\u001b[38;5;33mMaxPooling2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block1_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m256\u001b[0m │ pool1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block1_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block1_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m64\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block1_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m8,192\u001b[0m │ conv2_block1_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block1_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv2_block1_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block1_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block1_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block1_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv2_block1_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block1_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ pool1[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m], │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m96\u001b[0m) │ │ conv2_block1_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block2_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m384\u001b[0m │ conv2_block1_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m96\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block2_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block2_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m96\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block2_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m12,288\u001b[0m │ conv2_block2_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block2_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv2_block2_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block2_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block2_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block2_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv2_block2_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block2_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block1_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ conv2_block2_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block3_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv2_block2_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block3_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block3_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block3_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m16,384\u001b[0m │ conv2_block3_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block3_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv2_block3_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block3_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block3_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block3_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv2_block3_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block3_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block2_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ │ conv2_block3_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block4_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m640\u001b[0m │ conv2_block3_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block4_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block4_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block4_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m20,480\u001b[0m │ conv2_block4_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block4_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv2_block4_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block4_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block4_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block4_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv2_block4_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block4_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block3_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ │ conv2_block4_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block5_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m768\u001b[0m │ conv2_block4_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block5_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block5_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block5_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m24,576\u001b[0m │ conv2_block5_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block5_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv2_block5_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block5_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block5_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block5_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv2_block5_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block5_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block4_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m224\u001b[0m) │ │ conv2_block5_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block6_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m896\u001b[0m │ conv2_block5_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m224\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block6_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block6_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m224\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block6_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m28,672\u001b[0m │ conv2_block6_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block6_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv2_block6_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block6_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block6_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block6_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv2_block6_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv2_block6_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv2_block5_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ │ conv2_block6_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ pool2_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv2_block6_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ pool2_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ pool2_bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ pool2_conv (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m32,768\u001b[0m │ pool2_relu[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ pool2_pool │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ pool2_conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mAveragePooling2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block1_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ pool2_pool[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block1_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block1_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block1_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m16,384\u001b[0m │ conv3_block1_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block1_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block1_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block1_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block1_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block1_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv3_block1_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block1_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ pool2_pool[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m], │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ │ conv3_block1_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block2_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m640\u001b[0m │ conv3_block1_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block2_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block2_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m160\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block2_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m20,480\u001b[0m │ conv3_block2_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block2_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block2_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block2_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block2_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block2_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv3_block2_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block2_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block1_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ │ conv3_block2_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block3_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m768\u001b[0m │ conv3_block2_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block3_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block3_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m192\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block3_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m24,576\u001b[0m │ conv3_block3_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block3_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block3_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block3_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block3_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block3_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv3_block3_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block3_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block2_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m224\u001b[0m) │ │ conv3_block3_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block4_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m896\u001b[0m │ conv3_block3_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m224\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block4_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block4_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m224\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block4_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m28,672\u001b[0m │ conv3_block4_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block4_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block4_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block4_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block4_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block4_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv3_block4_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block4_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block3_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ │ conv3_block4_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block5_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ conv3_block4_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block5_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block5_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block5_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m32,768\u001b[0m │ conv3_block5_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block5_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block5_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block5_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block5_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block5_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv3_block5_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block5_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block4_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m288\u001b[0m) │ │ conv3_block5_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block6_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,152\u001b[0m │ conv3_block5_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m288\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block6_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block6_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m288\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block6_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv3_block6_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block6_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block6_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block6_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block6_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block6_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv3_block6_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block6_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block5_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m320\u001b[0m) │ │ conv3_block6_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block7_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,280\u001b[0m │ conv3_block6_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m320\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block7_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block7_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m320\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block7_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m40,960\u001b[0m │ conv3_block7_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block7_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block7_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block7_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block7_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block7_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv3_block7_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block7_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block6_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m352\u001b[0m) │ │ conv3_block7_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block8_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,408\u001b[0m │ conv3_block7_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m352\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block8_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block8_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m352\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block8_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m45,056\u001b[0m │ conv3_block8_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block8_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block8_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block8_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block8_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block8_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv3_block8_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block8_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block7_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m384\u001b[0m) │ │ conv3_block8_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block9_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,536\u001b[0m │ conv3_block8_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m384\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block9_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block9_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m384\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block9_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m49,152\u001b[0m │ conv3_block9_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block9_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block9_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block9_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block9_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block9_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv3_block9_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block9_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block8_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m416\u001b[0m) │ │ conv3_block9_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block10_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,664\u001b[0m │ conv3_block9_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m416\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block10_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block10_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m416\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block10_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m53,248\u001b[0m │ conv3_block10_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block10_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block10_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block10_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block10_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block10_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv3_block10_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block10_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block9_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m448\u001b[0m) │ │ conv3_block10_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block11_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,792\u001b[0m │ conv3_block10_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m448\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block11_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block11_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m448\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block11_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m57,344\u001b[0m │ conv3_block11_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block11_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block11_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block11_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block11_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block11_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv3_block11_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block11_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block10_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m480\u001b[0m) │ │ conv3_block11_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block12_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,920\u001b[0m │ conv3_block11_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m480\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block12_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block12_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m480\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block12_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m61,440\u001b[0m │ conv3_block12_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block12_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv3_block12_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block12_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block12_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block12_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv3_block12_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv3_block12_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv3_block11_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ │ conv3_block12_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ pool3_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,048\u001b[0m │ conv3_block12_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ pool3_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ pool3_bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ pool3_conv (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m131,072\u001b[0m │ pool3_relu[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ pool3_pool │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ pool3_conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mAveragePooling2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block1_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,024\u001b[0m │ pool3_pool[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block1_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block1_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m256\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block1_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m32,768\u001b[0m │ conv4_block1_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block1_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block1_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block1_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block1_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block1_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block1_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block1_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ pool3_pool[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m], │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m288\u001b[0m) │ │ conv4_block1_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block2_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,152\u001b[0m │ conv4_block1_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m288\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block2_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block2_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m288\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block2_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block2_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block2_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block2_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block2_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block2_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block2_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block2_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block2_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block1_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m320\u001b[0m) │ │ conv4_block2_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block3_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,280\u001b[0m │ conv4_block2_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m320\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block3_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block3_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m320\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block3_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m40,960\u001b[0m │ conv4_block3_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block3_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block3_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block3_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block3_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block3_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block3_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block3_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block2_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m352\u001b[0m) │ │ conv4_block3_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block4_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,408\u001b[0m │ conv4_block3_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m352\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block4_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block4_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m352\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block4_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m45,056\u001b[0m │ conv4_block4_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block4_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block4_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block4_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block4_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block4_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block4_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block4_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block3_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m384\u001b[0m) │ │ conv4_block4_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block5_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,536\u001b[0m │ conv4_block4_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m384\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block5_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block5_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m384\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block5_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m49,152\u001b[0m │ conv4_block5_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block5_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block5_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block5_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block5_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block5_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block5_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block5_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block4_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m416\u001b[0m) │ │ conv4_block5_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block6_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,664\u001b[0m │ conv4_block5_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m416\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block6_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block6_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m416\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block6_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m53,248\u001b[0m │ conv4_block6_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block6_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block6_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block6_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block6_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block6_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block6_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block6_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block5_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m448\u001b[0m) │ │ conv4_block6_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block7_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,792\u001b[0m │ conv4_block6_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m448\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block7_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block7_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m448\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block7_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m57,344\u001b[0m │ conv4_block7_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block7_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block7_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block7_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block7_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block7_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block7_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block7_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block6_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m480\u001b[0m) │ │ conv4_block7_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block8_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m1,920\u001b[0m │ conv4_block7_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m480\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block8_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block8_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m480\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block8_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m61,440\u001b[0m │ conv4_block8_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block8_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block8_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block8_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block8_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block8_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block8_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block8_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block7_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ │ conv4_block8_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block9_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,048\u001b[0m │ conv4_block8_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block9_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block9_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block9_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m65,536\u001b[0m │ conv4_block9_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block9_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block9_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block9_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block9_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block9_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block9_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block9_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block8_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m544\u001b[0m) │ │ conv4_block9_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block10_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,176\u001b[0m │ conv4_block9_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m544\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block10_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block10_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m544\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block10_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m69,632\u001b[0m │ conv4_block10_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block10_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block10_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block10_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block10_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block10_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block10_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block10_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block9_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m576\u001b[0m) │ │ conv4_block10_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block11_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,304\u001b[0m │ conv4_block10_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m576\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block11_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block11_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m576\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block11_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m73,728\u001b[0m │ conv4_block11_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block11_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block11_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block11_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block11_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block11_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block11_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block11_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block10_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m608\u001b[0m) │ │ conv4_block11_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block12_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,432\u001b[0m │ conv4_block11_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m608\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block12_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block12_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m608\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block12_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m77,824\u001b[0m │ conv4_block12_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block12_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block12_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block12_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block12_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block12_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block12_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block12_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block11_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m640\u001b[0m) │ │ conv4_block12_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block13_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,560\u001b[0m │ conv4_block12_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m640\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block13_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block13_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m640\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block13_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m81,920\u001b[0m │ conv4_block13_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block13_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block13_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block13_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block13_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block13_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block13_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block13_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block12_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m672\u001b[0m) │ │ conv4_block13_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block14_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,688\u001b[0m │ conv4_block13_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m672\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block14_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block14_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m672\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block14_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m86,016\u001b[0m │ conv4_block14_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block14_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block14_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block14_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block14_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block14_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block14_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block14_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block13_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m704\u001b[0m) │ │ conv4_block14_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block15_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,816\u001b[0m │ conv4_block14_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m704\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block15_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block15_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m704\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block15_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m90,112\u001b[0m │ conv4_block15_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block15_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block15_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block15_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block15_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block15_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block15_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block15_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block14_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m736\u001b[0m) │ │ conv4_block15_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block16_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,944\u001b[0m │ conv4_block15_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m736\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block16_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block16_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m736\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block16_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m94,208\u001b[0m │ conv4_block16_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block16_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block16_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block16_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block16_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block16_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block16_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block16_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block15_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ │ conv4_block16_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block17_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,072\u001b[0m │ conv4_block16_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block17_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block17_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block17_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m98,304\u001b[0m │ conv4_block17_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block17_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block17_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block17_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block17_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block17_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block17_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block17_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block16_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m800\u001b[0m) │ │ conv4_block17_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block18_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,200\u001b[0m │ conv4_block17_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m800\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block18_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block18_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m800\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block18_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m102,400\u001b[0m │ conv4_block18_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block18_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block18_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block18_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block18_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block18_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block18_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block18_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block17_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m832\u001b[0m) │ │ conv4_block18_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block19_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,328\u001b[0m │ conv4_block18_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m832\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block19_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block19_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m832\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block19_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m106,496\u001b[0m │ conv4_block19_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block19_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block19_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block19_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block19_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block19_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block19_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block19_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block18_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m864\u001b[0m) │ │ conv4_block19_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block20_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,456\u001b[0m │ conv4_block19_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m864\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block20_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block20_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m864\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block20_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m110,592\u001b[0m │ conv4_block20_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block20_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block20_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block20_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block20_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block20_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block20_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block20_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block19_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m896\u001b[0m) │ │ conv4_block20_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block21_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,584\u001b[0m │ conv4_block20_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m896\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block21_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block21_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m896\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block21_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m114,688\u001b[0m │ conv4_block21_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block21_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block21_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block21_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block21_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block21_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block21_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block21_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block20_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m928\u001b[0m) │ │ conv4_block21_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block22_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,712\u001b[0m │ conv4_block21_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m928\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block22_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block22_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m928\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block22_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m118,784\u001b[0m │ conv4_block22_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block22_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block22_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block22_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block22_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block22_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block22_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block22_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block21_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ │ conv4_block22_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block23_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,840\u001b[0m │ conv4_block22_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block23_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block23_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block23_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m122,880\u001b[0m │ conv4_block23_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block23_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block23_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block23_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block23_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block23_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block23_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block23_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block22_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m992\u001b[0m) │ │ conv4_block23_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block24_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,968\u001b[0m │ conv4_block23_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m992\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block24_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block24_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m992\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block24_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m126,976\u001b[0m │ conv4_block24_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block24_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv4_block24_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block24_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block24_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block24_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv4_block24_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv4_block24_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv4_block23_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1024\u001b[0m) │ │ conv4_block24_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ pool4_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m4,096\u001b[0m │ conv4_block24_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1024\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ pool4_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ pool4_bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1024\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ pool4_conv (\u001b[38;5;33mConv2D\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m524,288\u001b[0m │ pool4_relu[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ pool4_pool │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ pool4_conv[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mAveragePooling2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block1_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,048\u001b[0m │ pool4_pool[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block1_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block1_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m512\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block1_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m65,536\u001b[0m │ conv5_block1_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block1_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block1_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block1_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block1_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block1_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block1_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block1_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ pool4_pool[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m], │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m544\u001b[0m) │ │ conv5_block1_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block2_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,176\u001b[0m │ conv5_block1_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m544\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block2_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block2_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m544\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block2_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m69,632\u001b[0m │ conv5_block2_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block2_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block2_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block2_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block2_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block2_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block2_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block2_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block1_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m576\u001b[0m) │ │ conv5_block2_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block3_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,304\u001b[0m │ conv5_block2_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m576\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block3_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block3_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m576\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block3_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m73,728\u001b[0m │ conv5_block3_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block3_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block3_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block3_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block3_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block3_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block3_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block3_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block2_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m608\u001b[0m) │ │ conv5_block3_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block4_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,432\u001b[0m │ conv5_block3_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m608\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block4_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block4_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m608\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block4_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m77,824\u001b[0m │ conv5_block4_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block4_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block4_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block4_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block4_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block4_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block4_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block4_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block3_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m640\u001b[0m) │ │ conv5_block4_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block5_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,560\u001b[0m │ conv5_block4_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m640\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block5_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block5_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m640\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block5_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m81,920\u001b[0m │ conv5_block5_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block5_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block5_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block5_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block5_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block5_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block5_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block5_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block4_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m672\u001b[0m) │ │ conv5_block5_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block6_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,688\u001b[0m │ conv5_block5_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m672\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block6_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block6_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m672\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block6_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m86,016\u001b[0m │ conv5_block6_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block6_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block6_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block6_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block6_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block6_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block6_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block6_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block5_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m704\u001b[0m) │ │ conv5_block6_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block7_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,816\u001b[0m │ conv5_block6_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m704\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block7_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block7_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m704\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block7_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m90,112\u001b[0m │ conv5_block7_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block7_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block7_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block7_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block7_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block7_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block7_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block7_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block6_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m736\u001b[0m) │ │ conv5_block7_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block8_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m2,944\u001b[0m │ conv5_block7_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m736\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block8_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block8_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m736\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block8_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m94,208\u001b[0m │ conv5_block8_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block8_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block8_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block8_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block8_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block8_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block8_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block8_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block7_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ │ conv5_block8_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block9_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,072\u001b[0m │ conv5_block8_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block9_0_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block9_0_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m768\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block9_1_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m98,304\u001b[0m │ conv5_block9_0_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block9_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block9_1_c… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block9_1_relu │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block9_1_b… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block9_2_conv │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block9_1_r… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block9_concat │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block8_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m800\u001b[0m) │ │ conv5_block9_2_c… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block10_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,200\u001b[0m │ conv5_block9_con… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m800\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block10_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block10_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m800\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block10_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m102,400\u001b[0m │ conv5_block10_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block10_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block10_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block10_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block10_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block10_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block10_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block10_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block9_con… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m832\u001b[0m) │ │ conv5_block10_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block11_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,328\u001b[0m │ conv5_block10_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m832\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block11_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block11_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m832\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block11_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m106,496\u001b[0m │ conv5_block11_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block11_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block11_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block11_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block11_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block11_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block11_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block11_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block10_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m864\u001b[0m) │ │ conv5_block11_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block12_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,456\u001b[0m │ conv5_block11_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m864\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block12_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block12_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m864\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block12_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m110,592\u001b[0m │ conv5_block12_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block12_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block12_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block12_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block12_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block12_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block12_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block12_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block11_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m896\u001b[0m) │ │ conv5_block12_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block13_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,584\u001b[0m │ conv5_block12_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m896\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block13_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block13_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m896\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block13_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m114,688\u001b[0m │ conv5_block13_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block13_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block13_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block13_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block13_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block13_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block13_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block13_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block12_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m928\u001b[0m) │ │ conv5_block13_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block14_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,712\u001b[0m │ conv5_block13_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m928\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block14_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block14_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m928\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block14_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m118,784\u001b[0m │ conv5_block14_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block14_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block14_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block14_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block14_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block14_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block14_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block14_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block13_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ │ conv5_block14_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block15_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,840\u001b[0m │ conv5_block14_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block15_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block15_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m960\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block15_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m122,880\u001b[0m │ conv5_block15_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block15_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block15_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block15_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block15_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block15_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block15_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block15_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block14_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m992\u001b[0m) │ │ conv5_block15_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block16_0_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m3,968\u001b[0m │ conv5_block15_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m992\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block16_0_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block16_0_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m992\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block16_1_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m126,976\u001b[0m │ conv5_block16_0_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block16_1_bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m512\u001b[0m │ conv5_block16_1_… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block16_1_re… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block16_1_… │\n", "│ (\u001b[38;5;33mActivation\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m128\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block16_2_co… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m36,864\u001b[0m │ conv5_block16_1_… │\n", "│ (\u001b[38;5;33mConv2D\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m32\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ conv5_block16_conc… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ conv5_block15_co… │\n", "│ (\u001b[38;5;33mConcatenate\u001b[0m) │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1024\u001b[0m) │ │ conv5_block16_2_… │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ bn │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m4,096\u001b[0m │ conv5_block16_co… │\n", "│ (\u001b[38;5;33mBatchNormalizatio…\u001b[0m │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1024\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ relu (\u001b[38;5;33mActivation\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;45mNone\u001b[0m, │ \u001b[38;5;34m0\u001b[0m │ bn[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ │ \u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1024\u001b[0m) │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ global_average_poo… │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m1024\u001b[0m) │ \u001b[38;5;34m0\u001b[0m │ relu[\u001b[38;5;34m0\u001b[0m][\u001b[38;5;34m0\u001b[0m] │\n", "│ (\u001b[38;5;33mGlobalAveragePool…\u001b[0m │ │ │ │\n", "├─────────────────────┼───────────────────┼────────────┼───────────────────┤\n", "│ dense (\u001b[38;5;33mDense\u001b[0m) │ (\u001b[38;5;45mNone\u001b[0m, \u001b[38;5;34m14\u001b[0m) │ \u001b[38;5;34m14,350\u001b[0m │ global_average_p… │\n", "└─────────────────────┴───────────────────┴────────────┴───────────────────┘\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Total params: 7,051,854 (26.90 MB)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Total params: \u001b[0m\u001b[38;5;34m7,051,854\u001b[0m (26.90 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Trainable params: 6,968,206 (26.58 MB)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Trainable params: \u001b[0m\u001b[38;5;34m6,968,206\u001b[0m (26.58 MB)\n" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/html": [ "
 Non-trainable params: 83,648 (326.75 KB)\n",
       "
\n" ], "text/plain": [ "\u001b[1m Non-trainable params: \u001b[0m\u001b[38;5;34m83,648\u001b[0m (326.75 KB)\n" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "model.summary()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [] }, { "cell_type": "code", "execution_count": 14, "metadata": { "colab": {}, "colab_type": "code", "id": "QzNrhtf1w2bI", "scrolled": true }, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "C:\\Users\\Uskou\\anaconda3\\Lib\\site-packages\\keras\\src\\trainers\\data_adapters\\py_dataset_adapter.py:120: UserWarning: Your `PyDataset` class should call `super().__init__(**kwargs)` in its constructor. `**kwargs` can include `workers`, `use_multiprocessing`, `max_queue_size`. Do not pass these arguments to `fit()`, as they will be ignored.\n", " self._warn_if_super_not_called()\n" ] }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m7/7\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m86s\u001b[0m 11s/step\n" ] }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAA04AAANVCAYAAABPsa7ZAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOzde3wU5b0/8M/O7MxmJ5AAKooSsQJaQdtyqaJA1YJF+1OsR8Rrsdib4PFSGmh7pPTU2vYI1GJbgXo0WrUtttpqb7aCihVEqgSUKqeIWowCirdE2cnO7Mz398cmm91ks7fM7uxmP+/XKy92N7uz3ySbZT55nuf7BEREQERERERERL1S/C6AiIiIiIio3DE4ERERERERZcHgRERERERElAWDExERERERURYMTkRERERERFkwOBEREREREWXB4ERERERERJQFgxMREREREVEWDE5ERERERERZMDgREZGn7rrrLgQCgcRHMBjEsGHDcNFFF+Gll15K+xjbtrFq1SqcfPLJqK+vRzgcxnHHHYdvfvObeOedd9I+xnVd3HPPPZg+fToOPvhgaJqGoUOH4uyzz8Yf//hHuK5bzC+TiIiqDIMTEREVxZ133olNmzZh3bp1+M///E/84Q9/wJQpU/Dee++l3C8SieCMM87A1VdfjXHjxuHXv/41/vKXv+Dzn/88brvtNowbNw7/+te/Uh7T3t6Oz372s7j88ssxdOhQrFq1Co899hhWr16Nww8/HBdccAH++Mc/lvLLJSKifi7odwFERNQ/HX/88Zg4cSIA4LTTToPjOPjOd76DBx98EHPnzk3c72tf+xqeeOIJrFmzBhdeeGHi9tNPPx2zZs3CiSeeiPPPPx/PPfccVFUFACxYsAB/+9vf8Itf/AJz5sxJed7/+I//wMKFC2GaZgm+yt6ZpomamhoEAgFf6yAiIm9wxImIiEqiM0S9+eabidv27duHpqYmzJgxIyU0dTrmmGPwjW98Ay+88AIefPDBxGNuv/12zJgxo0do6jR69Gh87GMfy1iP67r46U9/ik984hMIh8MYNGgQJk2ahD/84Q+J+wQCAfz3f/93j8ceddRR+MIXvpC43jk98ZFHHsEVV1yBQw45BIZh4L777kMgEMCjjz7a4xirVq1CIBDA888/n7jt2WefxcyZMzFkyBDU1NRg3Lhx+M1vfpPx6yAiotJgcCIiopJ49dVXAcTDUKfHH38csVgMn/vc53p9XOfn1q5dm3iMbdsZH5OLL3zhC7j22mvxyU9+Evfddx/WrFmDmTNn4t///nfBx7ziiiugaRruuece3H///TjvvPMwdOhQ3HnnnT3ue9ddd2H8+PGJgPf4449j8uTJeP/997F69Wo89NBD+MQnPoELL7wQd911V8E1ERGRNzhVj4iIisJxHMRiMbS3t2Pjxo248cYb8alPfQozZ85M3Oe1114DAHzkIx/p9Tidn+u8by6PyebJJ5/EPffcg+uvvx433nhj4vYzzzyz4GMCwLRp0/Dzn/885bbLLrsMq1atQmtrK+rr6wEAO3bswD/+8Q/89Kc/Tdxv/vz5GDt2LB577DEEg/H/nmfMmIG3334b//Vf/4U5c+ZAUfj3TiIiv/AdmIiIimLSpEnQNA0DBw7EmWeeicGDB+Ohhx5KhIJ8eblW6OGHHwYAXHXVVZ4dEwDOP//8HrddccUVME0T9913X+K2O++8E6FQCJdccgkAYNeuXfi///s/XHrppQCAWCyW+PjsZz+LvXv39miQQUREpcXgRERERXH33XfjmWeewWOPPYavfvWr2LFjBy6++OKU+xx55JEAuqbxpdP5uYaGhpwfk83+/fuhqioOO+ywgo+RzrBhw3rcNnbsWHzyk59MTNdzHAf33nsvzj33XAwZMgRA17qvxsZGaJqW8jF//nwAwNtvv+1prURElB9O1SMioqI47rjjEg0hTj/9dDiOg9tvvx33338/Zs2albg9GAziwQcfxJVXXpn2OJ1NIc4444zEYzRNy/iYbA455BA4joN9+/alDTudQqEQotFoj9t721uqt1GxuXPnYv78+dixYwdeeeUV7N27N6Wz4MEHHwwA+Na3voX/+I//SHuMY489ttc6iYio+DjiREREJbF06VIMHjwYS5YsSWxOe9hhh+GKK67A3/72t5SpbJ127tyJm266CWPHjk00gzjssMPwpS99CX/7299w9913p32ul19+OaVbXXdnnXUWgHhnu0yOOuqoHsd57LHH8OGHH2Z8XHcXX3wxampqcNddd+Guu+7CEUccgc985jOJzx977LEYPXo0nnvuOUycODHtx8CBA/N6TiIi8hZHnIiIqCQGDx6Mb33rW1i0aBF+9atf4bLLLgMA3HzzzfjXv/6Fyy67DH//+99xzjnnIBQK4emnn8by5csxcOBAPPDAA4k9nDof88orr+ALX/gC/va3v+G8887DoYceirfffhtr167FnXfeiTVr1vTaknzq1Kn4/Oc/jxtvvBFvvvkmzj77bIRCIWzduhWGYeDqq68GAHz+85/Ht7/9bSxZsgSnnnoqXnzxRfzsZz9LNHnI1aBBg3Deeefhrrvuwvvvv4/GxsYejR5+/vOf46yzzsKMGTPwhS98AUcccQTeffdd7NixA83Nzfjtb3+b13MSEZHHhIiIyEN33nmnAJBnnnmmx+dM05QjjzxSRo8eLbFYLHG7ZVly6623ykknnSQDBgyQUCgkxx57rCxatEjefvvttM8Ti8XkF7/4hXz605+WIUOGSDAYlEMOOUTOOuss+dWvfiWO42Ss03Ec+fGPfyzHH3+86Lou9fX1cvLJJ8sf//jHxH2i0agsWrRIGhoaJBwOy6mnnirbtm2TESNGyOWXX57T19zpkUceEQACQHbu3Jn2Ps8995zMnj1bhg4dKpqmyWGHHSaf/vSnZfXq1Rm/FiIiKr6AiIi/0Y2IiIiIiKi8cY0TERERERFRFgxOREREREREWTA4ERERERERZcHgRERERERElAWDExERERERURYMTkRERERERFlU3Qa4rutiz549GDhwIAKBgN/lEBERERGRT0QEH3zwAQ4//PAeG5N3V3XBac+ePWhoaPC7DCIiIiIiKhMtLS0YPnx4xvtUXXAaOHAggPg3p66uzudqiIiIiIjIL21tbWhoaEhkhEyqLjh1Ts+rq6tjcCIiIiIiopyW8LA5BBERERERURYMTkRERERERFkwOBEREREREWXB4ERERERERJQFgxMREREREVEWDE5ERERERERZMDgRERERERFlweBERERERESUBYMTERERERFRFgxOREREREREWTA4ERERERERZcHgRERERERElAWDExERERERURYMTkRERERERFkwOBEREREREWXB4ERERERERJQFgxMREREREVEWDE5ERERERERZMDgRERERERFlweBERERERESUBYMTERERERFRFgxOREREREREWTA4ERERERERZcHgRERERERElAWDExERERERURYMTkRERERERFkwOBEREREREWXB4ERERERERJSFr8Hp73//O8455xwcfvjhCAQCePDBB7M+5oknnsCECRNQU1ODo48+GqtXry5+oUREREREVNV8DU4HDhzAxz/+cfzsZz/L6f6vvvoqPvvZz2Lq1KnYunUr/uu//gvXXHMNHnjggSJXSkRERERE1Szo55OfddZZOOuss3K+/+rVq3HkkUdixYoVAIDjjjsOzz77LJYvX47zzz+/SFUSERFRKYkIXNf0u4yKJyIwbcfvMsqe67qIROKvNxFBLCa93ldE4MZiicuWayUuO5Zd/GK9JAK4vX+tKfeLRnvcFnCiHRcFUdcCIIAb7fn4bodKfkmeMOE0DKiry7Nw//ganPK1adMmfOYzn0m5bcaMGbjjjjtg2zY0TevxmGg0imjSD7utra3odRIREVFhRARbmmejtbXZ71KoCgiA7+L7eCnwUb9LKU8i+Ony/8bxr+zMeDejwMNvX3UTTj59ZoGPLr2Kag6xb98+HHrooSm3HXrooYjFYnj77bfTPuaHP/wh6uvrEx8NDQ2lKJWIiIgK4LomQxOVTBQhhqYMaqxo1tBUTSpqxAkAAoFAynURSXt7p29961tYsGBB4npbWxvDExERUQWYOmUzVLXQv2VXt4gVw4Qb1wEAnlx0Ogxd9bmi8vThhweAf74JAFjfMAB//ckuAMC5C8ZC1VPHFxzbRtM9TQCAC2dfiPmPfRkAcPPUn2Ddsu8DAM78+rcRDPacAVV2HBe4b1/88qxDATX9eTTau2537vg5EAohEGvHcX86FwDw3Iy78eX/+y8AwKrdDkIuYE//HqDpPQ51/sVX4K297+HQz8zBnQs+h1AwgBMmnObpl1VsFRWcDjvsMOzbty/ltrfeegvBYBAHHXRQ2seEQiGEQqFSlEdEREQeUlWDwalAqhqD5cTPfwaGB8LQK+qUr2QCMQVAPDgdOugQaNZrAIDhww6HFkoNm5ZlQY3Fw9TwI47Ae+EPAACjjzwaT5jx9U1jR4+BVlNTouoL51oO9tjx5SuHH3cClF6CtRuJ4F8dl8eMmwjFMADrAPDX+MDFsRNOQfSVeLgaq+2FIQJMOQvQa1OOU1dXhw8+iH+//r32Xpz40P9W5GuyoqbqnXzyyVi7dm3KbY888ggmTpyYdn0TERERERH5Z+DAgYnQhEAAw+b82N+C+sDX4PThhx9i27Zt2LZtG4B4u/Ft27bhtdfiaf9b3/oW5syZk7j/lVdeid27d2PBggXYsWMHmpqacMcdd6CxsdGP8omIiIiIqBcDBgzAhx9+mLg+7As/gT70Iz5W1De+Bqdnn30W48aNw7hx4wAACxYswLhx47BkyRIAwN69exMhCgA+8pGP4C9/+QvWr1+PT3ziE/je976Hn/zkJ2xFTkRERERURgzDwIEDBxLXv3Tl/IoOTYDPa5xOO+20RHOHdO66664et5166qlobma3HSIiIiKicmWaXXuxXXvttfjB0uUYs+RvPlbUdxW1xomIiIiIiMrfvHnzAMRD04oVK/wtxiMMTkRERERE1Gezft2WuLxy5UqISL8JTUCFtSMnIiIiKhURQSwaLdqxbdsuyrEBwLRjCLntAIDIB20QLcMpnwgQM3v/fD92IHIAhhP/2iPvvwUl8H789vf2QdNSW3Tbtg0N8Z9Z7MP3MMCKLzexP3wPwYATv5N1AFCc0hTfF5aDANo7Lh8A0Ms+X1bS68KKAEGJ/5vGsKWtaIsAgdCAjEtxKhmDExEREfV/IoCd/oQv/d0Fa763BHte2ul9KQAiIz4K1xjg+bGTXdyxBdbPfro9YzVX4D4cib1FraVc1QJ4pfPKBmDeoR2XV6e///WdF1b9DJs6L/98PK79aMflm4/2vMZiUAAc0bnd1PIMd4wFAAzruN+oeHBK1hGiIi9H0Jb06/X0009j0qRJHlVbPhiciIiIqH8TAZpmAC2bc35IzFWw56XJxaknoBQ9NOVKQ6xqQ1N/JAKIE/DseG4sy7Fu+RgisYPw7+X/Tty05Fvf7JehCWBwIiIion5IRGB2Tj+zI8Dr/wACuZ9QxgIB2KoLAPjyyGegeTj9ykIQKwIfAwBc5TZBQ8yzY+dLRBBR49+XA5aOYk6wiighfHrqPUV8hsINeyeK2RveQwDA/nALHht1D9DLy8UJuCmfe/CNPTBEoAYkn5eYZ0SAt60lsN3RiP39Vsi7u4vyPO9C7/EtGbHiPZjtH8Btj39Pbjr/o/jP79yAiNXzNR2xKmAKYxYB6a+TEHvR1taG+vp6tLa2oq6uzu9yiIiIKInjRLD+iRMAAKeduh2qauR9DBHBnIfnYNv+bR5XR1S+Qpbgnh8VJ5z833BgyWVqyh8fDrx0ALt/tBtuu4vaj9ai7vTl0OsacjreizfMgKGXx/hNPtmgPComIiIi8ogZMxmaqKp96RoVUc2740U19BixNV8146HpuFoc8eVTEH1zeE7HmjhiMMJaL80oyhyDExEREfVb62evR1gEWDYqfsPCXYCWfRQrFo1i5VcuBQDMv+2XCIZCntVk2zaWLVsWL2fhQsSgYML31gEAnvzG6TB0704qa4IKAr3MH3NNE7s+dQqOOe/N+PWrtgN6/iN8uTIdFyc0vwwA2D5+JMKqgljUwV3f2QIA+MJ3JyAY8v6E2rRNnPm7MwEAf/2PvyKshXvcJ1BT0+v3qdy5tot933saEosihkYAwN8ufQKK0fPrBADTdrx5vV0AHPybQfjGFd/GgvkLcv7+hTW1Yr/XDE5ERETUb4WDYRgi8YUgABAM5xScbEeB5iiJY2haTZZH5M4SC0EJJo4dgwKIDgA4yBhQsilMrg3U2Ih/fwCgbgig1xbt+QKOAyhvAACMuiGoVVXYUQeaGw+ltXUHQStCcFLsCCw90PEcQ2Dk8POvJK44qJEQRIAPO24ztDCU3r5OiRX8eguHw5g7dy5WrlwZP5Rd+euW8sENcImIiIiIKKNgMIj29nasWrUK1113nd/l+IIjTkRERERE1CtVVeG6buL6Mccc42M1/mFwIiIiIiKitLqHpqamJsydO9fHivzDqXpERERERNQDQ1MqjjgREVFVERHEolG/y6BeOE574rLd3g5Xzf9vvLFY1883Fo3Cdl3A7TiOaQLt7b08sottRREMdCx8tw4AHm6AC8uCBrvr2FAQRnvS9RKdnlkmAsGu7TztqANI8Rb7x5yuE/BY1IWtdjwnlaXuoenXv/41LrroIh8r8h+DExERVQ0RwZoli7Bn5w6/S6FeKEEXH/ti/PKqr1wGN5Z/cLJVF5gRv7zyK5d2dMebDEBw0ffH4QijLesxNADXfrTjys1H511DJjqA6zuvLP8ZdAA7Opv2Lff0qTJSABx7Xtf11d/cgBi86x7YnR0MAJ8bDABoWvgkdGamsjZo0CC8++67ABiaOjE4ERFR1YhFowxNORMoSaMRpaIE3ex3KlAw4OYUmqrR5roT8P1PDeuxyWmpDBtZj6DOFSTl5J133sGRRx6JpUuXMjR1YHAiIqKqNO+2e6GFivfX9bImAtx9LvDGM+k/DeC5cQPRVq+Vtq5u5o3eBLWAHGUGAvgljgAAzB/9dHwDXADxryzOvvqfif2cIo5g3JaX+lpuRYsoNSULTeMH1GDu/0xM2QQ1qCswY2ZRnq9Yx+2NiEDM3J9TRCB24X8wENuBxKIQp+9TkBUlvmGy48SHA1977bU+H7M/YXAiIqKqpIVqoNVUaXCyDgB7N/faIspR4Htoqm+1EYKLQAGDEHbyCbniQusMTkd8MhEWtYFdm70GHQcRNQwA2D55LIwC1lX1IIIvP/JlPP/29h6fUlwF57x2DgDgj0f+Ea5SvFG2TAwziIuf/wEA4Ncf+xoi4VhJnvc1iWLqiyV5qpITEey+5FKYW7f6XUreFEWJhzgRDBgwAB9++GH2B1UZBiciIh+ICMwq23G9HNhW14lhxIpBU0pzopiOiKDdyd6koCisAwh3hAtzfnNi5KWT45iIbp0OABj/8T9BUUofMBWlBu+eXtgIiBlrB/4cDybmtf8HBOOhCCIwfjQCQPznD8R//mZS04KAIwig8CmKnaMN7U47dr7xTNoVQ6qrQnPjv//haBSOl40n8lBj64l1RopYCIjtSx2lMm7oOIQ7XwtFIqbpe2gKjRsHU9UQsNK/v0Wsnq+3QLfRxoceeqgotVU6BiciohITEcxavQlbdr/ndylVJ+jamNdxecKN6xBT/BpVERgjVkM1dvv0/ACOaoj/+5dze7lDR5h6Y3ZJyimWCTdtAkQHAITRnmjCMOHGdTA7Yo2oAWD64YnbA06BwUkEy5+8FWPf/TcA4J5e7hZTgQcuiF++/ScOgo4/wclRHDzxqfjlh8//K0KDBvhSR6mEg+EeAaGYRm/cACWcOag50Rgu/P7jeAHevQaiqg5855Gc79/9e7Ju3TpMmzbNs3r6EwYnIqISM22HoanaBWx/Q1OViEVGAFK6cBxyrERoqjS1A4dA13ha6CUlHIZiGBnvE3GjaA4G4ccp+cQRg1EbSv39YGjKjL8hREQ+enbxdBi66ncZVcNub8ftX74dALBl8XTf1jiZMROn/XYJAODh8x4t+vShHqwDCN8S77VtXvt/ibU+nRwngmc3nwIAmHjSU1DVzCd/5apGrUn9a7p1INHue8vi6YmvO+K4OP7pFxO3F7rGyY1E0PKneKPxg9f9FWc9/P8AAH/9j8dQo3a91izbBm79KQDgiPVPQNfiJ69hTS3piIgddfDEt+Jrvkr5vJTePxadjgED9JI935C61BFGhqbsGJyIiHxk6CoMnW/FpWK7Xd9rQw9C8+t7H+gKy0PCA2BoJQ4mQSXeWQ+AYQxME5xUhDqyw0HGwIoNTj2l/vzR8fOXpKlyYV2FoRb2xww31nX88MABiOrxMGLUpf6MLctKXB5QPxC6XrqT5WSKynWW5aTU/x/8+c9/xvTp8bWMmzZtwqRJk0r23JWK/1sTEREREVWZadOmYd26daitrWVoyhGDExEREfUPIoAd6f3zVobPEVWBzimZLS0tGD58OKfm5YnBiYiI+jURQSwa3xjSjvrU/puKTwRomgG0bPa7EqKylLyOraGhASKFt92vVgxORETUb4kI1ixZhD07d/hdChWbHck9NDVMggTDiHSsbYo4/mxAS1Qq3Zt/vPDCCz5VUtkYnIiIqN+KRaNpQ9Phx45BMBRK/6Bs0708KczsumxHEo0aSqa/T1lr3AXovTe0kGAYM7e+jGfaDpSwKCJ/pAtNY8aM8amaysbgRERUBUQErmtmv2M/4zjtUILx0YQv/fQOaB1hKRgKpf9+iAB3nwu8/kxR63IDAeDI+Aa07o9GwfFjykxnx20nAjipJ1aOU+HBSjd6dApMFnGctKHpxPpaGEphrciJyhFDk7cYnIiI+jkRwZbm2Whtbfa7FF987Ivxf/+xbUpuDzgKwFEHF6scAEDUBfBG/PLfTz4o0frbF5sK66YlIjBjZRTGbROdY0wR2wQy7EtkJk3N+8eJRyf2bQorgT59Ta7d9dh2p4y+N/2EiEBMs+dtdvlMtXST6nMtBwhmbvkuVvFqP/HEE1OuMzT1HYMTEVE/57pm1YYm6pv6+glQlJ6b84oI5jw8B9v2byt9Ub0Iuy7+0XH5tN+cCjPDyJEEQkBDfCPkzz7waQQk6kkNIUtwT8flMx84E9C5qaxXRAS7L7kU5tatfpeSs703bkYg2MuU4A4mijfa/I9//KNHFz3qGwYnIqIqMnXK5n60mWl2dns7Vn3lMgDAvNvuhVZTk/kB1gFg2aj45YW7Mk736gszZgJrTgMAfGrqPxAO9gwn5UBRwj2m+gDx+sspNJWzcUPHle3Pt5KIaVZUaFKHjATU/DY2DmjeDD2vWbMGF110EQCwc57HGJyIqCqICEw785SJUolY/tWhqkZFBae+TgeLSQDRjvMGSwJws82KkUD8o/NykWbRRJOOqyjhsv6ZpJse5domQlb8G/vX8/+KGrUMgoEdAX52PADgsXP+Cmjx72n8dz/1B2k6Lk7avgcA8OfP/Alh1ZsTVmk3sWfFTADAXz63FooRRjhY0+O9x7Ic2BJ/zojlIIaYJ8+fL9tyYHWMeESsGLRA+Z5ku1bX92j44+sRCIfh2i723RRfj3jo1yYgoJfP+rRATU3aPzp0p1sOsPTx+GNyuH/W5+04xg033IAXX3yxz8ejVAGpsija1taG+vp6tLa2oq6uzu9yiKgERASzVm/Clt3v+V1KDy/eMAOGXty/YTlOBOufOAEAcNqp28v6JD1ZOU4HK4bNl2yGoZXnz6SSpkcFVBcfvWAfAOD/fnsYxFEgABqnXoUXD/qIv8VRn4ViUTz4p+sBAJ87+/uIZpkCV4n6+v9B9+BVZaf4BcsnG5RPNCciKhLTdsoyNE0cMRhhTfW7jLJVDdPByn0aV6VNj+ouquoMTVQR+vr/QffQ1NLS0teSKA1O1SOiqvLs4ukw9PIIK2FN9WRqRjVYP3t9QQEjFo1i5VcuBQDMv+2Xve/d1MmOpK5xKvJIUDiYfg1RORq9cQOUcPxnELFNnPabUwEA62c/AUMrg/BnRYAVIwEAx2zcCOhGfFrs//wdAPCPr0+G0XFiGnFcfKz5ZQDA8+NHJrrqeSUQzjxNy7JsLFu2DACwcOFC6Lrm6fPnyo46aFq4AQBwxbIp0ELl8d6YjhuJoKVjxGnL4ulQDAOu5WDvjfFNj4ctPglKmby3F6Iv/x+kC01sBFEcDE5EVFUMXS361DjqnYggFs2tg1ks1nU/zVGgBQo4uXUC0JyOVtPBMDQtS3MIka7NaIPhogcnTxVj417LRECNrw9SVIESjH9vFEm6HOy67Cu3q4ZYUAWCQcTcrhNKPRyC3nFiHXNcIBh/XehGCLrHwQmQjo9eSoUDLRD/vhq6Ct2n9yRbAtAR6KgjCK2Mg4cb6/oeGXoQih6EiwDCSfVXcnAqVPfQxKUoxcWzByIiKgkRwZoli7Bn546c7m+rLjAjfnnlVy5NBCBKQwRomgG0bPb0sAqAj17QcaVjNAcADCDR+hvLRqLcLFu+HDa0jgYME+K3LVuWCCu2ogJTz+m63S2PxjGlICKIdewdZEer5+vuj/7whz+kXGdoKj4GJyIiKolYNJpzaPLa4ceOyT5Nr5LZEc9DU6X6N45AJBACAgHEpCtsxxQ1sSluTC2PkYmGhgZoWumm6YkIfresGfteaS3Zc1LxzJw5E6eddhrWr1/P0FQiDE5ERFRy8267F1oo87Q5M2bilw98CkB8fVJfmigEQ6GKWUvUZ427AN2bKYZuxMTOyZMBxNcNKUb5rXESEVyw7RU0f3AgXptSkwhIiLmoeXQvAOAXp5yVmJ6XbOHChZ6vccqVpmklfV3GLDdtaBo2sh7BMmrlTZkddthh2Lcv3kHy8ccf97ma6sLgRERExZO87sZqT9ysBRxoSuZpQnbS54NK9vtnPliOa38sj9cI+UE3vNu4NxaAdE6R1I2uQBYIwFSSbvdxLVjEcbAh4gIF7CV1Yn0t6muqKFQnmbu0qxlEUFeq8ntQiTp/ToFAgO3GfcDgRERUJkQErlv4Zq+9cRyfwkD3dTeuAiA+eoHlowAly+6ygQBwVEP88rJRXU0biHpx+VN/QdBxsHDhQmi6hogVwyc7Rpy2TxnbozGMoVRvYNBCall30aOeqvW1Wk4YnIiIyoCIYEvzbLS2Nvtdincqed1Nw6TK6qhHAICg40BzHRiqAl1VEVC7wnatqsIok7VN1UpEIHaWP5j0wrWc1MtBB2JVT3OLdN3zqPQYnIiIyoDrmkUPTfX1E6AoPq1FadwVH3H68uVd12uytAaPmcBvT49fXrgr3h68VDSja51MH4kIzJj3I4kpbBOdMS9im57V7tpddUdsE4odv1z0r4d8ISIQszg/WxHB23f8E9ZrHxT2eKdre4K9N25GINiPm710w5bj5YPBiYiozEydshmq6v1oh6L4uNmqbgBu0l/79VpAzxKckmvV/F1HUygRwZyH52Db/m1FfZ6w6ybag5/2m1O71h/1UcgS3JN03KjOqUL9lYhg9yWXwty61e9S8qaPqENA65/NLRiayguDExFRmVFVoyjBiUrPjJlFD01+Gjd0XJ+6HVL5ENOsiNAUHjcOh3//tJRAEdCqY60aQ5P/GJyIqCAiAtOujPnlkSqaB59NSaaNdYolTRmLmYi5anxTW8QDhZ1lrUN/mw62fvZ6T0NGfFpVR6dCOwL87HgAwGPn/NWz0TkxTbz+ozMAxNuOd7Yj7xQOlm4Us7f3nIjjALH4aykmCiCCiOUghhh/9ws0euMGKGFvA7FrOdh7Y3zN47DFJ0HRC1tvFgj7OHLug9bWVgwaNAjvv/8+Q1MZYHAioryJCGat3oQtu9/zuxTKQ6mmjaXo7IrXuVZpRvyfzv2Zqkk4GIaRLtAkt2zPkYjgtblXwHzuOQCAEhQcc178c6+fOr2rhbiHDC0Mxafpktneczonfd6HTwAAfnnjY6UprJ9SwmEohsc/66CTWJekGEbBwakaBAIB3HrrrZg/fz7q6urguoU11CDvMTgRUd5M26nI0DRxxGCEter9z7pSp4316+lg3Vu25ygAYMQxAI4pSlU9hMePB2pqYFlWaZ6wm4jVt/ecav/dp8rROZp21VVX4dhjj8W0adN8roiSMTgRUZ88u3g6jAr5y2FYU6tqikcmfZk2JiK4/8bF2LvrXwU///zbfolgKLeuWKWcDlZyHrdslyM+iWP+8ZBnXfUSampw5513oqWlxdvj5sgWBcAEAMCFoa0Iousv8DFFxS9OOQsAcPlTDyPoxvdx0nUtcZ9S/e6LCGJW+Y4O2FFOXSxn3V+jDE3lh8GJiPrE0NUem0pS+et12lgO7PZ2vP2vl6ChsOlghx87BgNrB/XfMFSoxl3x7oM5cCMmdk6ObyZ8zMaNibVHgY6facTjqT121MIrb+wBFH/+SBKTpNeaEkgNhmoACMY/Hwy4OPrII1BfW1Py15eI4HfLmrHvFe6vQ/nr/noVbvhdlni2Q0REBZt3273QQr20FbcOAMtHxS837oq3IAcQDIUYmtLRjcT3KKtYoGsdk24kApeIYGbzLjzTdsD7+qae4/0xcxVzUfPoXgCIjy4F04f2hQsXor7Gn9dXzHIrJjQNG1mPoN4/23dXIoamysHgRERE+Un6T10LONCUXqb/KG78A4hvdptt3ybqs4jrFic0VYAT62t9C03dzV06BVqofKcwB/XqaN9dCRiaKguDExER5U4EuPtcAHr8+vJRXeGIysr2yWNhqN6MKtiWjWXLlgGIj+poSeuHSiFixfDJjhGn7VPGpp0ebCjlEwa0kFrWwYnKRygUQjQaBcDQVAkYnIiIKHd2BHjjGQCTc39MwyTP9hWi3BmqglrVm5N3S3WguU7iuLpHx81VQO06oaxVVRglfn6iYmlvb8cpp5yCp556yu9SKAcMTkREVLjGXfFpeJlohvdd3oioLIkIJM3m1sLNiBMCgQBqampgmvFNvhmaKgeDExERFU6vrei1SyICM2YW7fjFPDblRkQgZvF/Dm7UgeLEp1y5kQhcp7JGxVwPvkcigv2rn4e1u82DivqftrY21NfXA4iPNJ1xxhlYu3atz1VRPhiciIioKokI5jw8pyI3BabciAh2X3IpzK1bS/J8p3X8+8rJJXm6siO2mzU06SPqENCqr6NfcmjqxNBUeRiciIioKpkxs2ShadzQcQVvOEyFE9MsWWjqL8LjxyMQ7vtrddjikxBIszl6QCufJh6lki40sRFEZWJwIiKiqrd+9vrcgo0IYOc/pSkcrEHAjvT8hJXmNiqK0Rs3QPEgEPTGjjpoWrQBAHBFmbcjzyQQDnsSbAK6CiVNcKo2DE39C4MTURUREZh23xfoRrjIt8+6r61xXRPRjvXUZswsSodvrrfpXTgYhpGh85+IQCIRBH51LgJvPFOUGtpbWwHNzum+bns7Yh2d5SzLghKM/3duO10vHNuyYane/K5aluXJcbLp7T3Ki/ccJRyGYhSvu6OiOnDVUPyyYUCp0OBE3mJo6l8YnIiqhIhg1upN2LL7Pb9LqXq9r63pOKlbc1qJK6JMOtfJtD+/BR+9YF9RnuM1HI6mW38OII+/9F8wK/7vihWJm2xFBaaeAwBYtmxZooV4Jejre5SIIGal/sXBjXZ9/XbUgeJRkEzHjlbO95pK59Zbb8VVV10FgKGpP2BwIqoSpu14HpomjhiMsMa/quarlGtr0uF6m/x0rpMJJL3Ud/7+ULix9CEnpqp46D/Oy+s5bASRKTQJgJiS/XctVuT9jRoaGqBpxdn8Npf3qN7ec0QEv1vWjH2vtKbcrjjRRMOGpkUbEiNCRMXU1hZvkFFXV4f58+fjtNNOw5gxY3yuirzA4ERUhZ5dPB2GB3PPw5padYt8vda5tsZ1Tfz9yRMBAJ+a+g8oSvGCTTjozRqGajbqiacAPf20L8uyYHeMAn39qqv6HDREBLNe2octB6J5PW7hwoUwVG+7l2maVpLXTm/vUb2958Qst0do8suwkfUI6tXXNY7iktc0tba2oq6ujqGpH2FwIqpChq7C0PnrXw4619Y4DhBSum5T1eKtxaC+U4xwr8Gpc70RAITq66Hrep+e64DjYMuB3Xk95sT6WtTXhCo2IPflPWpuUmMGNxJJtAa/YumUoq5x6hTUq69rHMV1bwQxdOhQtLe3+1gReY1nTkRE5UwESNeNzS/sAuer7ZPH5jSKZCjVe/KuhdSu4JS0Ca0WUtmwgYomXfc8hqb+h8GJiAjx6VCuW5quc8nP47omHAdwnDSBRARomgG0bC5JXbnjNCS/GKqC2iKvYyKi/LDlePVgcCKiqici2NI8G62tzSV5vnjb8fiUob8/eWJiil4PdqQMQxMREXViaKouDE5EVPVc1yxZaMqmvn5C+sYQjbt6XVNTcu3twJcv97sKorIgIhC7CBuvVSCpwj3+Dj744JTrDE39G4MTEVGSqVM2F70xgxkzE3s1fWrqP1JagytKLx3vdAPQa4taV87c/KaKdd/st1x4VZOIQMyk6ZeWBTUWi1+OROB2XC6U6zioibZ3Ha+fTtVzrRhCsXjnwPj3LfdTFDfqQHGSHtuxtsk1i/u6ExHsX/08rN1tRX0eKl+WZSXesxma+j8GJyKiJKpqFD04KUl/nFaU/t1Br/fNfov+xAjncBKTiKxWJL6mLB3LREB1oQR7fr5zc1xz69aU2zu2psWr9z+Qe80ZPNzx7+ueHK18Pdjxb8ufrs/7sad1/NvZRa8UxHYZmtLQR9QhoPXftZCvv/46vvOd7+COO+4AwMBUTRiciIgIIoJYNLd9guxo7p2ifNnsVwR3730T46JW7o9ZNrLXTykAPnpBL0/VsTkulbfw+PEIhIu76fOwxSch4MH+eP1BQOu/XR1ff/11NDQ0AABee+01rF271ueKqJQYnIiIqpyIYM2SRdizc0dRn6dzs9+isyIwMgShPmuYBGg9RwlHb9wAJRyGZVlYtnw5AGBhY6Mn+zidsPEFAPF25P21q17EimHCjesAAFsWT89rHyc76qBp0QYA8f2atG5txwPh4m/6HNBVKAxO/VpyaAKAdevW+VgN+YHBiYioysWi0YJC0+HHjkEwFMr5/p2b/RZd8rQZD5pquBETOydPBgAcs3EjlPqDgDQn4Uo4DMUwoASDcDo2wVUMA0ofg5PiOGgP1XQdr58GJyUYQzQYfz0phoGApiJm5dZ0wVEduGrXY7lfE3mte2gCOEWvGjE4ERF1EIlPLVOK3CCrHBsldJp3273QOk7SswmGQuU/HSeHphrdmzt058SAiBofKYuoNQi4XS8Q1+nqInbAcaA4DmzHha3ET9wjjgvb6VunsYhTfR3bRAS/W9aMfa+0+l0KEUMTJTA4EREhHpp+8lYIX+vodlettFANtJrcglN/0Ftzh8TnAVzd+N944Za74jc8uyvl8zXR9kTjhhM2vpAYGcLUcwAAdzz9f94XXQVilltQaBo2sh5Bvf82JaDSe/HFFzF27NiU2xiaqheDExERAEuAV63STu8ZN3Rcadb8UK+yNXdo10N4YeSxJayodyfW18JQqi8UzE2zZqk3Qb3/NiUgf1x11VUp1xmaqhuDExFRN6VqYhAOZliwLhJvkU0l09ncIVnEcROjTNtPGQMjmHoC70YiiRbh2yePhWIYsC0by5YtAwAsXLgQmq55Up+hVGco0EJqzsGJyGuPP/44Ro0ahZdffpmhiRiciIi6K1kTg96IAE0zgJbN/tVQhTqbOyQLJK1PMoJqj452yZvR1qoqFFWFpTrQ3PjjDFWB3k+bORD1Vy+++CLGjx+P9vb41gu7du3K8giqFtU35k9E1EFE4DgROE6ZjezYkdTQ1Ev7ayIi8tbTTz+NsWPHIhqNVuUIL2XGESciqkoigi3Ns9Ha2ux3KZk17gJqD07b/pqIiLzz9NNP4+STT/a7DCpjHHEioqrkumb5hyYg3k6boYmIqKjShSauaaLuOOJERFVv6pTNsCQAVHkr8nREpE/7TpXznlW5EBHUROPrHNxIJGVNEwC4GfZ/IqLKwNBEuWJwIqKqp6pG0Te9LSYRQSwaLfjxdkcwSHfcOQ/Pwbb92wo+djYiAtu2vT2oZUFPXLQA9N7VzrUsxDrCkGVZUIJd/y2KCPbNuRwPP/ccACS65/X+tPHHx5+TiCoBQxPlg8GJiKiCiQjWLFmEPTt3eH5sM2Z6FprS7VklImhqakJLS4snz9FJg43rOy4vW74cdobgBAC4YFb83xUrUm5WYzHM6ghN2ew/+GDc9+Mfc1olUYUZPnx4ynWGJsqEwYmIqILFolHPQtPhx45BMBRK+7m+7m2Vbs8q27Y9D03Fct5NqzF7y2OJNuPdOaraIzQ1NDRA07zZw6lSiAhiVmHDt7bV9b21oxU8BEwVZfjw4WhpacFHP/pRfPjhh36XQ2WOwYmIqJ+Yd9u90EI1BT8+GAr12n632HtbNTY2Qtf17HfMhXUAWP4zAMDCxkZArwXQsV7LTf1rshuJYNf0MwAAo9atTdnHyTVNvHn/AwCA9lAIC771LRhq7j2VNE2rqnbGIoLfLWvGvldaC3q8BQEGxS/fs/gp6Kie7x2V1h/+8Aece+65WLduHaZNm4bhw4czNFFOGJyIiPoJLVQDrabw4OQnXde9C07oWjOl6zqg6xARzGzehWfaDvS8+813xP99/rWUm2ui7Xg46bqma9zMNoOY5RYcmnozbGQ9gjobAJN3OkMTAEyfPp1T8ygvDE5EFUZEYNrppwtlErHyf0wlKLTrm+ua6JwNZMa6LlP/IyI48OGB9KEpRxPqamEoPIHP1dylU6CFeg+Z6d7HTMvBLcseBwBcsWwKDD2IoK5U1agdFVdyaALA1xbljcGJqIKICGat3oQtu9/zu5Sy0Peubx3TstiGvN8SEey+5FK8+8KLwC13AQB+t+irqEnThfCYjRsQMLrWcbmRSKKT3m8+fjRPsvKghdReg1Mu72NaSIWmc3SPvLNmzRpcfPHFieuBQACuy7+YUX4YnIgqiGk7fQ5NE0cMRljrHyckXnZ965Su+1tBRAA7UthjrQIfRz2I2Q5z61ZA72p6URONImylBqfw+PGoHVCbEo6S92xiaPJOtvex/vQeReWBoYm8wuBEVKGeXTwdRgF/kQ1rar88Ccy365vrmvj7kycCAD419R9QlPhj03V/y5sI0DQDaNnct+NQURyzcUOPJg+BsAc/d8pbuvex/voeRf5haCKvMDgRVShDV2Ho/BXulE/Xt/imqxGElK7HqqqHHePsiDehqWESUMROdtUqYIShsMlDWeD7GJWCoihwXReKosBx+ud6XyoNvlsRUVUREWxpno3W1ubSPGHjLkAvMPxoBjdUJfKRiEDs3kcnpJ823elvHMfBN77xDdx0001+l0IVjsGJiKqK65opoam+fkJiml5R6EZiHyEiqhwigv2rn4e1u83vUihPK1euxFVXXYWDDz4Y+/fvBwCGJvIEgxMRVa2pUzZD0w4q2noKESDW3g64xZsWZkfbi3LcQtu8Jz/etu2M97Esq+Djd38uMZNqtUwgFv+Zup23i6Cm43vlRiIpjR9645qFf/1U+cR2cw5N+og6BDS2qy8HnaEJAN5++208+uijmDZtms9VUX/B4EREVUtVjaKGpjW7P4Y9X768KMcvpr62eRcRNDU1oaWlxdvCenmu3ZdcGu+cl2JY/J/7PwMACNsWHr5uLgAkWowT5WrY4pMQyNCMJ6Bxv6lycPPNN+PrX/964rqqqgxN5CkGJyKiIoiJgj1mfcme7/BjxyAYCmW/Yw66t3nPt0W7bdt5haaGhgZompZPiQlimmlCk7fC48cjEC7idM4KICKIWZk7kdnR/rveJ6CrULivVFnrHpqCwWDWUW+ifDE4EREV2bzb7oUWqinqcwRDoaL8xXv97PUYUjOk4GM3NjZC1/WM99E0zZPaR2/cACUcju+DtXwUAODDec9h15kz0R4K4ZIbfwIA2D55LGrz6KpX7a3KRQS/W9aMfa+0+l0KUVoMTVQqDE5EREWmhWqg1RQ3OBVLX/e10nU9a3DyihIOQzEMICjxDwCf2LEHkZ/8IvV+hsF25HmIWW5eoWnYyHoEda73odJJDk2apnm2fpKoOwYnIiKqGifW18JQeFJfqLlLp0ALZQ6dQZ3rfai05s2bh1WrVjE0UdHxfw8iIurXfrfoq/jLtV/Aromj8NC4UTyp7wMtpGb94PeXSuHpp59OXF65ciVaW1sZmqjoOOJEVKZEBKadutg64vFmi31tOe23sqxdJL7GhnwjIkg+da+JRhG2ojBUjoTkovt7j205sBCf+hixYtAC0qfje/0+RtVnyZIl+N73vgcg/noFgLq6Oj9LoirB4ERUhkQEs1Zvwpbd7xX1OfrScprSEAGaZgAtm8EBfX+ICF6bewVGHON3JZWp1/eeQfF/bvn+upLXRJTsG9/4BpYuXZq4fvrpp+Pxxx/3sSKqJgxORGXItJ2MoWniiMEIa31b3N695XQl661dtojAdVNHpRyniKNBdqQjNFGficS/n9lYyRvfRiBWBNEXtgHdghNbiucm23uPl7x4H6Pqct111+GWW25JXK+pqWFoopJicCIqc88ung6j2/4hYc3bdQTrZ6/Pa5+ecpOu85uIYEvzbLS2NvtT1LXbgflX+vPclS5l5C6LWACJzW6Xj4ISFBxzXupdjtm4AbUDajlNL0+d7z121EHTwg0AgCuWZW8OkSuv38eof0sXmkyzDKdrU7/G4ERU5gxdhaEX91c1HAzD0IyiPkepua6ZMTTV10+AooTjG3tGo948qdUOuPEperZbHVP1RKTHfil9XqDt0cjd5roTEFFqEDCqex+mQnW+99gSgN6xaszQg9D60UawIgKx02/sK1yLVTbmz5+PVatWJa6Hw2FEIlxLSqXH4ERE/d7UKZuhqqnBUFHiI2xrlizCnp07PHy2yfF//vMrHh6zPIkImpqa0NLSUrwnadwF6BlCfcQE7p+auK8LYOfkyWjXQzj3Rz8FGJioFyKC/aufh7W7ze9SKAuGJioXDE5E1O+pqtEjOAGA3d7ucWjq6fBjxyAYChX1Ofxi23bG0NTQ0ABN0/r2JLoB6LW9fz4WSL0vAHEUuI7C0OQBEYEd7Z8jL2K7OYUmfUQdAlp1jCCXKxFBIBBAbW0tPvzwQ7/LoSrG4EREBGDebfdCC9X07SDWAWD5qPjlxl2AXotgKFR208SytaHPpc27iMCNRKDGYgCAa6+9Fnq3kKRpGsQ0kXfzasvsCkQRMzUcdeNyjUPRiAh+t6wZ+15p9buUohu2+CQEepmCGNDYxt4PX/ziFxEKhbBy5UoAXW3HifzE4EREBEAL1UCr6WNwUhxA6VgvUVMD6H08XhF40YZeRLD7kkthbt2KWR23vXH/A57U16Wj4UPnNLwcHHAcBBCAqYfQ3k9H+UopZrkpoWnYyHoE9f458hLQVSj9aO1Wpbv88stx9913AwB0XceKFSv8LYioA4MTEVEVyacNfa9t3k0T5tatHlfWN9tHHovTn9kVn553y11+l9PvzF06BeGBGkdeqOiSQxMA3HPPPQxOVDYYnIiIqlS2NvTp2rx39+DnzkUsGMTCxkbouu5NYVak25TH3ptDHHAcnLDxBbTrobRrmk6sr4Wh9M9RklLSQmwdTsV30UUX4b777ktcr6urwzvvvONjRUSpGJyIiKqUF23oY8EgnGAQimFA8So4BSX+AQBGOGNwUhwH7R1r07ZPHotwNIqdk6cA4P5NRJVk1qxZeOCBrim/9fX1eP/99/0riCgNBiciIuoXDFVBWFUQtqKJ6wxNROWve2gaPHgw3n33XR8rIkqPwYmIKFci8c1Ze2NxbxEionw9+eSTictDhgzh9DwqWwxOVJZEBKbdP/cOyUUkxx3rs7WVzqTQx1UtEaBpBtCy2e9K+pd0YTQpgLpZ2pGL43ZdjphwO0abiKhyvPnmmzjooIMAgKGJyhqDE5UdEcGs1ZuwZfd7fpdS1rxoK12pRASumzn4OY7Hoz92JPfQ1DAJ6OPaoaqQQxjdOXkyxOm9uYOphxJd9HZOnpKYpkdE5e2ss87CunXrYNs2AAYmqgwMTlR2TNthaOowccRghLX0e4vk01Y6k95aTpcrEcGW5tlobW3u83HsaHthD87S6Q2akbbDW041dZxEFItlW1Dd+GvKsiwEJf//BlzL8qaYLGE0sl+HOIWtUQqPH49AuHJe10TV5IwzzsC6desAAKqqwnGqd4YJVRYGJyprzy6eDqOKNyUMa7m1AM7WVjrjc+TQcrqcuK6ZV2iqr58ARUn93ogI1ixZhD07dxRWhG4Aem1hj+2FiKCpqQktLS2eHjedz+FzAIAVy1YU9Hg1FktsfOuZpDDqRsyOkaYARm/cCCVDAIo4LvDsLgDxLnqGGh+dCoQr63VNfSMiENvNfsfkx+Q4JZq8lRyaAODggw/2sRqi/DA4UVkzdBWGzpdpNl60la5EU6dshqpm/roVpecJdCwaTQlNhx87BsFQqCg15sq27ZKEpmJoaGiApml9O0hyGI0FEtPzlHAYitH7zziQ9JfqgBGGolbvH1o6iQhiVn4hopOdFCbsaGHHKDURwf7Vz8Pa3eZ3KZTF6aefjvXr1yeuH3roodi3b59/BRHliWekRFSxVNXIGpyymXfbvQjX1ZfV6ESjl5vJdhOxIzjtN6cBiI9UFhK43UgEr94fbx28sLERofry+v5VMxHB75Y1Y98rrQU93oIAg+KX71n8FHSU/89VbLdPoUkfUYeAxk2Si23q1KnYsGFD4vphhx2GvXv3+lgRUf4YnIioqmkdm6dGMrUZB4CY2bVuKfmyRyy7a91QLBCDEijOiZyjOHCU+KiCruvQtcwBTUQgZmojDjdplEfX9aKGJhHBgQzrHyJOZYyKlErMcgsOTb0ZNrIeQb0ygsWwxSchkOf07oDG/b6K7ZxzzkkJTUcccQRef/11HysiKgyDExFVtby6Ex7VEP/3t6d7Xofqqom1R6f95rREuPGTiGD3JZfC3LrVn+cHcO6LLXj2wwKbeFS5uUunQAvlFyIiVgy3fD++/uSKZVNg6EEE9coJFgFdhVLF62LL1XXXXYc//elPAOJTe1977TWfKyIqTGX8CYmIqEi86k5YaXLppiimmTE0FbtzXbseyjk0nVhfC0Phf2nJtJBa0Ef3x1dKaKLyNW3aNKxbtw4f//jHGZqoonHEiYioQ8buhHYEWDYqfnnhLs/3abIsK9Hlbv3s9UVb49Qp326Kozdu6NHdrpSd67ZPHpvomJeOoVTOqAhRNZgwYQKam5vR0tKC4cOHY9q0adi2bZvfZRH1CYMTEVGHjN0JReIfABAMex6ckvdTMjQj69qjUsvW3a7YDFVBLTvmEVWEztAExKfmSed7J1GFY3AiIspGBLCyNI+oBCLxkbNcWUlNIawIEPT45Kc/fE+JKMUnPvEJPPfcc4nro0eP9rEaIm/5HpxWrlyJZcuWYe/evRg7dixWrFiBqVOn9nr/X/7yl1i6dCleeukl1NfX48wzz8Ty5ctx0EEHlbBqIqoaIkDTDKBls9+V9E0hX0csAGBY/PLyUd4HJyLqV0444QT885//TFwfPXo0du7c6WNFRN7ydSXtfffdh+uuuw7XX389tm7diqlTp+Kss87qdeHghg0bMGfOHHzxi1/ECy+8gN/+9rd45pln8KUvfanElRNR1bAjqWGjYZLn0/RKovvXUU4q9XtKRAljxoxJCU3HHXccQxP1O76OON1888344he/mAg+K1aswN/+9jesWrUKP/zhD3vc/+mnn8ZRRx2Fa665BgDwkY98BF/96lexdOnSktZN1BciAjNmZr9jFl4co1KICFw3/vU6jo/Tuxp3AbUHe76HU8k17gL0HIJKxATun9r1GCO/DnrxPaBy6IqnhYGkvaJc09/XtojAtP1vB18I23Lim9gi3lpcC+Q3ShixKvPrJn89+uij2LFjR+L68ccfj+3bt/tYEVFx+BacLMvCli1b8M1vfjPl9s985jN46qmn0j7mlFNOwfXXX4+//OUvOOuss/DWW2/h/vvvx//7f/+v1+eJRqOIRqOJ621the8uTtRXee0ZRADi37MtzbPR2trsdynxsFHpoQmIfx16bfb7xZK+Vt3ILWx18HsPqEKJCGat3oQtu9/zu5TCDYr/07kfE1GxTZs2LXH54x//OLvnUb/l21S9t99+G47j4NBDD025/dBDD8W+ffvSPuaUU07BL3/5S1x44YXQdR2HHXYYBg0ahJ/+9Ke9Ps8Pf/hD1NfXJz4aGho8/TqI8lGMPYNy2Y+nkrmumTY01ddPgKL036+70mXbAyoX4U98wpti8mDaTmWHJo9MHDEYYc3fLoYiAtdysn4IR8nKgohg3bp1DE3Ur/neHKL7vhsi0uteHC+++CKuueYaLFmyBDNmzMDevXuxcOFCXHnllbjjjjvSPuZb3/oWFixYkLje1tbG8ERlIeOeQXnIdz+eSjZ1ymaoanzUQ1Gq5+uudOn2gMqFqevAk//MfscieXbxdBi6N+FBRPDQim1489XSzXq4YtmUlA1t8xHW/N34VkSwf/XzsHZzlki5GjlyJF555ZWUBhDJI09E/ZFvwenggw+Gqqo9RpfeeuutHqNQnX74wx9i8uTJWLhwIQDgYx/7GGprazF16lTceOONGDZsWI/HhEIhhEIh778Aoj7KuGcQpaWqRiI4UeUoeA8ox9+RBENXYeje/DdpRx289+oH0FGaMDJsZD3qBugV+8cFsd28Q5M+og4BzdeeV1XjIx/5CP79738DAF566SV/iyEqId+Ck67rmDBhAtauXYvzzjsvcfvatWtx7rnnpn1MJBJBMJhastqxISI3VyOi3nRvyGHbXQ0LTCeH5gVVJN7QIf69KmWTBhFBxHVTbos4bi/3rmxzlxY+EpSroK5UbGjqbtjikxDIYeQvoPWfr7mcHXnkkWhpaUlc/+QnP+ljNUSl5etUvQULFuDzn/88Jk6ciJNPPhm33XYbXnvtNVx55ZUA4tPs3njjDdx9990AgHPOOQdf/vKXsWrVqsRUveuuuw4nnngiDj/8cD+/FCIqU+kacgRjAVyGIwEAZz1wZhlMWi4PfjV0EBHMbN6FZ9oOlPR5/aKF1KIHp/4koKtQPJoySX0zfPhwvPHGG4nrJ598cq8NvYj6I19PFy688EK88847uOGGG7B3714cf/zx+Mtf/oIRI0YAAPbu3Zuyp9MXvvAFfPDBB/jZz36Gr3/96xg0aBA+/elP46abbvLrSyCiMpdrQ47+3mQjF701dAiPH49AAWuUchVx3Yyh6cT6WhgKp2AR+WnYsGEpyyumTJmCJ5980seKiErP97+zzp8/H/Pnz0/7ubvuuqvHbVdffTWuvvrqIldFRP1RZ0MOu70dtz8yJ3GbVlNTVU02cpHc0CEQLt33ZvvksTDU1JBkKJyCReS35NB02mmn4fHHH/exGiJ/+B6ciIhKpbMhh+10nZgbmgFNqynek4oAdg6b9loWNNgdlw8AnZe9YuW3cXDBDR36yFAV1KqclkVUbqZPn45169Zh+vTpWLt2rd/lEPmCwYmIqpt1AFAydG/LM3CkEAGaZgAtm7PeVQdwfeeV5T8r/DmJiDyyZMkS3HDDDQDAsEQEBici6mdEBLFoNHHdttsRjMWnednt7bAdBXY0qZPe8lGA4m33NhGBbduAdQB6DqGppBomAWyDT0RZDB06FPv378f3vvc9di4m6sDgRERlRUTgul1tsB0n9xEfEcGaJYuwZ+eOlNs7O+h1rmsqSI6BQ0TQ1NSElpYWaLATo0jL8FVY0HJ6qoWNjdB1vfBaM9EMgOuFiCiDQw45BG+//Xbi+qOPPsrNbYnA4EREZUREsKV5Nlpbmwt6fCwa7RGaMjk83IpgwAUadwF6llCUY+CwbTtlj5NO8RVM2YNTQ0MDtNpBDDdE5IuDDjoI7777buL62WefzdBE1IHBiUpORGDava8piVgZ1puUie4bquaqkMdUE9c1ew1N9fUToCi5t8Sed9u90EI1iNgRnPab0wDEO+gZnaNG1gEEf3R0PJ/oBqDX9rH6nq695lrgJ/H1SgsbG3N6Dk3TKq6DXPKmuZ1KuXluodK9FxXy/iMiiFmZp3va0fJ/XyMaMmQI3nvvvcT1888/H/fff7+PFRGVFwYnKikRwazVm7Bl93vZ71ym0m2oSt6bOmUzVLVrFEhR8muJrYVqoNXUQFNdxILx+flaTU1XBz3FAYqcT3RdS7qsA8WafucjvzbN7Suv3otEBL9b1ox9r7R6VFn1EhGIHQ+gUgF/QOtvBg0ahNbWrtcxQxNRTwxOVFKm7eR8ojJxxGCEtfJrS5zrhqqZcLPV7FTVSAlOVJ562zS3U7E3zy1UtveiXN9/YpabV2gaNrIeQZ2b+XYnIti/+nlYu9v8LqVqJYemCy+8EGvWrPGxGqLyxOBEvnl28XQYeu8nJmFNLfspS50bquaLm61Sf5S8aW6n7pvniggibuq0tojjbVfDfKV7Lyrk/Wfu0inQQpnDVlDnZr7piO2mDU36iDoENAbNUmhtbUV9fT1DE1EGDE7kG0NXYeiV/RLs3FCVqJylW4OUTl/XJWXbNFdEMLN5F55pO9Cn5/GaV+9FWkjNGpwou2GLT0KgI8gGNAbNYjr00EPxne98B/Pnz0ddXR3bjhNlUdlnrUREGYgILv/r5X6X4atyWoMUcd2MoenE+loYCkcXql1AV6FkmI1A3hg4cCA+/PBDXHXVVQCA+fPn+1wRUfljcCKifsuMmfi/d/8PAPDRIR8tzroyEcBO2mvKijceB5B6u0+yrUFKpxTrkrZPHgtDTQ1JhsLRBaJSGDBgAA4c6Pojxj//+U8fqyGqHAxORFQVfnHmL7w/KRcBmmYALZsTN+lAYtNb3PIzb5+vj9KtQUqn+7qkYjBUBbUqRxWISs0wDJhJ03LnzZuHlStX+lgRUeVgcCKi6pE8OmR5MBpkR1JCU68aJsU30PVZtjVIRNS/dQ9N1157LVasWOFfQUQVhsGJiKpDmtGh1E8LbNvO75iWhc6dmaxrXwQ0A5Zl45af3AIgvumtruvx0MQpaETko3A4jPb29sR1hiai/DE4EVF1iJnpQ1PDJEgwjKamJrS0tOR1SA12YlresltWwoaW+AwAQK/tl5veElFlW7RoEW666Sa/yyCqOAxORFVMROC6fWtB7SXHKVEzhcZdgN4xZU0zYNt23qEpm4aGBmialv2OREQlYJom6urqMG/ePIYmogIxOBFVKRHBlubZaG1t9ruU0tON+GhQGo2d0+tyYR0AlscbQCxsbEw5pqZp7BBHRL6qqakBgMQUvba2npsME1HuGJyIqpTrmmUbmurrJ0BRitsOuze6rucenNC1JkrXdU7LI6Kyoet6Yt1mXV0dQxORBxicqGREBBHL8buMHkQEZiz36Wr53LdSTJ2yGapaPt3WFKX47bCrlYhATO9ew66Hx/KaiMC007/nlON7EZFXkkMTAHzzm9/0sRqi/oPBiUpCRDBr9SZs2f2e36WkEBHMeXgOtu3f5ncpvlJVo6yCExWHiOC1Sy7Ne0PcjMcE0K6HAAARx0XA6T2QRBzXs+fNplzfc4iKTdM0xGKxxPXvf//7+K//+i8fKyLqPxicqCRM20k5gZk4YjDCmv+bX5oxs+DQNG7oOISD/kwnIyqEtLd7HpqubvxvvDDy2PgNz+7y7Nh91f09pzfl8l5E5IXuoelHP/oRFixY4GNFRP0LgxOV3LOLp+OgWr3spmKtn70+ryAUDnI6Wb7THIvNtrv2KInYEcREfKym+HKZdtfbVLrRGzdACfct+EccFy8UEJZOrK+FoSh9eu58PLt4Ogw9fTgKa2rV/x5T/zBgwACGJqIiY3CikjP08jxRCQfDMDROV8tVOU5zDMYCuAxHAgBO+81piAWLEJxEALujbbpVovbpacsQ7O7DtDslHIZi9O31njwtb/vksTDU3MKQoSglfQ8wdBWGzv/uqH9bunQprrrqKgAMTUTFwv9JiKggfZnmWGrjho5DWK3p+4FEgKYZ6TfSLTExzbxCU3j8eARqPPge9MJQFdSqnPJG5Jf58+envUxE3mFwIqI+y3eaY7HY7e24/ZE5AOI1aR1BIRwMI2B7MDpkR9KHpoZJgI+jlblMuwuEw5520yMi/6mqCtd10drairq6OgYmoiJjcCKiPss2zVFEUlrjFkJEEItGM9/HciCB+HSxoAQRlPhbnG3bgGUh8ZZnWQC0xOMsy8q/oMZd8Y10gXho8nH6aa7T7vr3ii+i6tIZmgCgvr4e0s/XdBKVAwYnIioqEUFTUxNaWlpK84QfHQ8AWHbzzWk+eXX8n+W39P15dAPQa/t+HCKiPCWHJgBoamrysRqi6sHgRERFZdt26UJTHzU0NEDTtOx3JCLyiaIoKaNLv/71r3HRRRf5WBFR9WBwIqoiIgLXja9zcZzSd4RrbGyErut5P85ub8eqr1wGAPjSz+6A1rHham+CoVDPrm3WAWD5qI5CdqUdLdI0rSw7PlJ2IoKY1fUXeNvq6vhnRx3YUpyfqx3tfcNfIq8xNBH5i8GJqEqICLY0z0Zra7NvNei6XlBwCrguAhI/Ka4dMDDR9CE/NoBYZyHxD+oXRAS/W9aMfa+0Jm6zIMCg+OWmhRugg4GYKtvUqVMZmoh8VrodCInIV65rpg1N9fUToCj+d8QjKlTMclNCkx+GjaxHUOd/qVQ8Tz75ZOIyQxORPzjiRFSFpk7ZDFWNd2FTlDCnp1U5EUEkaaF5riJO/o8ptrlLp0ALqYhYMdzy/XUAgCuWTSn6BrhB3btNfUUEYpff97aYxOKUx968/vrrGD58OID4a6OtrQ11dXU+V0VUnRicqOhEBBH+p1hWVNVIBCcqXyLS695LbtLtbo77M6W7n4hgZvMuPNN2oLAi+0BEYNp9f2+wLSc+NQ+AHRAgILCTMowWUqHplbE5r4hg/+rnYe1u87sUKgOdYXz69OlYu3YtADA0EfmIwYmKSkQwa/UmbNn9nt+lEPWNCGCVrqGGiGD3JZfC3Lo1631fmjyl4OeJuG6fQ9OJ9bUwlPymqXn+3jAo/k/nKFOlEtut6tCkj6hDQOOURwApI5jr1lX265qov2BwoqIybSflxGjiiMEIa5Xxl1+iBBGgaQbQsrl0T2maOYWmQoTHj0cg3HNd2/bJY2Go+Z+0Gkr+09S6vzcUSyW/5wxbfBICFTJS5pWA5t2Ux0rW/XvA4ERUHhicqGSeXTwdB9Xq/E+RKo8dSQ1NDZMArXRTHUdv3AAlHI5P3WtvBxCfdvfy9DNSPp+rQDj9ujZDVVCrlv5E/dnF02H0ISDYUQdNCzcAiK9n0kJdxwprasW+5wR0FUqVBSdKH5qmTZvmUzVElIzBiUrG0Cv3BIZyIyKIRaMp1yORrultdns7AgU0IbCj7Z7U54nGXUDtwUAJX8tKOIxAOIzXepm6p4TDUIzKXbNm6GqfmjfYEki0Gzf0YMWsZyLqrvv/kZs2bcKkSZN8qoaIumNwIiJPiAjWLFmEPTt3xK8DiIz4KFxjQOI+q75yWWI/piIWEh8h6s6r9Um6UdLQ1Km3qXu9Tbsjosry6KOPplxnaCIqPwxOROSJWDSaCE0AgICSEprUyAdAH0PT4ceOQTAU6v0OPqxF8kPy1Lzept0RUWWZNm0aRo4ciZdffpmhiahMMTgRkefm3XYvJKBg2c03AwCuu/pqGIbR5xP8YCiU+Rjd1yKlU+L1ScVQ6VPziKjL1KlTE5vb7tq1y+dqiCgTBici8pwWqoEktac2Bg6EruulLaJxV3xaXXeaP1PtqDhEBHaU+8RRZer8Q1AgEICI+FwNEWXD4ERU5kQErpvbBqeZOE7p9iAqC7oB6LV+V0FFJCL43bJm7Hul1e9SiPLGKbZElYfBiaiMiQi2NM9Ga2uz36UQlZ2Y5aaEpmEj6xHUuXkqlb/uoemFF17wqRIiygeDE1EZc13T89BUXz8BisIubOVCRBBJ06JdHBemHm+EEXFcCLqm8RxwHCiON9PTIk6RuxyWyNylUxAeqPGv+FT20oWmMWPG+FQNEeWDwYmoQkydshmq2veGAIrCLmzlQkQws3kXnmk7kP4Ot9wV//fZXaiJtuPhjptP2PgC2kM1pSixYmihwveJExGIXR4BUiyu1+rPur9GW1paMHz4cJ+qIaJ8MTgRVQhVNTwJTpSj5P2gvNoDqpuI6/YemkrsxPpaGEr1TXMTEexf/Tys3W1+l0JVhqGJqPIwOJHnRASmHf+racTHv56KCMxY5qYK2T5PVaoP+0GJCMTM7XUlSdPknh9/dEpwcdtN7Jp2BgDgmI0bIBC83vG57ZPHet6O3FAUz0Yik98DeuPne0Mysd2yDE36iDoEtOoLsv1dS0sLGhoaGJqIKhSDE3lKRDBr9SZs2f2e73XMeXgOtu3f5msdVKF62w8qyx5QIoLdl1wKc+vWnJ7G1EOJ6XivT/0UwlY05fOdK9EMNfUEulZVoahqTs9RauXyHlCIYYtPQkAvj+9rQPMuyJK/VFXFI488gmnTpmH48OFsO05UwRicyFOm7aQ9YZo4YjDCWulOSMyYmVdoGjd0HMJBNkwQEcSi0cTlTCNyptOOYCx+Yme3twNuP/3rePJ+UFn2gBLTzDk0xR8gqIm2Jy6nU/Pxj8dHsdrbcz+uj3p7D+hNqd8bMgnoKpQyCU7UP3SG3+nTp2PTpk2YNGmSzxURUV8wOFHRPLt4OoyOk5CwVvjC7b5aP3t91lAUDrJhgohgzZJF2LNzR86PuQxHAgBuf2ROscryX4H7QdWccALat2/PeJ+wbeHh6+ZmvE/7c89h54SJeT9/OUh+D+iNn+8NRMXU/XXNqXlElY/BiYrG0FUYuv8vsXAwDCPD9CqKi0WjeYWm3hx+7BgEQyHYtt11o3UAgN3rYzxTpCYOhcgWmgoVHj8egXBljI6Wy3sAUal1D02tra2oq6vzqRoi8gr/RyOiHi6/9X9xxkMzAAAPn/9XhNXeW193H60LhkLx68lTz5aPAhArVrllbfTGDVB6CToHHAcnbIxvfLl98ljU5rBuKRDm6ChROWNoIuq/GJyIqActFEIsGA8+dbWDChuxs30c/cnSxKGUlHC41w54iuMk9mNSDKNsGz4QUW4Ymoj6NwYnojIlInCc8pl61ifXbAcG1Jfu+bI0cSAiKgZFUeC68W0GGJqI+h8GJ6IyJCLY0jwbra3NfpfiDT1cUIMFIqJK4jgODj30ULz00ksMTUT9EIMTURlyXTMlNNXXT4CiVEZDAEolIjjgpN/sNZK0AS4RVaZAIIAhQ4bgnXfeAQC8+eabPldERMXC4ERU5qZO2QxNO4gNASrUBdtewVNW+uBERJWt83353XffxdSpU/Hkk0/6XBERFVM/3bGSqP9QVYOhqYI1f3Ag631OrK+FofDtmKiSdH9f/vOf/+xTJURUKhxxIiIqge2Tx8JQ04cjQ1EYjokqCLvnEVUnBiciohIwVCWnfZqIqLwxNBFVLwYnSktEYNr5r8uI+LSWQ0RgxszE9eTL1DsRQSwaBQDY0XZPj2vZtmfHKxciAjF7f225GT7XH+TyvuDXewBRKTA0EVU3BifqQUQwa/UmbNn9nt+l5EREMOfhOdi2f5vfpVQUEcGaJYuwZ+eOHp8zncJDlIigqakJLS0tfSmv7IgIdl9yKcytW/0uxReV9r5AVAzz5s3DqlWrADA0EVUjBifqwbSdPp8cTRwxGGGtNNOSzJjZa2gaN3QcwkG28U4nFo2mDU1vDm7HGQ/OADItuREB7PSb89qWlRKaGvAGNE3ra7m+E9Os2tAE5P++UMr3AKJSWblyJT75yU/i/PPPZ2giqkIMTpTRs4unw9DzP/kJa6ovi93Xz16fEpTCwTAX3efg8lv/F2c8NAMAEFMlEZrSBk8RoGkG0LK5l6MFAVwNAGjEatTCRCCwoih1+2X0xg1Qwj0DuWuaeGnylMT10LhxaNdDpSytJHJ5X0h+DxARxCzv96yyo5wWSMWX/DoGgLlz5/pZDhH5iMGJMjJ0FYZeOS+TcDAMQzP8LqPiaKEQYsH4SUFy+EwbPO1IhtCUSoeNQMMkoJ/9TJRwGIqR+WsavXED2uvrgSf/WaKqSief9wURwe+WNWPfK61FrorIe8nvf7quw7IsH6shIr9VzhkxEZVEXuGzcRegd7uvZQHLb+n6fO0goApH/ZQwRzsBIGa5RQ9Nw0bWI6hzHyzyVvffX4YmImJwIioREYHr5tZ1zXHSrx8qO7oB6LXdbkxaz6TXVmVoovTmLp0CLeT9uqegzn2wyFvdX0+d0/SIqLoxOBGVgIhgS/NstLY2+10KeUxEEHHj63dcp2vNzQHHQbvj/bqeSqaF1KIEJyIvMTQRUW8YnIhKwHXNgkJTff0EKEoVdAXM0KXPF1ZutYgIZjbvwjNtBwAANdF2PNzxuRM2voD2UE2RCiSiYtB1PeU6QxMRJWNwIiqxqVM2Q1VzW0OkKFWwTiZrl77yFXHdRGjK5MT6WhgK1+AQlTvLsnp00SMi6sTgRFRiqmrkHJyqQh5d+kouj46A2yePRU20Ha8nXe/svGcoXINDVK7a2trwwAMPJNqMMzARUW8YnIgqhIggFo16djw72u7ZsUQEtm0D6GPnqXRd+vykGTk3tzBUBWG1a/1OrapCUbmeh6ictbW1ob6+HgDwzDPPYOXKlT5XRETljMGJqAKICNYsWYQ9O3f4XUoPIoKmpia0tLT0/WBpu/QREXkvOTQBwKpVqxiciCgjTronqgCxaLRooenwY8cgGAoV/HjbttOGpoaGBmialuYRRET+6h6aAE7RI6LsOOLUz4kITNvJfsckESu/+3tBRGDGctvjqLtCH1ep5t12LzQPu7UFQyHPvoeNjY2JrlSaplXMuh4RgZhm6vX21KmMbtLnOy+7joOajimPbiQCtwI2yCzkPQHw532BqBgYmoioUAxO/ZiIYNbqTdiy+z2/S8lIRDDn4TnYtn+b36VUBC1UA60mTXAqtKW3HQGSg5MdiR+rNxladeu63qOdb7kTEey+5FKYW7fm/JiXJk9JXO5sP/56+ruWFa/eE+yoA1tyC8V2lIGLygdDExH1BYNTP2baTp9OkCaOGIywVvzF7WbM9CQ0jRs6DuFgFex5lE5fW3oHAsBRDfHLy0ZlDk79jJhmXqEpF+Hx4xEIl99rsa/vCQBwREzBPQs3IIDKGE0kSnbuueemXGdoIqJ8MDhViWcXT4eh5xeCwppa8qlW62evLzj8hINVsOdRb/xo6d3Zqrujm15/MHrjBgBdI0oj162F0i0ABWpqEq+zA46DEza+ACDefry2o4teIFz+r8WnF56OX1+/Ke/HaUBBoWnYyHoEdS6rJX89/vjjOOigg/Duu+8yNBFR3hicqoShqzD08v9xh4NhGDnum0O9KKSld8wEfnt6/PLCXUAu4TWPVt2VontICg4ZktiLKe39HQftHevNFMOoqPbjYV2F3hGA5i6dAi1U3NqDOveyIn+0tbVh9OjRePPNNwEA77zzjs8VEVGlKv8zaSIfiQhct++NExyngLVHhSqkpXfyCa1m5Lzpa84yrb/KsGaqFJL/6nzAcRBAAKYe7zIYcVwEnN7X6EQct+j1lYIWUosenIj8kLymSVVVOBl+n4mIsmFwIuqFiGBL82y0tjb7XUpl6+v6qyISEVyw7RV8v+P6CRtfiI8g3XJX/IZnd/lVGhH1UfdGEK7bP/7QQUT+4YRzol64rul5aKqvnwBFKb+mAUWV6/qrzjVTJRRxXTR/cKDPxzmxvhaGwrdTonLB7nlEVAwccSLKwdQpm6GqfT+pV5TybxpQVJnWX5XBmqntk8cigAB2djSHOGbjBgSM7EHXULh+h6hcMDQRUbEwOBHlQFUNT4ITEP8PPBaN5vUYO9qe/U6VoJD1VyXU2RUvbMV/PoaqVFTDB7+ICMSuzGlQwo19+5XXX38dDQ0NKbcxNBGRVxiciEpIRLBmySLs2bnD71KIPCEi2L/6eVi72/wuhQivv566FTVDExF5iZPyiUooFo32KTQdfuwYBEMhDysi6hux3X4RmvQRdQho/C+x0k2aNAnr1q2DoigMTUTkOY44Eflk3m33QuvYAyhXwVCIa2mobA1bfBICeW60XS4CGtepVarO6XktLS0YPnw4pk2bxrbjRFQUDE5EPtFCNdBq8gtOKZL3RsqwF5KIwIxl3osq2+f7KxFBTZ7rzSqFiCBmpa47spPW89hR79ckBXQVSoUGJ6pMyWuaGhoaOMpEREXF4FRBRASmnftf0SJluui5+4l8tZ6090mOeyOJCOY8PAfb9m8rTV0VRETw5mWfx++3bUu5TdoLa8SR7+9nMYkIHlqxDW++mjqFzg4A6Gg2ds/ip6CDIyxUudI1giAiKiYGpwohIpi1ehO27H7P71L6hCfyHultb6RueyGZMTOv7/W4oeMQDlbHPlNimrCSQlNo3Di89sUvoT3ptpyPVa6/n4Oy32XYyHoEda7tocry4osvYuzYsSm3cbSJiIqNwalCmLZT8EnZxBGDEdbKY/pMphP5ajpp91Ty3kgZ9kJaP3t91u9vOFid+0ydd9NqPHP6eLx+4omJ28LjxyMQzu312JffTz9MOHIQrvrvkxAIBBDUubaHKgtDExH5hcGpAj27eDqMPNYRhDW1LE+Mup/IV+tJe5/luDdSOBiGoXmzF1VPAg0xwDoAwE79VIb1V34RERxIWjze3q3pxuiNG6AOGVLQ6zHf389isKMOmhZuAABcsWwKtFBqPeX6nkCUC4YmIvILg1MFMnQVhl75P7rinsgXRkTguvE1V45Tfif8ZUkEV+A+HIm9wPKf+V1NViKCmc27sH3/O3i4l/so4cJDfDn8ftoSSKxfMvQgNDZsoH6KoYmISqnyz76JPCIi2NI8G62tzX6XUlnsSDw0ZdNt/ZVfIq6LZ9oOILmf4YS6WoQVjsAQVQIRwdSpU/Hkk0/6XQoRVRkGJ6IOrmumDU319ROgKFx7lQvr2heh1w5K/8kM66/89puPH82pa0Rl6umnn8bJJ5+MkSNHYteuXQDA0EREvmBwIkpj6pTNUNX46Iii5DZtS0QQy7InkB0trNV1nwlgWRaC4v2vvGXZ0DuvaLmttyo3DE1E5akzNAHAyy+/jEcffRTTpk3zuSoiqlYMTkRpqKqRCE65EBGsWbIIe3buKGJVBRLg1L2nYsWyFUU5vAYb1xflyFQIEYFYDjpXNYnlwC1iLpQy3S+OKl9yaOrE0EREfmJwIvJALBrNKzQdfuwYBEOhIlbURRUVB0cPLslzaZpWkueh9EQE+1c/D2t3G84eFP9ZvPX9zJskE5WjRx99FNOnT0+5jY0giMhvDE5EHpt3273QQjUZ7xPs1v66VBobG6HrevY75sM6kOimxylv/hLbhbW7zZfn1kfUIaBxI13qO4YmIipXDE5EHtNCNdBqMgcnv+i67n1w6r5vE5WFh1ttOBLfxykYKn478oDGjXTJGwxNRFSuGJyIiPqJ5BNMRwAHQEBXoXAfJ6og06dPx7p16wAwNBFReWFwIqoAIgIzZnbdEDO7WnsnX+4m5TEVQkQgZvHqdh0HNdF21GTpgFiJHMtNuT5sZD2COqfPUflra2tDXV0dAGDt2rV4/fXXMXz4cJ+rIiJKxeBEJdPj5J9yIiKY8/AcbNu/LfUTRzXE//3t6Rkfr8KD0QYRwI6k/5zVy+0FPY1g9yWXwty61bNjpvNwnvcXEZh2793jImXYWe7zN54M46AaTp+jsveHP/wB5557LoCuESaGJiIqRwxOVBK9nvxTVmbM9Pf7JgI0zQBait+dTUyz6KGpu/D48QiEw72OcokIZq3ehC273ytpXX2lhVSGJip7a9aswcUXX5y4PnXqVG5uS0Rli8GJSqL7yf+4oeMQDob9K6hCrZ+9Pv59syPAslHxGxfuim882wvLsvq2h5MdyS00NUzKWEe+Rm/cACXc99eIiOCCba+g+YMDPT63ffJYDBgwAIFAAL2tpDBtJ+fQNHHEYIQ1riciykX30BQIBBiaiKisMThRya2fvR5Daobwr+EFCAfDMDQjPgrUuWg6GM4YWILi4a954y5A7+W5NKPXtVaFUMJhKEbfg9gBx8FTlgN0axF/Yn1tIjTl6tnF02FkaLQQ1jjKQ5SLO++8E1dccUXiuqIocJzym/JKRJSMwYlKLhwMl9XJpYggFo3CcdoTt9nt7XDV3BfV29H27HcqIhGBbadvC25ZlndPpBuAXuvd8Ups++SxMDp+roaSf/tsQ1dh6HzbJOoLhiYiqlQ8A6CqJiJYs2QR9uzcASXo4mNfjN++6iuXwY1VRjcyEUFTUxNaWlr8LqXsGaqCWpVT6Yj8xNBERJWqMs4MiYokFo1iz84dnh3v8GPHIBgKeXa8XNi2nVNoamhogKZpJaiIiKh3ra2tABiaiKjycMSJqMOXfnoH/rFtCgBg3m33QlXzX18TDIV8nYbY2NgIXdfTfk7TtLKaIkn5ERGI7Wa+Txm2RScCgJUrVwIA5s+fj7q6Om5sS0QVicGJqIOWNFKk1dRAVWsy3Ls86brea3CiyiUi2L/6eVi72/wuhShvN998M77+9a8nrs+fP9/HaoiICsepekREZU5sN6/Q9E7MBTS+vZP/uoemRYsW+VgNEVHfcMSJqNKIAFbE7yqohJKnNT3casPJMsvJATCG0zLJZz/4wQ9w/fXXJ64Hg0F8+OGHPlZERNQ3DE5ElUQEaJqR24a01G84VtfaJkfiwSiTYSPrEdQ54kT+SReaetsygYioUjA4EZUhEYEZMwEg8S8AIGamhqaGSRk3vy3giQG722hWEUa3RARimj1ud9PcRqk+f+PJ0AdmXscW1PPfo4rIK91Dk6Zp3u4nR0TkEwYnojIjIpjz8Bxs278t8x0bdwG1BwNe/RW3RKNZIoLdl1wKc+tWT44VcTN3mos4mT9fabSQCi3EvaiofN10002JywxNRNSfMDgRlRkzZqYNTeOGjkM4udOfbgBejirYkcyhyaPRLTHNrKEpPH48AuFw5uOIYGbzLjzTdqDwWpJGvpJHu0QEESsGAIiwxTdRXlpbW1FTUwPXdRmaiKhfYXAiAgAIHKf8pomtn70e4WA8QISDYQS6T6MrlsZd8WCWTPM4qAEYvXEDlDQBKRAOZ51qFnHdvELTifW1MJSudT+9jXwJgNl3NmPL62z9TZSrb3zjG1i1ahXa2uK/N+3t7T5XRETkPQYnqkoiglg0CjvaDkAw6tzdePrZT/ldVg/hYBjhYBi2bccXVlsWEr+2lgWgSNNgdAPQa70/bjdKOAzF6Pso1vbJY2GomZshGErqup/eRr4CEz6ZNjRNHDEYYY1T5Ii6+8Y3voGlS5cCAMLhMEyuVSSiforBiaqOiGDNkkXYs3MHAEAJCgYc1vUffX39BChK5mlipSIiaGpqQktLS9KtV8f/WX6LLzWVI0NVUKsWHmqSR75MVQO+8wgA4NnF02Ho8eOGNZUNF4i6ue6663DLLXwvIqLqwOBEVScWjSZCU3dTp2yGph1UNifItm13C029a2hogKZpRa6of0oe+Qp0rG0CAENXYeh8myRKp3toCofDiES4xxwR9V88I6CqNu+2e6EEXWzc/EkAgKoaZROaumtsbIQOG1g+quOGXSnT6TRNK9vaiah/mT9/PlatWpW4ztBERNWAwYmqmhaqgaJVRrtqXdehIwAg1nlD/IP6DRGB2D1fj8LOflRGuoem2tpafPjhhz5WRERUGgxORERZiAhiVnEDtojgvTv+Cbvlg6I+D1FfHX/88YnLAwYMwAcf8DVLRNWBwYmIKAMRwe+WNWPfK61FfR4VwNmDMq9ReyfmYqiWuXsgUbHNnz8fAPDf//3feOutt3yuhoiodPg/MFG5Eem6bCe19bUOABbXEJRazHKLHpq6e7jVxp/e7/nx8tBaaCG2RKfSu/zyyxEIBBL7NM2fP5+hiYiqDkeciMqJCHDPuV2/mStOAPCf8cvLRyGxvol8MXfplKIFF7EcvPX9zQCAy5dOQUDv+TxBXWEDECq5iy66CPfddx8AoL6+HpL8xx0ioirC4ERUTuwI8PqzwFENme/XMAnQCts4VkQg6TaotEwg1nFSHkm67DE3h80xRQQRN/OaoohT+qYeWkgtWnByk77dwZAKJU1wIiq15NAExIMTEVG18j04rVy5EsuWLcPevXsxduxYrFixAlOnTu31/tFoFDfccAPuvfde7Nu3D8OHD8f111+PK664ooRVE5XIdduBFT+PX27c1dVFTzOAAkYeRAS7L7kU5tatvdxjWPyf+3v/HSw2EcHM5l14pu2AbzUQETBr1iw88MADieuDBw/Gu+++62NFRET+8jU43XfffbjuuuuwcuVKTJ48GT//+c9x1lln4cUXX8SRRx6Z9jGzZ8/Gm2++iTvuuAOjRo3CW2+9hViM05eon9LCXZf12j63HxfTzBCaSis8fjwC4XCP2yOum1doOrG+FobC5ZpEXjrnnHPwpz/9KXF9yJAheOedd3ysiIjIf74Gp5tvvhlf/OIX8aUvfQkAsGLFCvztb3/DqlWr8MMf/rDH/f/617/iiSeewCuvvIIhQ4YAAI466qhSllxSIgLTju/fEqmgfVxEBGYsdTpW9+vFeM5YNJrTfe1oe8rjHKe4DRdEBLZt53Zny4IlQahufJpWzo8rwOiNG6AkBxcr0m1z3cKmAuaqMzS53TbNlKQpeM+PPzprKAorAYhpwhWBmWYPpN64pol2NR5EI5YDJRhLXCaqZo8++mhKaDr44IOxf/9+HysiIioPvgUny7KwZcsWfPOb30y5/TOf+QyeeuqptI/5wx/+gIkTJ2Lp0qW45557UFtbi5kzZ+J73/sewmn+cg3Ep/ZFk06oOzsClTsRwazVm7Bl93t+l5IXEcGch+dg2/5tJX3ONUsWYc/OHfk+Es/98zK0fbCtGGXFn0EETU1NaGlpyeNR/4nP7Y5funXFrUWpCwCUcBiKkRSOghL/AAAjXPTg1Nu0QVMPAbfcBQB4feqnELayB2IB0Dj1Krx40EfyK+KcH8T//Z+/5/c4on5s2rRpicuHHHIIu+cREXXwbX7L22+/DcdxcOihh6bcfuihh2Lfvn1pH/PKK69gw4YN+Oc//4nf//73WLFiBe6//35cddVVvT7PD3/4Q9TX1yc+GhqyLLovE6btpA1NE0cMRlgr30XjZszMGJrGDR2HcDB9yC1ULBotIDQBhx93bEpoqq+fAEXxtjbbtvMMTek1NDRA0zLv8VNpvJw2GFX1/ENTFuX+u0ZUTCKCb3/72wxNRERJfG8O0b21roj02m7XdV0EAgH88pe/THT2ufnmmzFr1izceuutaUedvvWtb2HBggWJ621tbRUTnjo9u3g6jI4OW2FNrZh2xOtnr+8RksLBcFHrn3fbvdBCNTndNxB08MTfHwIATJ2yGZp2UFFra2xshJ5tjZJ1AJHlo3HaiOEA4t9DQzOgaVrF/NwLkTxtMOK4wLO7AADHbNwAQ83+952I5SRGjf7x9ckw8gg8gXBN2u9tJf2uEfXVGWecgXXr1mH69OlYu3YtAOCGG27wuSoiovLiW3A6+OCDoapqj9Glt956q8coVKdhw4bhiCOOSGmHetxxx0FE8Prrr2P06NE9HhMKhRAKhbwtvsQMXYWh+55x8xYOhmEU2DK7UFqoBlpNbsEpeW2TqhpFP0nWdT17cIKNWCAGR3G6HqP1rSFEJUieNhhwutYYBYwwFDV7COpcnwQAA+oHVOTvC5FfTj/9dKxfvx4AsG7dOn+LISIqY75N1dN1HRMmTEj8ZavT2rVrccopp6R9zOTJk7Fnzx58+OGHidt27twJRVEwfPjwotZLRETU30ydOjURmgDgsMMO868YIqIy52sP3wULFuD2229HU1MTduzYga997Wt47bXXcOWVVwKIT7ObM2dO4v6XXHIJDjroIMydOxcvvvgi/v73v2PhwoW44oorem0OQURERD2dcsop2LBhQ+L6EUccgb179/pYERFRefN1PsuFF16Id955BzfccAP27t2L448/Hn/5y18wYsQIAMDevXvx2muvJe4/YMAArF27FldffTUmTpyIgw46CLNnz8aNN97o15dAVDgRwI50/NvRrt2KXw+7bsp1z1hJbeGtSFcXvc7rRFQVTjnlFGzatClxvaGhIeX/WyIi6sn3hQDz58/H/Pnz037urrvu6nHbRz/60R7T+4gqjgjQNANo2dzjUwaAf+x+PX5l2UhvnzcWADAsfnn5qNTgRERVIzk0HXXUUXj11Vd9rIaIqDL4HpyIqpIdSRuaykLDJKAPTT1EBBE3+0a04rjxPZsQ76TX2RQi4uS+iS0RFWb06NF46aWXcPTRR+Pll1/2uxwioorA4ETks8QEuas2A5oB0zFx1h/+AwCwfvYTMLS+rd8TEYjZDgBwTRO4/zPxTzTuim90251mAAV2GBQRzGzehWfaDuT2gI6NbjvbjxNR8Tz66KOJzW137tzpczVERJWHwYkqioggFo2m3GZH232qxhunjRgOU1GAv1zQdaPS0bdFN/o8+rP7kkvTbzSrG/EPD0VcN/fQlMWJ9bUwFF/71xD1GyeccAL++c9/Aoi/LxARUf4YnKhiiAjWLFmEPTt35PUY1zXTfi55H6dyNG7ouB4bCOdLTDNtaAqPH49AkTtRbp88NuPmtRIxsXPyFADxjW4D3Ua/DEXhBrREHkgOTUDqyBMREeWuoOD0/vvv4/7778fLL7+MhQsXYsiQIWhubsahhx6KI444wusaiQAAsWg0Y2g6/NgxCCZtdiwi2NI8G62tzaUor0/W734d4caXUkaXwsGwp8Fh9MYNUDrCUiDs7bHTMVQFtRk2r3VVBWErmrhvLhvdElF+xowZgx07ut43jzvuOIYmIqIC5R2cnn/+eUyfPh319fX497//jS9/+csYMmQIfv/732P37t24++67i1FnVRARmHbHAnnL8bma/IkIzFj60R2vzbvtXmihmpTbgqFQShhwXTOn0FRfPwGK4u8+YGERGMFwn6blZaOEw1CM4h0/nfj6qvSvCbeX23M5ZufvSadK/H0hKrZjjjkGL730UuL68ccfj+3bt/tYERFRZcs7OC1YsABf+MIXsHTpUgwcODBx+1lnnYVLLrnE0+KqiYhg1upN2LL7Pb9LKYiIYM7Dc7Bt/7aSPJ8WqoFWU5P9jh2mTtkMVU0fGhSl+KMvVSnT+qqCD1nZvydEpTJq1KiUbnkf//jHsW3bNv8KIiLqB/IOTs888wx+/vOf97j9iCOOwL59+zwpqhqZtpP2ZHDiiMEIa+U/hcmMmSmhyYv1OV5SVaPX4ETFIWZ7TqEpn/VWvf2edPL690VEYEc5mkWVJzk0jR8/Hlu2bPGxGiKi/iHv4FRTU4O2trYet//rX//CIYcc4klR1e7ZxdNh6PGTv7CmVtxoyPrZ6zGkZkjF1U3Fk7y+qrtC11sl/5508vL3RUTwu2XN2PdKqyfHIyqllpYWNDQ0MDQREXko716/5557Lm644QbYtg0ACAQCeO211/DNb34T559/vucFViNDV2HoQRh6sCLDh9dNDfodEcAq745+XutcX5Xuo9DXSvLvSTF+X2KWmxKaho2sR1D3tj26iMC1HLiWA+E6LeqjCRMm4NFHHwUADB8+PN4gh6GJiMgzeY84LV++HJ/97GcxdOhQmKaJU089Ffv27cPJJ5+M73//+8Wokaj/EAGaZgAtm/2uhPIwd+kUhAdqngYzEcH+1c/D2t1zBJ8oX0ceeSRaWlowffp0rFu3jp3ziIiKIO/gVFdXhw0bNuCxxx5Dc3MzXNfF+PHjMX369GLUR1RZRAA7aTTJspIuHwCsWEpoag6FYHJ0ruxpIe+nzIrtpg1N+og6BDRu/Eu5Gz58ON54443E9eXLlzM4EREVQd7B6e6778aFF16IT3/60/j0pz+duN2yLKxZswZz5szxtECiipF2NCkI4Or4xeWjAMQSn4kAuHzYUKBCgpOIIOK6Ge8TcTJ/ntIbtvgkBDrWawU0bvxLuesemqZMmYKHH37Yx4qIiPqvvIPT3LlzceaZZ2Lo0KEpt3/wwQeYO3cugxNVLzuS/xS8zhPk4Z8s6h5OfSUimNm8C8+0HfC7lH4poKtQ9PLvnknlZdiwYSndbE877TQ8/vjjPlZERNS/5R2cRCTtX0Nff/111NfXe1IUkYggFo2m3GZH232qJj8CwL5mB6CHYdk2cMvK+CcadwGIdYw8AbhuO/DQ/4s/5rLfF7whbCZeHTPiunmFphPraxFWOGpCVCyHHXYY3nzzzcR1hiYiouLLOTiNGzcOgUAAgUAA06ZNQzDY9VDHcfDqq6/izDPPLEqRVF1EBGuWLMKenTv8LiVvAqAJF6LlJ7f1/KReC8Duut45wiSCNy//EqLbnitFiX22ffJYGGrmNTiGokCKEASJKG7//v2Jy9OnT8fatWt9rIaIqDrkHJw+97nPAQC2bduGGTNmYMCAAYnP6bqOo446iu3IyROxaDRjaDr82DEIhkKJ6yIC1+15ku44pW/5bSOIFhze4/aGhgZomgbYdo/PhWwUPTTls8lsNoaqoFbNPq1MPHk2IkrHcRwEg0GcccYZXNNERFQiOQen73znOwCAo446ChdeeCFqamqKVhRRp3m33QstlPpaC4ZCiemiIoItzbPR2trsR3kZNTY2Qtd1AICm5dbKOtNGsX1R6CazRFQ+DjnkELiui3feeQcAEIvFsjyCiIi8lPcap8svv7wYdRClpYVqoGUI6a5rZg1N9fUToCjeh5FsdF1PBKdcdW4US0SU7KCDDsK7774LABg6dCjeeustnysiIqo+eQcnx3Hw4x//GL/5zW/w2muvwUrepwZIvLFT/yciMGPxKXKd//pp6pTNUNWeoUNRONoiIn1acyRJbcYlYsLNssYJSG1MISKIWH3/63jEcvp8jHREBDErtZW6HS3OcxHla8iQIXjvvfcS1z/1qU/5WA0RUfXKOzh997vfxe23344FCxbg29/+Nq6//nr8+9//xoMPPoglS5YUo0YqQyKCOQ/Pwbb92/wuJUFVjbTBqdqJCHZfcinMrVsLPoaph4Bb7gIA7Jw8BWErmvkByc8PYPadzdjyes/NXsuBiOB3y5qx75VWv0sh6mHQoEFobe16bZ5//vm4//77fayIiKh65b09/S9/+Uv87//+LxobGxEMBnHxxRfj9ttvx5IlS/D0008Xo0YqQ2bMTBuaxg0dh3Cw9NPiypIIYB3o9lH6hhVimn0KTX0VmPBJz0PTxBGDEda82fcoZrkZQ9OwkfUI6nm/VRL1WX19fUpouvDCCxmaiIh8lPeI0759+3DCCScAAAYMGJB4Uz/77LPx7W9/29vqqCKsn70+EZbCQU6LixME7/l/wOvP+F1IikKbT0QcF3h2FwDgmI0bsrYjT2aqGvCdRwAAzy6eDsODjV7DmlqU19ncpVOghVLrC+pKr88lIhDbTfu5bKRI0w6pfzjkkEPQ1tb1B4c5c+bgF7/4hY8VERFR3sFp+PDh2Lt3L4488kiMGjUKjzzyCMaPH49nnnkGoaQW0VQ9wsEwDK0CpsiJAHYRR3ySRpM0xKBkCk0NkwCt9CNzhTafCDhdJ/kBIwwlh3bkifsnrW0ydBWGnvfbTsloIbVHcOqNiGD/6udh7S7PKYhU2S644AKsWrUKAEMTEVG5yPsM5rzzzsOjjz6Kk046Cddeey0uvvhi3HHHHXjttdfwta99rRg1EvWdCNA0A2jZXOQnSvMr1bgL0LuFFc0AyqChBhVObNeT0KSPqENA41RASrVy5UoAQDQaxR133OFzNUREBBQQnP7nf/4ncXnWrFloaGjAxo0bMWrUKMycOdPT4og8Y0dKEJp6oRuAXuvPc+dARBBxM083iziFTUerFsMWn4RAgVMQA1rvUwGpugwYMAAHDhyASHz76M7wRERE5SGv4GTbNr7yla/g29/+No4++mgAwEknnYSTTjqpKMVR9RER2NH24j5JuhGgPIgIbNtO+znLtoFbKudkR0Qws3kXnmk74HcpFS2gq1A8WLtF1cswDJgdLfwDgUAiPBERUfnIKzhpmobf//73bAJBRSEiWLNkEfbs3FHcJ+rDCJCIoKmpCS0tLR4X5Y+I6+YVmk6sr4WhcFoZkZeSQxMAzJs3z8dqiIioNwWtcXrwwQexYMGCYtRDVSwWjaaEpsOPHYNgGTQcSd481rIs7Hn1VWQbWzjy8KFw93RMv4qYQKznVCzXNhGyBKH0g1clt33y2Kzd8gyF08qIvBQOh9He3jXKfu2112LFihX+FURERL3KOziNGjUK3/ve9/DUU09hwoQJqK1N/cv9Nddc41lxVL3m3XYvwnX1vp+kp9s8dlaOj/0XhsUv3D+11/vc04favGaoCmrz6JZHRH3D0EREVFnyDk633347Bg0ahC1btmDLli0pnwsEAgxO5AktVON7aAJKu3lsePx4BArYY4mIKs8ZZ5yREpoWLVqEm266yceKiIgom7yD06uvvlqMOojK3uiNGxBTVSxbvhwAsLCxEbqup7+zFQGWj4pf7qUZRcQ2cdpvTgUArJ/9BGrrhpRFWKwGIoKYFe8UaEe5ES2V3tq1axO/7wxNRESVoXx3oiQqM0o4DCUYhBOM/9oohgElXXASAdwDQLCjK5YRThucFBuI6oGOY4UZmkpERPC7Zc3Y90qr36VQlRMRPProo5g2bZrfpRARUQ4YnIi8lGajXTdLc4jO+7hacUpyTW822hURmHb+ozMRq7xGdGKWmzY0DRtZj6DOjoFUPLquw7ZtzJs3L7FHE0MTEVHlYHAi8lK3jXYj+3XsnjQFQPrRpM7mEC0/mlL82vpARDBr9SZs2f2e36V4au7SKdBC8YYYQZ0dA6l4NE1DLBYDAKxatYqb2xIRVSAGJ6Ii2fn7Q+FEFfQWmkota/MJEbi9jA5FrFifQ9OEIwchJOj1OUpFLCfRTj4YANSOH4/YLvLZclTKbCSNyldyaAKAH/3oRz5WQ0REhWJwosojEh/ZAQAn0nW7dQBQezn1tSLpby8iNxbA6I0bofQSVro3hzC04nbUC4Qzr6Paf/s/Efz3B2k/ZyZFij9iAGoKCIM1rznY+51NeT+uGM4eFJ8X+db3N2e5J1HfBINBOE5XyP7Rj37EfRCJiCpUQcHpySefxM9//nO8/PLLuP/++3HEEUfgnnvuwUc+8hFMmVLeU46otEQEsWg0p/va0fbsd+q+hkgBMOXg+OVlowC3sDrjhxbYduputK5lJS5bloWYm98TKOEwFKNnYwigZ3MIRUt/P6+JCCIdX0fE6fp67JYPcnpDqEEA4TIZRSsH+og6BDSujaKeuoemW2+9FfPnz/exIiIi6ou8g9MDDzyAz3/+87j00kuxdetWRDtOij/44AP84Ac/wF/+8hfPi6TKJCJYs2QR9uzc4d1Bu60hylvDJCBNQBERNDU1oaWlJeV2NRZLbHi7bPnyREe9SiUimNm8C8+0Hej1PsMWn4SAnroRbsSKATeuS3ze0Cv3+xCLOmhauAEAcMWyKQiG+rbpb0Dj2ijq6emnn2ZoIiLqZ/I++7nxxhuxevVqzJkzB2vWrEncfsopp+CGG27wtDiqbLFotKDQdPixYxAMhbLfsXEXoALYNCl+feEuQM0yaqMZQJqTXNu2e4SmTBoaGqBpRWqDV0QR100bmj450ECNE5+mF9BVKN2Ck5I0VU9J8/lKEhCg83Q23ddK5IVJkybh4IMPxttvv83QRETUT+QdnP71r3/hU5/6VI/b6+rq8P7773tRE/VD8267F1qoJqf7BkOh3P6CrxtdK/sBQK/NHpxy0Ji0sa0bieDV+x8AEN/wtnPanaZpFT/KsH3yWBhqfIpZTUyw9/43fa6IqPJ94xvfSGxmu3//fp+rISIiL+UdnIYNG4Zdu3bhqKOOSrl9w4YNOProo72qi/oZLVQDrSa34FRKIgIxTbiWBbWj61UwFkNQiQcKN2mqja7r6Te8rVCGqqBWjY+2JH+dRFQYVVXhui6WL1+eMk2PiIj6h7yD01e/+lVce+21aGpqQiAQwJ49e7Bp0yY0NjZiyZIlxaiRqChEBLsvuRTm1q0AkFjL1DnCRESUK0VRINKxoXWeTWSIiKgy5B2cFi1ahNbWVpx++ulob2/Hpz71KYRCITQ2NuI///M/i1EjUVGIaSZCUzZZ90CiiiAisKMcCSBvJYcmAPj1r3/tYzVERFQsBbXG+v73v4/rr78eL774IlzXxZgxYzBgwACvayMqmRGPP4Yf3XorgPhaJr3blLxseyBR+RMR/G5ZM/a90up3KdSPpAtNF110kY8VERFRseQdnH7xi19g1qxZqK2txcSJE4tRE1HJKeFwotW4Yhj9ai0TxcUsNyU0DRtZj6DO/ZeocN1D00MPPYSZM2f6WBERERVT3mcNjY2NGDp0KC666CL86U9/QqxjQT0RUaWYu3QKzmscz1FE6hOGJiKi6pJ3cNq7dy/uu+8+qKqKiy66CMOGDcP8+fPx1FNPFaM+orIkInAjkTQfpt+l9ZmIIGLFun30r3VBWkhlaKI+W7cuvik0QxMRUXXIe6peMBjE2WefjbPPPhuRSAS///3v8atf/Qqnn346hg8fjpdffrkYdVI1EgHsSOptViT9fUuoeze+ZAHVxUcvyPeAgFgOXCl+OBGnq9uXWC5ctfOy01GKYPbtm7Gl5f2i10JUiQYOHIgdO3Zg+PDhmDZtWsqoExER9W8FNYfoZBgGZsyYgffeew+7d+/Gjh07vKqLKly8e1l7Xw4ANM0AWjZ7V5RHcu3GF/7EJ7J34hNg+e6v473vbcN7fakJQLua/X6mGgBOjzdy2Xvj0wh3y2rtQMbQNHHEYIS1HJ6IqB/qHKVsaGhAS0sLhg8f7nNFRERUSgUFp86Rpl/+8pdYt24dGhoacPHFF+O3v/2t1/VRBRIRrFmyCHt29iFI25HMoalhEqAZgOvv1LjRGzdASQ5HVgRYMRIAcGTTHVmng4VEx1hzZJ9qEABfPNHA84P7Hmj0hoFAywcAgGcXT4ehpx4zrHGKG1Wn7q/7119/ncGJiKjK5B2cLr74Yvzxj3+EYRi44IILsH79epxyyinFqI0qVCwaTQlNhx87BsFQqPADNu4CdCP1Ns0AyuAEXgmHoRhJtQW7pu3kGzCGLT4JAT3/8BNxXDz/9At5PeaTAw0cveT4HjWa4gLf2QMAMHQVht6nQWmifqH778m6deswadIkn6ohIiK/5H1WFAgEcN9992HGjBkIBnlSRZnNu+1ehOvq+zZKoRuAXutdUWUqoKtQCghOgaTpdtsnj4WhZu/5YihK2p9JwOJ6DaJk3X9PNm3axNBERFSl8k4+v/rVr4pRB/VTWqiGU7tKyFAV1Kpcg0TkBYYmIiJKllNw+slPfoKvfOUrqKmpwU9+8pOM973mmms8KYwoGxGB4/jfZY+I+j+GJiIiyik4/fjHP8all16Kmpoa/PjHP+71foFAgMGJSkJEsKV5Nlpbm/0uhcqYiCBmxVuw29H+tRcVFZ+IoKamBs3NzRgzZozf5RARkc9yCk6vvvpq2stEfnFdMyU01ddPgKJkaf1NVUVE8Ltlzdj3SqvfpVAFCQQCGDlyJHbt2gUAaG/vw7YKRETUr2RfRd7NDTfcgEik5/Qo0zRxww03eFIUUT6mTtmMCePv41oqShGz3LShadjIegT1vN/6qAp0voe8/PLLOP30032uhoiIyk3ezSG++93v4sorr4RhpLaHjkQi+O53v4slS5Z4VhxRLlTVYGiijOYunQItFG+aEdTTdxSk6tb9NXHrrbf6VAkREZWrvIOTiKQ96XjuuecwZMgQT4oiIvKSFlITwYmou+7/p73wwgtc00RERD3kHJwGDx6MQCCAQCCAY445JuU/Gsdx8OGHH+LKK68sSpFERETF0D00tbS0YPjw4T5VQ0RE5Szn4LRixQqICK644gp897vfRX19feJzuq7jqKOOwsknn1yUIqm8iAjMmNnXgwB2hlbiln9txkUEbpp1fJ1cs49fe8dzHIg50GUAzI6BkIjjpmxmm6uI4+b0fKad/eARi53nqHowNBERUT5yDk6XX345AOAjH/kITjnlFGiaVrSiqHyJCOY8PAfb9m/ry0GAphlAy2bP6vLSa3OvQKy5eG3ORQQzm1/CM20R4CO3YOpHOj7x9AtFe75Zqzdhy+73inJ8oko1ffp0rFu3DgBDExERZZdTa6m2trbE5XHjxsE0TbS1taX9oP7NjJkpoWnc0HEIB/NsA25Hcg9NDZMAzch+Pw+1P/dcTvcLjx+PQDj/FugR142HJo+dWF8LQ+n5K23aTt6haeKIwQhrXBNE/dvatWtxxRVXMDQREVFOchpxGjx4MPbu3YuhQ4di0KBBaZtDdDaNcBxO9akW62evx5CaIX3rUNa4C9AzBCPNAHzqgDZ64wYoGYJRIBzuc3e2Rx7/EFcedT0euvhPMDJ9H3JgKNm7xT27eDoMPXsgCmsqO89Rv9T5uhYRAMAdd9zhZzlERFRBcgpOjz32WKJj3uOPP17UgqhyhIN9Dw7QDUCv9aYgjynhMBSjuKNdYUdgBT5EbVCFoRZ/hMfQVRh63s00ifqF5PcrXddhWZaP1RARUaXJ6Qzq1FNPTXuZiIioEnT/I8/bb7/tUyVERFSpclrjlOyvf/0rNmzYkLh+66234hOf+AQuueQSvPceF59TeenskJf2w4PueOQfEYEddTJ+EAE9Q1Nrayvq6up8qoaIiCpV3nN2Fi5ciJtuugkAsH37dixYsABf//rX8dhjj2HBggW48847PS+SqBAigt2XXApz61a/S0nVsbaCCici+N2yZux7pdXvUqjMMTQREZFX8g5Or776amJH9QceeADnnHMOfvCDH6C5uRmf/exnPS+QqFBimjmFpkK74xXKjLWnXP/4IR/PvzNhlYtZbs6hadjIegT1vAfXqR+oqalJuc7QREREfZF3cNJ1HZGOzUHXrVuHOXPmAACGDBnCduRUtjJ1yAuEw7Btu8QVdbntjNvYwa4P5i6dAi3Ue2ONoJ692yD1T2+99VZis3aGJiIi6qu8g9OUKVOwYMECTJ48Gf/4xz9w3333AQB27tzJfTCobJWiQ16heFLfN1pIzRicqPq8+OKLGDNmDOrq6tDaGh+ZZGgiIqK+ynv+ys9+9jMEg0Hcf//9WLVqFY444ggAwMMPP4wzzzzT8wKpfIkI7Pb2nh/R9uwP9omIwLKstB9EVPkCgQDGjh2LlStXAogHJoYmIiLyQt4jTkceeST+9Kc/9bj9xz/+sScFUeW4/8bFePtfL2W+k3UAULp1N7MixSsqAxFBU1MTWlpafHl+Iiqu5NHbq666CvPnz/exGiIi6m8K2gnTcRw8+OCD2LFjBwKBAI477jice+65UEuwgSeVj727/gUtw6Dl4eFWBH90NFAmM9Fs284amhqOOAKqwzbWRJUmXfc8IiIiL+UdnHbt2oXPfvazeOONN3DsscdCRLBz5040NDTgz3/+M0aOHFmMOsknIgIz1rXfUfLlTvNuuxdaqCY+urR8VOL2YMBFxuU7DZMArbB1R5LU0tuNRBBIk9mT92lyTRNuUrD/+lVXQdO0Ho9RYzHs+tHNBdVUbCIC084/1EUsBkHq39hynIiISiHv4HTNNddg5MiRePrppzFkyBAAwDvvvIPLLrsM11xzDf785z97XiT5Q0Qw5+E52LZ/W8b7aaEaaDU18Sl5ihu/sXEXoGcJRZqBzMmq97pem3sFMDd+fefkKVCszMd5afIUxFQVuGAWAODfp52OYAWNLIkIZq3ehC27uck0UTKGJiIiKpW8g9MTTzyREpoA4KCDDsL//M//YPLkyZ4WR/4yY2avoekTB38cQSfDSbxuAHptUeoS04T53HNFOXanUu/tlI1pO30OTRNHDEZY43Ra6j/OOOOMlOsMTUREVEx5B6dQKIQPPvigx+0ffvghdF33pCgqP+tnr0/ZpDUYC+Cnd1/gY0Vdjtm4Aarac3TLNU28NHkKgPg+TjFVBVasSFzP9HoNhMPxv2SLAHYezSxK0Pji2cXTYej5B6CwprL1OfUra9euRTgcRnt7e8r0XSIiomLIOzidffbZ+MpXvoI77rgDJ554IgBg8+bNuPLKKzFz5kzPC6TyEA6GYSStR7Kd8mk5rhgGlDTBKeU+4TCUYNfLXTEMKNmCvgjQNANo2exFmZ4xdBWGXlBfF1+JCGKW68mx7GjlTLMk751yyil46qmnAACm2XPdJRERUTHkffb1k5/8BJdffjlOPvnkxOL6WCyGmTNn4pZbbvG8QKLuRARSisFNO1J4aOpD44v+SETwu2XN2PcKO51R33SOmtbU1KC9vXz+gENERP1f3sFp0KBBeOihh/DSSy9hx44dAIAxY8Zg1KhRWR5J1HciguYX5qBtqV3aJ86l2UWyXhpfdO9SWC1illuU0DRsZD2Cet77eFOFSp5qGo1GfayEiIiqUcHzfUaPHp0IS1w3QaXiuibaPtyWuF4/cBwUpQRNHDxodtHZpXDr2zuAhts9KqzyzF06BVrImyYVQV3h+0+V6P5z5pomIiIqtYL+VHvHHXfg+OOPR01NDWpqanD88cfj9tur90SQ/HHoIg3jxvyiYk6cM3UprCZaSPXso1J+9tQ3DE1ERFQO8h5x+va3v40f//jHuPrqq3HyyScDADZt2oSvfe1r+Pe//40bb7zR8yLJH8knJ7FoFLbTlbPtqP9rCwJW7qOdIgLLsopcERF5jaGJiIjKRd7BadWqVfjf//1fXHzxxYnbZs6ciY997GO4+uqrGZz6CRHB/TcuBkbGr6/8yqXQnMpdS3L33Xdj95tv+l0GBIAEQn6XQVQRnn766ZTrDE1EROSnvM+EHcfBxIkTe9w+YcIExGIxT4oi/8WiUezd9a+s9zv8mGMRDMQA60BJ9jAq1OtvvJG43NDQkOgIWUoigvcP/TbeGX5ryZ+bqBJNmjQJt94a/31haCIiIr/lPeJ02WWXYdWqVbj55ptTbr/ttttw6aWXelYYlZf5t/2yawNcEeDuc4E3nkEw8CQCP6yc9W2NjY2ora3t09oYEYHY+e9HFGmPIRY6JnH94+/FUMPtiIhStLW1YdCgQXj//fdRV1eH+fPnY/78+X6XRUREVFhXvTvuuAOPPPIIJk2aBOD/s3ff4U2W6wPHv0matEmhZXQCZe9d9hSQMmSJisCBAxQQZcj4IQ4UEEVBWaIgKJ4yVAQUBZEDKKDIXoUqCIdddkVWq03arPf3R2loaLroSMf9ua5c9H3edSctbe48z3M/ScMprly5wuDBg5k4caLjuIeTK1FweXh6otV6JW2Y4+HGwbT7K/PxGkY6nS7bSdNfn/yO+VJcls81aYCw4gD89Ms/lDQrSGkDIR6Ii4vD19cXAF9fX+llEkIIka9kOXE6ceIEjRo1AuD8+fMA+Pv74+/vz4kTJxzHSbWrrHH3+4OH1xeyWhOxajIRlKv1jdJYwyir8Sim1Osd2W3ZHw6oKAomiy15I2mhW1csRpKfmdFsBazYzTZiLz3aekQmBbDe76my2kkAdCHFMSl2VOb0X2ujWbqmROGWMmkSQggh8qMsJ06//PJLbsRRpCmKwrOf7Hfr/QdvGZy6VHZYJk7OgfWNXMVzacBATMeOpdpn1ymwIHvX7vPJfiIv3QUU1uneoon6TIbnNX5nOya8Hv3GAHbw2vE3AL2S2678DW9ez9513URRFKzmzA1ZtCRK4ifS5ippkt4mIYQQ+c0jL4Arco7JYuPkjaShX7WDfdBrc2Zx0EzfP4P1hRr6NXgwvykPKCaTy6TpYfqGDVHpsxaXyWK/nzSBnsRMJU2H7dUxkT8q4TWpUDLPfz5cURSF7+YcJebCo/W+CZFMkiYhhBAFhSRO+cw3I1u6dZjjzr470XvosSYmsvj5pGIfEyM+c1tM1fbuQZ0iObLZjMQcbg5A+WUR2Ypr9ysd4KOkr43j/5fmvKw6WgMn79/HbrZx452DAARPaY5al/kk5nZCPE0PJg1vPdy8CqW9st5Tp9fmj0VfrWb7IyVNwVV88dAV3LL2IudJ0iSEEKKgkMQpn3H3e2K9hx6D1oDFpnas25TTb9QVRcFuTz1/KZndZkwakgcoOgUlRWePkmLEV3bjMqRIegzePpkacmhHhf5+SQeDziNLiZPRrgGPpNdUr9Ng0BWO/35DZ7dB65m518FDp84XiZ/InyRpEkIIkZ8VjnduosBQFIXIo32JjT2a/oELkv5J7l1KfSGwG02o0nm/bndRXCIvPFxoI5mrtsJA66nJdOIkxMMURSEwMJA/88EC1UIIIUR6JHESecpuN2WcNGVEgcAFJTh3tk3OBJWD0iy0ASgqTwgpOGteCZEbkuc0tW/f3lFsSJImIYQQBcEjJU5ffPEFn3zyCRcvXmT//v1UqFCBBQsWUKlSJZ588smcjlHkMUVRsCQm5Pp92rY5iEaTel6R3WjkTOukpKj63j2oDYaH9puylDTpGjTApsmbHpGMCm0k03tks0KfEAVQykIQO3fuZOPGjfTq1SuDs4QQQoj8IcuJ05IlS5g2bRoTJkzg3XffxWZLmnRSokQJFixYIIlTAacoCmumvcL1M6dy/V4ajcFl4qTSgNqschyjfuiYlMPzUhaPUBSFzz//nKvXrjkdb9No3DJ5LLnQRjKjzU7d/eeSNmSejyhiXFXPk6RJCCFEQZLl8lYLFy7ks88+44033kCT4lP8Jk2acPz48RwNTuQ9m9nslDSVqVELD5UVzPEpHtlfhDanqPV61AYDaoMBm1bLpT//xObh4fRITlJCQkLQavNudGpyoY3kh16bdyXdhchPrl69KtXzhBBCFHhZfhd58eJFQkNDU7V7enoSHx+fI0GJ/GHUp1+gX9cP1ayy7g4lyyZNmoROp3Nq02q1mCyyEKsQeenq1auEhIQ4tUnSJIQQoiDKco9TpUqViIqKStW+ZcsWateunRMxiXxCq7ajunow7QNCWqS59pG76XS6VI/slsFWFAXFLImXEFkhSZMQQojCIss9Ti+//DJjxowhISEBRVE4dOgQq1evZtasWfznP1IxrNCadA50DyVJWkMBnqujgCXzQw4VReGvT37HfCkuF2MSovCpVq0aZ8+eBSRpEkIIUbBlOXEaOnQoVquVV155BaPRyIABAyhbtiwffvgh/fv3z40YRX6gM2RqgdiCQWGd7i0MH57J/BkWu1PSpKvgg0qb5Q5bIYqcM2fOsHz5coYOHeruUIQQQohseaSZ8iNGjGDEiBHcunULu91OQEBATsclihhFUVDuL1ibUwvXKoqSak6T0WxDTyJN1CmSpiwOOQye0hy1tzbbQ/+EKIxSzmlK7mGSpEkIIURhkK0SY35+fjkVhyjCFEXh0oCBmI4dy9Fr9vlkP5GX7qba51TbbtI58PbL0pBDlU4jSZMQLpw8eZI6deo4tlu1asW+ffvcGJEQQgiRc7KcOFWqVCndN40XLlzIVkCi6FFMJpdJk75RI1T6RyvhbbLYXSZNqegK8jwtIfKPh5MmQJImIYQQhUqWE6cJEyY4bVssFo4dO8bWrVt5+eWXcyouUUSlXNBWpdfnSM/OkSlhGHQpVs01x8PcbF9WCHGfq6RJCkEIIYQobLKcOI0fP95l+8cff8yRI0eyHZDIeynf4FgSE/LghqAyg91oQqVJe06TYjLh6q1XVudAGXQaDLqUP+o5swiuoiiYrM6xPLwtRGEnSZMQQoiiImfeQQJPPPEEkydPZvny5Tl1SZEHFEVh3TtToErS9mdjh6PN+vJeWbqf3zwPdBfUnKNNqv1nW6duy48URWHwlsFE/RXl7lCEcCtJmoQQQhQVOfYOed26dZQqVSqnLifyiDUxkRvnTqdqL1OjNh6enjl+P8WUgO5CzvzYZWcOVHaZrKZ0k6bQgFD0Hg9iUxQFo82eB5EJkbeuXLni+FqSJiGEEIVZlnucQkNDneadKIpCTEwMf/31F4sXL87R4ETeG710FXoPPR6enqiysEDso6i8axvaYqWwm0yOnqaUc5wyklNzoLJrZ9+dTkkSgN7jQWyKotDr6DkOx8W7IzwhctyBAweIj4+nY8eOlCtXThImIYQQRUKWE6fevXs7bavVavz9/Wnfvj01a9bMqbiEm3iobWjVNrAYwZy7iZNar0dtMGTYlt/pPfQY0lkHymi3OyVNzXy9Mahl8VxRMB04cICWLVsCsH37djp27OjmiIQQQoi8kaXEyWq1UrFiRbp06UJQUFBuxSTy0sOfFM+pmrqtIFIU9NwvdGGOx+lHPZcTwvQcb10HP61HvugpEyKrduzYQVhYmGO7e/fuJCTkQUEZIYQQIh/IUuLk4eHBqFGjOHXqVG7FI/JaZobjhbSAdHpU8h+FYqt7ccrrcNJmPio9btCoJWkSBdLDSRMgSZMQQogiJctD9Zo3b86xY8eoUKFCbsQj3O3lc/DQfB20BWuRWC1WPK4fzvjAApcQuoeiKFjNzoUtLIk2N0Uj3MFV0iTzmoQQQhQ1WU6cRo8ezUsvvcTVq1dp3Lgx3t7eTvvr16+fY8EJN9AaClUy0ThhCbundH9oHaf7ClhC6A6KovDdnKPEXIh1dyjCTTZu3MiTTz7p1CZJkxBCiKIo04nTsGHDWLBgAf369QNg3Lhxjn0qlQpFUVCpVNhs8km0yD+MeILOG1wlTiJDVrM93aQpuIovHjopdFGYDRgwwGlbkiYhhBBFVabfTa5cuZL33nuPixcv5mY8Qoh8aujsNmg9NU5tHjqZs1XY/fPPP2g0GhRFwW6XtciEEEIUXZlOnJI/ZZS5TeJRJL3pMmGzua+incgeracmVeIkCqc1a9YwefJkxwdlMpJACCGEyOIcJ/lkuXBQFAVrYiIAlvv/5vb9Io/2JTb2KKpECEaX6/cUQjyaNWvW8K9//QuA0qVLc/v2bTdHJIQQQuQPWUqcqlevnmHydOfOnWwFJHKXoiismfYK18+kKCmfy50IdruJ2NijoIDK/KBdrfbK3RsLIbJk+fLlDBs2zLF979499wUjhBBC5DNZSpzeeustfH19cysWkQesiYnOSVNeUcBvnge6Cw8KCRTUHkxFUTDa7SgqTwCMNjuKOu2hTEabzAsR+d/DSZNarZYhekIIIUQKWUqc+vfvT0BAQG7FIvLYqKVfolXZMM2rxirK5uq9VGackiZ9o0ao9Pp0zsifFODJ4xc48rcRQv4DQN3959wblBDZJEmTEEIIkbFMJ04FtXegSFAUsGSy6II5wfGlVmVDq7ZjUedtj0i1vXvQlCpVIH+mEjQkJU2PoJmvNwa1lO4W+cvixYsZM2aMY1uSJiGEEMK1LFfVE/mMosCyLnDlYOaOt6uB1klfz60KanueLwKr1utzPmlSFDDHo8WCDkvOXjsNpa+OQaUksrPvTvTajHvPDGop3S3ynzNnzji+1mg0WK1WN0YjhBBC5F+ZTpxk/Y58ymLMfNJUWN1PHnVXDvJGHt5WpSSiUhIxaNQYNFKmWxRMCxYswGw2s2zZMhISEjI+QQghhCiisjTHSeRzk86BzpD+MQkJMGLIg+O9vMBqgm865H58uSWN5PGwvTomPLN1aUVRUCx2FHPRGLqkKApW84MPSSyJReN5FzXz58/npZdecowkWLx4MYsXL3ZzVEIIIUT+JolTYaIzgM47/WPsKXpGdN6g88rzoXq5aQ4vYEbLmHH/x7OzDwCP/twUReGvT37HfCku5wLMxxRF4bs5R4m5EOvuUEQuSk6aIGnuqgzDFkIIITJHZqqLQsWMFgva+wlk9hJCxWJPlTRpQ4pn65r5mdVsTzNpCq7ii4dOfl0UdDNnznQkTQAeHvLZmRBCCJFZbv+ruXjxYubMmcONGzeoU6cOCxYsoG3bthmet3fvXtq1a0fdunWJiorK/UBFkRY8pTkqnQaTWoHdJ9wdTq4bOrsNWs8HvZMeOilsUdDNnDmTN954MAtQq9ViNpvTOUMIIYQQKbn1I+S1a9cyYcIE3njjDY4dO0bbtm154oknuHz5crrnxcbGMnjwYDp27JhHkYqiTqXToNZpCtWwxvRoPTVOD0maCrZp06ZJ0iSEEEJkk1sTp/nz5zN8+HCee+45atWqxYIFCwgJCWHJkiXpnvfCCy8wYMAAWrZsmUeRFh6KomDR2LFo7JisJowWIyarya3x2E2Pfn9FUZzeAFoUNRZFjamIFHMQIiMHDhxgxowZjm1PT09JmoQQQohH4LahemazmcjISF577TWn9s6dO7Nv3740z1u+fDnnz5/nyy+/5J133snwPomJiSQmJjq24+KKxkR/VxRFYdiO5/ityxUAVn37mNvjuTRgIKZjxx75/GXLlhFz5YKjDPnaxIaY8GLV7F9zLlAhCrAWLVo4vvb09JSS40IIIcQjclvidOvWLWw2G4GBgU7tgYGBxMTEuDzn7NmzvPbaa+zevTvTk5pnzZrFW2+9le14CwOT1cRvt39Pc39oQCh6j4wXcs0pisnklDTpGzVCpc/8/S0WC1euXEGbzjFNKpREr9WgKEqWe9YUy4NeK5PFiEqlwWST9cxEwaMoCh06dOCXX35xdyhCCCFEgeX24hAPz51QFMXlfAqbzcaAAQN46623qF69eqavP3nyZCZOnOjYjouLIyQk5NEDLiT6bS/HuCVf4eH5YJ0jvYfebXNZqu3dg6ZUqRy5/+E3OuLtmfSjrdcmFTgYvGUwUX9FZek6nnYdG1gAQLuv25OoNqOoPCHkP9mOUYjcNGHCBD788ENGjRrlWJ9JkiYhhBAie9yWOPn5+aHRaFL1Lt28eTNVLxTA33//zZEjRzh27BgvvvgiAHa7HUVR8PDw4KeffuLxxx9PdZ6npyeentlbBLUw8rCp0Hvo0Wq93B0KAGp9ziVt3p4eGHQPfrSNFmOWk6bMyuteOiEyMnr0aMc80SVLlsjCtkIIIUQOcVvipNPpaNy4Mdu2beOpp55ytG/bto0nn3wy1fE+Pj4cP37cqW3x4sX8/PPPrFu3jkqVKuV6zPmOooDZ6O4oCpSdfXdmOtFRzDbuzogC4Ne+O1HpNBhtduruP+e4VmlPb6k4J/KNlEkTgD4LQ1+FEEIIkT63DtWbOHEigwYNokmTJrRs2ZKlS5dy+fJlRo4cCSQNs7t27Rqff/45arWaunXrOp0fEBCAl5dXqvYiQVFgWRe4ctDdkRQoeg89Bq0hU8faFRt3k8/TGlBrNSjqB/Oe9Fr3DW0U4mHDhw9n2bJljm1vb2/++ecfN0YkhBBCFC5uTZz69evH7du3efvtt7lx4wZ169Zl8+bNVKhQAYAbN25kuKZTkWUxOidNIS0gkwlBYWc327DzIKFRLDY87bqkr8027ErmSpUrRaCkuaIoWM1JBS8siYX/+RZWDydNxYoV4++//3ZjREIIIUTh4/biEKNHj2b06NEu961YsSLdc6dPn8706dNzPqiCZtI58PYrMouzJlMUxWX7jXcOosf5tUgu8nB3RpSjF6moUxSF7+YcJeZCrLtDEdmUMmkqXrx4kV52QQghhMgtbl0AV+QQnaHIJU0AiiVvSoPrKvig0ha+/ypWs91l0hRcxRcPXeF7voWZv78/IEmTEEIIkZvc3uMkRE4LntLcqaqeyWKk3dftgaQiD/osDmlUadWFfi7T0Nlt0HomlW730BX+51sYxMXF4ePjAyRVI7169SrlypVzc1RCCCFE4SWJUxGS1tC2wkat06DWaRzbKpWGRLU56WudBrVWk9apRZbWU+NInET+16dPH7799lvUajU2W9LcNEmahHAvm82GxWJxdxhCCBd0Oh1qdfZH00jiVEQoisK6d6ZAFXdHIoTIjp49e7Jp0yYgaS27jRs30qtXLzdHJUTRpSgKMTEx3Lt3z92hCCHSoFarqVSpEjqdLlvXkcSpiLAmJnLj3GlH4hRcrSYesjCwEAVKyqQJoFSpUpI0CeFmyUlTQEAABoNBhjoLkc/Y7XauX7/OjRs3KF++fLb+j0riVET1eWNGofjlrihgQQ1ZeCqKomC0P1phCaMtbwpSCPGwh5MmPz8//vrrLzdGJISw2WyOpKl06dLuDkcIkQZ/f3+uX7+O1WpFq9U+8nUkcSqiCkfSpLDFXJO/FS3TvTJ/Tq+j5zgcF5+7wQmRg5544gm2bt3q2Pb39+fmzZtujEgIATjmNBkMso6iEPlZ8hA9m80miZPIXxRFQTGZHNt2mwmVOcdvgsn4D38rWgwkOpoblS+JPkXxB0VRMFkfxGKyKzmSNDXz9caQA5MMhciMlElTQEAAf/75pxujEUI8rDB8GClEYZZT/0clcRI5SlEULg0YiOnYMaf2ILI3Ge+hm8CyLpS6cpBTD/U0fTm8meM/h6IoDN4ymKi/olxe5njrOhg0j5b8GNRSslvknf3799OyZUtJmoQQQgg3ko/MRY5STKZUSVNKXqENUOn12buJxQhXDqZuD2mBSuft2DRZTU5JU2hAKHqPB5mWQaPGW6N5pIckTSK3DRkyhKtXrwLQokULFEWRpEkIUaBVrFiRBQsWOLZVKhUbNmxwWzw5KTo6GpVKRVRUVLauYzabqVq1Knv37s2ZwLLh5s2b+Pv7c+3aNXeHkm9I4iRyTbW9e6hxNJKqh/dw4wMzNz4wE/JFRI4mHY0TllArYRl3Rp2FYVshjWvv7LuTlV1Xprm/sFMUBUuiLdVD5E9t27bl888/JyQkxJE8CSFETouJiWHs2LFUrlwZT09PQkJC6NmzJzt27MiT+9+4cYMnnngiT+5VUCxdupQKFSrQunVrR9vdu3cZNGgQvr6++Pr6MmjQoAzL3//555+Eh4dTpkwZDAYDXbt25ezZs479d+7cYezYsdSoUQODwUD58uUZN24csbGxjmMCAgIYNGgQb775Zo4/z4JKhuqJXKPW61EbDCg2UO5XPs/pnhojnpjwAq0h3aRI76Evsr1EiqLw3ZyjxFyIzfhg4XatWrVi//79ju2+ffuyb98+N0YkhCiMoqOjad26NSVKlGD27NnUr18fi8XCjz/+yJgxY/jf//73SNe12WyoVKpMLTYaFBT0SPcozBYuXMj06dOd2gYMGMDVq1cd812ff/55Bg0axA8//ODyGoqi0Lt3b7RaLd9//z0+Pj7Mnz+fsLAwTp48ibe3N9evX+f69evMnTuX2rVrc+nSJUaOHMn169dZt26d41pDhw6lWbNmzJkzh5IlS+ba8y4opMdJiELOaranmzQFV/HFQye/CvKDh5OmkJAQSZqEELli9OjRqFQqDh06RJ8+fahevTp16tRh4sSJHDhwwHHc/PnzqVevHt7e3oSEhDB69Gj++ecfx/4VK1ZQokQJNm3aRO3atfH09OTSpUvcvHmTnj17otfrqVSpEqtWrUoVw8ND9Y4fP87jjz+OXq+ndOnSPP/88073Cg8Pp3fv3sycOZPAwEBKlCjBW2+9hdVq5eWXX6ZUqVKUK1eOZcuWOd3n2rVr9OvXj5IlS1K6dGmefPJJoqOjHfutVivjxo2jRIkSlC5dmldffZUhQ4bQu3dvxzFbt26lTZs2jmN69OjB+fPnXb62iqJQtWpV5s6d69R+4sQJ1Gp1mucdPXqUc+fO0b17d0fbqVOn2Lp1K//5z39o2bIlLVu25LPPPmPTpk2cPn3a5XXOnj3LgQMHWLJkCU2bNqVGjRosXryYf/75h9WrVwNQt25dvv32W3r27EmVKlV4/PHHeffdd/nhhx+wWq2Oa9WrV4+goCDWr1/v8l5FjbxbEoWCSis/ypkxdHYbnv+wndPjqUmNimxvXH7SrFkzp6SpYsWKXL582Y0RCSEehaIoGM1WtzwURclUjHfu3GHr1q2MGTMGb2/vVPtLlCjh+FqtVvPRRx9x4sQJVq5cyc8//8wrr7zidLzRaGTWrFn85z//4Y8//iAgIIDw8HCio6P5+eefWbduHYsXL053GQWj0UjXrl0pWbIkhw8f5ptvvmH79u28+OKLTsf9/PPPXL9+nV27djF//nymT59Ojx49KFmyJAcPHmTkyJGMHDmSK1euOK7boUMHihUrxq5du9izZw/FihWja9eumM1JJX/ff/99Vq1axfLly9m7dy9xcXGp5l7Fx8czceJEDh8+zI4dO1Cr1Tz11FPYXawLqVKpGDZsGMuXL3dqX7ZsGW3btqVKlSouX4Ndu3ZRvXp1fHx8HG379+/H19eX5s2bO9patGiBr69vmh+sJSYmVRv28nowr1uj0aDT6dizZ4/LcwBiY2Px8fHBw8N5QFqzZs3YvXt3mucVJTJUTxQoiqJgMZtT1eiTN/6Zo/XUoPXUZHygyFONGzfm6NGjju3KlSun+YmkECJ/M1ls1J72o1vuffLtLhh0Gb+1O3fuHIqiULNmzQyPnTBhguPrSpUqMWPGDEaNGsXixYsd7RaLhcWLF9OgQQMAzpw5w5YtWzhw4IDjDX9ERAS1atVK8z6rVq3CZDLx+eefO5K5RYsW0bNnT95//30CAwMBKFWqFB999BFqtZoaNWowe/ZsjEYjr7/+OgCTJ0/mvffeY+/evfTv3581a9agVqv5z3/+43ivsHz5ckqUKMHOnTvp3LkzCxcuZPLkyTz11FOO+27evNkpvmeeecZpOyIigoCAAE6ePEndunVTPZ+hQ4cybdo0Dh06RLNmzbBYLHz55ZfMmTMnzdcgOjqaMmXKOLXFxMQQEBCQ6tiAgABiYmJcXqdmzZpUqFCByZMn8+mnn+Lt7c38+fOJiYnhxo0bLs+5ffs2M2bM4IUXXki1r2zZshxLp/BXUSIf04sCQ1EUli1bxpyHur6FKOhSJk1VqlSRpEkIkauSe6Yy86HjL7/8QqdOnShbtizFixdn8ODB3L59m/j4B2si6nQ66tev79g+deoUHh4eNGnSxNFWs2ZNp56sh506dYoGDRo49YC1bt0au93uNCStTp06TvOnAgMDqVevnmNbo9FQunRpR+9WZGQk586do3jx4hQrVoxixYpRqlQpEhISOH/+PLGxsfz55580a9bM6RqNGzd2iu/8+fMMGDCAypUr4+PjQ6VKlQDSHBkQHBxM9+7dHcMGN23aREJCAs8++2yar4HJZHLqJUrm6vukKEqa3z+tVsu3337LmTNnKFWqFAaDgZ07d/LEE0+g0aT+8DQuLo7u3btTu3Ztl4Ug9Ho9RqMxzbiLEulxErnGZjOh2MBmy5n/bBaLhStXruBqvWetVn6URcGV/AewSpUqnDt3zt3hCCGyQa/VcPLtLm67d2ZUq1YNlUrFqVOnnObxPOzSpUt069aNkSNHMmPGDEqVKsWePXsYPnw4FovlwX31zgWYspKYpTwnreNTtmu12lT7XLUlD6Gz2+00btzY5Rwrf39/l/dI+RyS9ezZk5CQED777DPKlCmD3W6nbt26juF+rjz33HMMGjSIDz74gOXLl9OvXz8MBkOax/v5+XH8+HGntqCgIJdLUfz111+OXjhXGjduTFRUFLGxsZjNZvz9/WnevLlTMgvw999/07VrV4oVK8b69etTvZaQNLQz5WtVlMm7TZFrdu9p5qiml9sy88tZURSMttRjkYVwh3r16mEymRyJUmbnJggh8jeVSpWp4XLuVKpUKbp06cLHH3/MuHHjUs1zunfvHiVKlODIkSNYrVbmzZvn6OX5+uuvM7x+rVq1sFqtHDlyxNGTc/r06XRLaNeuXZuVK1cSHx/viGfv3r2o1WqqV6/+iM8UGjVqxNq1awkICHCaO5RSYGAghw4dom3btkBSZcBjx47RsGFDIGkY26lTp/j0008dx6Q3VyhZt27d8Pb2ZsmSJWzZsoVdu3ale3xoaChLlixxSiJbtmxJbGysY8gfwMGDB4mNjaVVq1YZxuDr6wskFYw4cuQIM2bMcOyLi4ujS5cueHp6snHjRpe9XZBU1KJ9+/YZ3qsokKF6Is/4+jZGrU5j8VtFAXN8hg8tFnRYXF8jHYqi0OvoOert/SObz0KI7KtduzYnTpzg/PnzVK1a1d3hCCGKoMWLF2Oz2WjWrBnffvstZ8+e5dSpU3z00Ue0bNkSSBo6bLVaWbhwIRcuXOCLL77gk08+yfDaNWrUoGvXrowYMYKDBw8SGRnJc889h16fxnsAYODAgXh5eTFkyBBOnDjBL7/8wtixYxk0aFC6PSsZGThwIH5+fjz55JPs3r2bixcv8uuvvzJ+/HjHOnljx45l1qxZfP/995w+fZrx48dz9+5dR/KSXI1v6dKlnDt3jp9//pmJEydmeG+NRkN4eDiTJ0+matWqjtc1LR06dCA+Pp4//njwXqVWrVqO1/LAgQMcOHCAESNG0KNHD2rUqOE4rmbNmk6V77755ht27tzJhQsX+P777+nUqRO9e/emc+fOQFJPU+fOnYmPjyciIoK4uDhiYmKIiYnBZnuwzqPRaCQyMtJxXlGXvz8SEfmSoigoJpPLffaH2ls33onmfrKkVutRTCaUVMcqqL56Eq4dTve+OuCNR4zZZFc4HPdgPHYzX28MmVhjQoicVr16dadFCNN7IyGEELmlUqVKHD16lHfffZeXXnqJGzdu4O/vT+PGjVmyZAkADRs2ZP78+bz//vtMnjyZxx57jFmzZjF48OAMr798+XKee+452rVrR2BgIO+88w5Tp05N83iDwcCPP/7I+PHjadq0KQaDgWeeeYb58+dn63kaDAZ27drFq6++ytNPP83ff/9N2bJl6dixo6MH6tVXXyUmJobBgwej0Wh4/vnn6dKli2M+kFqtZs2aNYwbN466detSo0YNPvroo0z1wgwfPpyZM2cybNiwDI8tXbo0Tz/9NKtWrWLWrFmO9lWrVjFu3DhH8tKrVy8WLVrkdO7p06edFq+9ceMGEydO5M8//yQ4OJjBgwc7vf6RkZEcPHgQINUHeBcvXqRixYoAfP/995QvX97R01bUqZQiNj4kLi4OX19fR8nF/MBotjoq8GS2Ig7meJh5v/LK69dBl7qcaEqWhATmDXuaVV2SynMeHHAQgzbtcbZpURSFSwMGYspEdZUbH5gJfFWL2pz+MDqVxk7NZ11XhkmPyV6LWuYpgIojUx/DoHMe222ymmj/dXsAfum3n7r7k4ZEHW9dBz+tR5GpxGdJtLF0/K8APP9hO6mq50ZVq1Z1KvzQoEEDoqKi3BeQECJbEhISuHjxIpUqVUpzmJMoeOx2O7Vq1aJv375OQ9sexd69e2nfvj1Xr17NVM/Z8ePHCQsLcxS0cLdmzZoxYcIEBgwY4O5QsiW9/6tZyQ2kx0lkiWIyZSppygp9w4ZA0mrYTDoHOtcJndlsdlTUe2nc/3F19h9A0sJ47b9uh0qduSF8Bo26yCRNIv94OGlq1KgRkZGRboxICCEEJBXB+Omnn2jXrh2JiYksWrSIixcvZitZSExM5MqVK0ydOpW+fftmerhhvXr1mD17NtHR0U7VAt3h5s2b9OnTh3/9619ujSM/kcRJPLJqe/egfmiYkd1k4mzrNo7t6nv3oNGk37Ol0thhVtmkDZ0hnd4zLZbkmno6byBzyU9oQCh6D/d9EqgoClaz+4pSWBJtGR8kcpUkTUIIkX+p1WpWrFjBpEmTUBSFunXrsn379nTXncrI6tWrGT58OA0bNuSLL77I0rlDhgx55PvmpICAgFSLHRd1kjiJR6bW61GnU1YTQG0woM4gccIcn/7+TNj69FZKGYq53Kf30GN0sbJ3XlAUhe/mHCXmQmzGB4tCq1KlSo7EqWnTphw6dMjNEQkhhEgWEhLC3r17c/Sa4eHhhIeH5+g1hftJ4iQKJMXs3Ivi5aF/pDlbuc1qtuebpCm4ii8eOimI4Q7btm2jU6dOxMfHs2/fPneHI4QQQohHIImTKJBiZh+hoFXTHzq7jVsLM3joZG5XXipXrhzXrl1zrM+0bds2N0ckhBBCiOyQxEmIPKL11EhFuyIiODiYmJikSpEqlUoWtxVCCCEKgYL1kb0QKfj+X113hyBEKimTJkBWWxdCCCEKCelxEgWWSubriHwmMDCQmzdvOrbbt2/PL7/84saIhBBCCJFTJHESOcqdQ5IURUmzep7R5r5y4KJoeDhpCgsLk3lNQgghRCEiiZPIMYqicCxqMGmtwnT/ILAYndvMRtfHZvHevY6e43Bc9kubC5FVTzzxhFPS1LVrV7Zs2eLGiIQQIv8KDw/n3r17bNiwwd2h5JnHHnuMkSNHZmtR3bxy8+ZN6tSpQ1RUFGXLlnV3OPmKjHUSOcZuNxEXF+XY9vEJRa1OsUCuosCyLjCzjPNjbtVs3zvBrmQqaWrm641BLT/2ImetXbvW8bUkTUKIgiA8PByVSpXq0bVrV3eHVuhs2rSJmJgY+vfv72hLTExk7Nix+Pn54e3tTa9evbh69Wq617FarUyZMoVKlSqh1+upXLkyb7/9Nvb7o20sFguvvvoq9erVw9vbmzJlyjB48GCuX7/udJ327dun+r6njC0gIIBBgwbx5ptv5uCrUDhIj5PINaENVzqXv7YY4crBtE8IaQE5sBbT8dZ1MGhcJ0cGtZTkFjnPx8eH2NhYFi1axOuvv+7ucIQQIlO6du3K8uXLndo8PT3dFE3h9dFHHzF06FDUKT64nTBhAj/88ANr1qyhdOnSvPTSS/To0YPIyEg0GtcVeN9//30++eQTVq5cSZ06dThy5AhDhw7F19eX8ePHYzQaOXr0KFOnTqVBgwbcvXuXCRMm0KtXL44cOeJ0rREjRvD22287tvV6vdP+oUOH0qxZM+bMmUPJkiVz8NUo2OSj94JEUcAcf/+R/eFtWb+9gs344L52kwm70ZjiYUJlfnB8ugnKpHPw+nXnx7CtcP8cRVEwmq0PPWxYFDUWRY0JBZPF5vLSBo0ab43G5SMvkyZFUbAkuo5RFHylS5dGpVKxePFiICl5kqRJCFGQeHp6EhQU5PRI+SZZpVLx6aef0qNHDwwGA7Vq1WL//v2cO3eO9u3b4+3tTcuWLTl//rzjnOnTp9OwYUM+/fRTQkJCMBgMPPvss9y7dy/V/efOnUtwcDClS5dmzJgxWCwWAN5++23q1auX6vjGjRszbdo0AHbu3EmzZs3w9vamRIkStG7dmkuXLjmO/eGHH2jcuDFeXl5UrlyZt956C6vVmq3ndv78eZ588kkCAwMpVqwYTZs2Zfv27em+xrdu3WL79u306tXL0RYbG0tERATz5s0jLCyM0NBQvvzyS44fP57u9fbv38+TTz5J9+7dqVixIn369KFz586OpMjX15dt27bRt29fatSoQYsWLVi4cCGRkZFcvnzZ6VoGg8Hp++7r6+u0v169egQFBbF+/fp0n19RI4lTQfHwMLccGN6WtdsrRP9rAOfatHW0nW3dhtONGjse55q2IehVXeYuqDOAztv5kSJp6vPJfmpP+9Hp0fCdn1mV2JhViY3phpHH5h/IjaeaIxRF4bs5R1n+yh53hyJyQYkSJbhz5w4AY8aMcXM0Qoh8xelDzjx+5EKBphkzZjB48GCioqKoWbMmAwYM4IUXXmDy5MmON+wvvvii0znnzp3j66+/5ocffmDr1q1ERUWl+l35yy+/cP78eX755RdWrlzJihUrWLFiBQDDhg3j5MmTHD582HH877//zrFjxwgPD8dqtdK7d2/atWvH77//zv79+3n++ecdH47++OOP/Pvf/2bcuHGcPHmSTz/9lBUrVvDuu+9m67n9888/dOvWje3bt3Ps2DG6dOlCz549UyUlKe3Zs8eRmCWLjIzEYrHQuXNnR1uZMmWoW7cu+/btS/Nabdq0YceOHZw5cwaA3377jT179tCtW7c0z4mNjUWlUlGiRAmn9lWrVuHn50edOnWYNGkSf//9d6pzmzVrxu7du9O8dlEkQ/UKirSGueXQ8LaMKCYTCVFRmT7eK7QBqoe6fTPLZLEReelupo/X6KPx0j72SPfKLVaznZgLsY7t4Cq+eEj59ELB19eXuLg4x3a/fv3cGI0QIt+xGJM+4HSH168nfRCZSZs2baJYsWJOba+++ipTp051bA8dOpS+ffs69rVs2ZKpU6fSpUsXAMaPH8/QoUOdrpGQkMDKlSspV64cAAsXLqR79+7MmzePoKAgAEqWLMmiRYvQaDTUrFmT7t27s2PHDkaMGEG5cuXo0qULy5cvp2nTpgAsX76cdu3aUblyZe7cuUNsbCw9evSgSpUqAE6Jybvvvstrr73GkCFDAKhcuTIzZszglVdecZq3k9Xn1qBBAxo0aODYfuedd1i/fj0bN25MlTwmi46OJjAw0GmYXkxMDDqdLtUQuMDAQKd1AB/26quvEhsbS82aNdFoNNhsNt59913+9a9/uTw+ISGB1157jQEDBuDj4+NoHzhwIJUqVSIoKIgTJ04wefJkfvvtt1SVYMuWLcuxY8fSjKcoksSpIJp0LqnHBpKSJjfM2am6Zzcag3PCZrOZ2L2nGQCPdYrIkWFxR6aEYdAljfU1my3MmTMHgIGJbfF/NZQOGx4HlQWVaki275Vbhs5ug764VuZWFQI+Pj5On8r169ePNWvWuDEiIYR4dB06dGDJkiVObaVKlXLarl+/vuPrwMBAAKdhdIGBgSQkJBAXF+d4c16+fHlH0gTQsmVL7HY7p0+fdiROderUcZrLExwczPHjxx3bI0aMYNiwYcyfPx+NRsOqVauYN2+eI8bw8HC6dOlCp06dCAsLo2/fvgQHBwNJPTqHDx926mGy2WwkJCRgNBox3H//ktXnFh8fz1tvvcWmTZu4fv06VqsVk8mUbo+TyWTCy8srzf0pKYqS7nuFtWvX8uWXX/LVV185qt5NmDCBMmXKOJLEZBaLhf79+2O32x1DypONGDHC8XXdunWpVq0aTZo04ejRozRq1MixT6/XYzTm/dSQ/EwSp4IoeZjbQxRFwZqY6PIUS2JCjoagMRhQP5Q4KTZQ7s8pfdQkQVEUzGaLY9sDOx4kXcuODa0qqXKMHhUGnQaV2uLyOvmJ1jNv51aJ3PFw0jR48GBWrlzpxoiEEPmS1pDU8+Oue2eBt7c3VaumP/Rfq9U6vk7+W+aqzZ7GOoopj0n5tzDlNZL3pbxGz5498fT0ZP369Xh6epKYmMgzzzzj2L98+XLGjRvH1q1bWbt2LVOmTGHbtm20aNECu93OW2+9xdNPP50qlpRJTFaf28svv8yPP/7I3LlzqVq1Knq9nj59+mA2p5jg/RA/Pz/u3nUeRRMUFITZbObu3btOvU43b96kVatWaV7r5Zdf5rXXXnNUwKtXrx6XLl1i1qxZTomTxWKhb9++XLx4kZ9//tmpt8mVRo0aodVqOXv2rFPidOfOHfz9/dM9t6iRxKmQUBSFNdNe4fqZU2kf5LpIS76hKArLli3jwuVrQGMA5syZ40iWhHCXAwcOOCVNw4YNIyIiwo0RCSHyLZUqS8PlCqPLly9z/fp1ypRJGrK4f/9+1Go11atXz/Q1PDw8GDJkCMuXL8fT05P+/fs7eoqShYaGEhoayuTJk2nZsiVfffUVLVq0oFGjRpw+fTrDpDCrdu/eTXh4OE899RSQNOcpOjo63XNCQ0OJiYlxSpIaN26MVqt1FHIAuHHjBidOnGD27NlpXstoNDoN+QPQaDROCWdy0nT27Fl++eUXSpcuneHz+uOPP7BYLI4eu2QnTpygffv2GZ5flEjiVEhYExPTT5oKAIvFwpUrV8ioZkmg3RdD+RKglTlDIm+0aNECLy8vEhISJGkSQhQaiYmJqebUeHh44Ofnl63renl5MWTIEObOnUtcXBzjxo2jb9++jmF6mfXcc8855i7t3bvX0X7x4kWWLl1Kr169KFOmDKdPn+bMmTMMHjwYgGnTptGjRw9CQkJ49tlnUavV/P777xw/fpx33nnnkZ9X1apV+e677+jZsycqlYqpU6em29MGSYmTv78/e/fupUePHkDSXNnhw4fz0ksvUbp0aUqVKsWkSZOoV68eYWFhjnM7duzIU0895Zg/1bNnT959913Kly9PnTp1OHbsGPPnz2fYsGFA0jpPffr04ejRo2zatAmbzeb4/pYqVQqdTsf58+dZtWoV3bp1w8/Pj5MnT/LSSy8RGhpK69atHfc2Go1ERkYyc+bMR369CiNJnAqhUUu/ROuZejytyWpi1bf5q4hCRl5++WUMOg12s40b7yQVxwh5oyWaYjpMVpOboxOF3Y4dO+jYsSOQNE5dCCEKk61bt6bqZahRowb/+9//snXdqlWr8vTTT9OtWzfu3LlDt27dUs2zyYxq1arRqlUrbt++TfPmzR3tBoOB//3vf6xcuZLbt28THBzMiy++yAsvvABAly5d2LRpE2+//TazZ89Gq9VSs2ZNnnvuuWw9rw8++IBhw4bRqlUr/Pz8ePXVV52KBbmi0WgYNmwYq1atciROydfy8PCgb9++mEwmOnbsyIoVK5zmfZ0/f55bt245thcuXMjUqVMZPXo0N2/epEyZMrzwwguOEu1Xr15l48aNADRs2NApjl9++YX27duj0+nYsWMHH374If/88w8hISF0796dN9980+ne33//PeXLl6dt27aIByRxKoS0nl5oXUxEtFgK3pA3nU6LTueRNL/p/lhDtaeH0zhpBTDaCt5zE/mbwWDAZDLh6elJQkLOzhEUQgh3S1n+Oy3KQ+XNK1asmKqtffv2qdoARo0axahRo9K898MWLFjg8v5//vmnIyFKFhgYmOH6Ql26dHFUx3PlUZ5bxYoV+fnnn52OycySFBMmTKBOnTpcunSJChUqAEm9cgsXLmThwoVpnvfwMMDixYuzYMECl69VWs/hYSEhIfz6668ZxvzBBx84EjLxgIx1EtmiKAo2m9HxyPP7A/cCp9Ls0IU8v7covPR6vaOHKTGNgitCCCFyz82bN5k/fz7Xrl1LVe68oAkMDCQiIiLd6nv5yc2bN+nTp0+aZc6LMulxEo9MURQij/YlNvao+4JQeWL1fDDZtJmvNwa1fB4gHp1er3fqYXrllVfcGI0QQhRNgYGB+Pn5sXTp0lTrHRVETz75pLtDyLSAgAD525cGSZzEI7PbTS6TJl/fxqjVj7b4bXYcb10HP62HlP4Wj8zLy8uph+mVV17h/fffd2NEQghRsEyfPp3p06dn+zoZDTkTwh0kcRI5om2bg2g0SWVC1Wq9W5IXg0adq/dVFAWrOXNzqSyJtlyLQ+SOh5OmqVOn8vbbb7sxIiGEEELkJ5I4iRyh0RgciVNuM1mMqFSaPK2qpygK3805SsyF2Dy7p8hbkjQJIYQQIj2SOBUiCgpWjYLJanJZQe9REg1FUVBMJuz5qBRzu6/bk6i+v0q3yjNP7mk12x8paQqu4ouHTuZcFQQff/wxY8aM4d133+X11193dzhCCCGEyGckcSokFEVhS4s/uVkqMcfWalIUhUsDBmI6dixHrldYDJ3dBq2nJuMDAQ9d7g4fFNlTpUoVjh07ho+PD6NHj2b06NHuDkkIIYQQ+ZQkToVEgi2Bm6UyVzY5NCAUvUfGxRsUkynfJk07++5E76HHaLNTd/+5PL231lOT6cRJ5F9arRar1Yqvry+xsbH4+Pi4OyQhhBBC5GOSOBVC25/8keLeJdLcr/fIevGGanv3AHC2dZvshOZgN9sAm4u21MfZUaE8tE/vocegNaCopQiDyDoPDw9stgc/Ozt37qRXr15ujEgIIYQQ+Z0kToVQclKRk9T6nC0vfuOdgyh4ObVZsPFQEzfeOYgeGeomcs7DSdPHH38sSZMQQgghMiSz1kWB8of+HIkqs7vDEAWUq6RJ5jUJIYRrMTExdOrUCW9vb0qUKJFmW3ZER0ejUqmIiorK9rUyYjabqVq1Knv37s31e+WE48ePU65cOeLj490dirhPEifhNsFTmlPm7VaOR/CU5ukeU3JqQyZVmI90QIlHodFoJGkSQoj7wsPDUalUqR5du3Z1HPPBBx9w48YNoqKiOHPmTJpt2RESEsKNGzeoW7dutq+VkaVLl1KhQgVat27taLt79y6DBg3C19cXX19fBg0axL1799K9jqvXTaVSMWfOHOBBMujq8c0336S6XmJiIg0bNkyVQNarV49mzZrxwQcf5MjzF9kniZN4JIqiYLMZs3UNlU6D+qHHw1LuU+k0kjSJR2a3PyjRv2zZMkmahBBFXteuXblx44bTY/Xq1Y7958+fp3HjxlSrVo2AgIA027JDo9EQFBSEh0fuzx5ZuHAhzz33nFPbgAEDiIqKYuvWrWzdupWoqCgGDRqU7nUefs2WLVuGSqXimWeeAR4kgykfb731Ft7e3jzxxBOprvfKK69QpkwZl/caOnQoS5YscfrgT7iPJE7ikRyLGszuPal7iITIrxRFQaVSsWzZMoYOHerucIQQhZSiKBgtRrc8FEXJUqyenp4EBQU5PUqWLAlAxYoV+fbbb/n8889RqVSEh4e7bHM11O7evXuoVCp27twJJPXqDBw4EH9/f/R6PdWqVWP58uWA66F6v/76K82aNcPT05Pg4GBee+01rFarY3/79u0ZN24cr7zyCqVKlSIoKIjp06en+1yPHj3KuXPn6N69u6Pt1KlTbN26lf/85z+0bNmSli1b8tlnn7Fp0yZOnz6d5rUefs2+//57OnToQOXKlYEHyWDKx/r16+nXrx/FihVzutaWLVv46aefmDt3rst7denShdu3b/Prr7+m+/xE3pDiEOKRxMVFwf21Z319G6NW52zxCCFygoeHB23btuWXX34BnHudhBAiN5isJpp/5Z4PFg8OOJhjxaEOHz7M4MGD8fHx4cMPP0Sv12M2m1O13b17N8NrTZ06lZMnT7Jlyxb8/Pw4d+4cJpPJ5bHXrl2jW7duhIeH8/nnn/O///2PESNG4OXl5ZQcrVy5kokTJ3Lw4EH2799PeHg4rVu3plOnTi6vu2vXLqpXr+609MT+/fvx9fWlefMH368WLVrg6+vLvn37qFGjRobP7c8//+S///0vK1euTPOYyMhIoqKi+Pjjj1OdO2LECDZs2IDB4Pr7ptPpaNCgAbt37+bxxx/PMB6RuyRxEtnSts1BtNrS+WKRV2uiHUsuLa9kSZQu8oJGrVajKAo7d+6kZ8+e/PDDD+4OSQgh8pVNmzal6gF59dVXmTp1Kv7+/nh6eqLX6wkKCnLsf7gtM4nT5cuXCQ0NpUmTJkBSb1ZaFi9eTEhICIsWLUKlUlGzZk2uX7/Oq6++yrRp01CrkwZL1a9fnzfffBOAatWqsWjRInbs2JFm4hQdHZ1qOFxMTIzL4YYBAQHExMRk+LwgKYErXrw4Tz/9dJrHREREUKtWLVq1auVoUxSF8PBwRo4cSZMmTYiOjk7z/LJly6a7X+QdSZxEtmg0hnyRNAEse3k3OslvBA+SpmQDBw50YzRCiKJE76Hn4ICDbrt3VnTo0IElS5Y4tZUqVSonQwJg1KhRPPPMMxw9epTOnTvTu3dvpyQipVOnTtGyZUun9xatW7fmn3/+4erVq5QvXx5ISpxSCg4O5ubNm2nGYDKZ8PLyStXu6j1M8tDuzFi2bBkDBw50ee3k+3711VdMnTrVqX3hwoXExcUxefLkDO+h1+sxGrM3r1zkDEmcRKbY0+hSL2qCq/jioZOpgfnZw0nT6tWr6d+/vxsjEkIUJSqVKsfXUswt3t7eVK1aNVvXSO4BSvl712KxOB3zxBNPcOnSJf773/+yfft2OnbsyJgxY1zO63GVtCRfO2W7Vqt1OkalUqU7HNvPz4/jx487tQUFBfHnn3+mOvavv/4iMDAwzWsl2717N6dPn2bt2rVpHrNu3TqMRiODBw92av/55585cOAAnp6eTu1NmjRh4MCBTkP/7ty5Q5UqVTKMR+Q+SZxEmlL+Ejzbuo0bI8m8obPboPXMpfF6gIdOnW962ERqD39vvv/+e1ncVgghcpG/vz+QVGkuNDQUwOWaTP7+/oSHhxMeHk7btm15+eWXXSZOtWvX5ttvv3VKoPbt20fx4sUpW7bsI8cZGhrKkiVLnK7bsmVLYmNjOXToEM2aNQPg4MGDxMbGptkjllJERASNGzemQYMG6R7Tq1cvx+uU7KOPPuKdd95xbF+/fp0uXbqwdu1apzlXACdOnKBPnz6Zfq4i90jiVAApioLJ4txla7LmfI+QkpDgst0rtAGK7jCQtJicRpPJHyOzGd39Ly3YMJvNqNGk2G1GUcCajWKPWk9NriZOIv9K/tQzmSRNQgiRvsTExFRzeTw8PPDz88v0NfR6PS1atOC9996jYsWK3Lp1iylTpjgdM23aNBo3bkydOnVITExk06ZN1KpVy+X1Ro8ezYIFCxg7diwvvvgip0+f5s0332TixImpfs9nRYcOHYiPj+ePP/5wrBlVq1YtunbtyogRI/j0008BeP755+nRo4dTYYiaNWsya9YsnnrqKUdbXFwc33zzDfPmzUvznufOnWPXrl1s3rw51b7kIYfJkueaValShXLlyjnao6OjuXbtGmFhYY/wrEVOk8SpgFGAwdufJ+rW8QyPzUlVtm/Do1QpFEVh5ZqVVFAlJU5z5szBbtdmcHYSLRbeuP/1Kq/dWOYecNqvKLDFXJObSvGcDF0UETVr1uTUqVMAjqEgQggh0rZ161aCg4Od2mrUqMH//ve/LF1n2bJlDBs2jCZNmlCjRg1mz55N586dHft1Oh2TJ08mOjoavV5P27ZtWbNmjctrlS1bls2bN/Pyyy/ToEEDSpUqxfDhw1MlY1lVunRpnn76aVatWsWsWbMc7atWrWLcuHGOeHv16sWiRYuczj19+jSxsbFObWvWrEFRFP71r3+lec9ly5ZRtmxZp9ciq1avXk3nzp2pUKHCI19D5ByVktWi/wVcXFwcvr6+xMbGOpWkdCej2UrtaT8CcPLtLhh0LvJZczzMLINRpaJ5xZA0rxVwx5MtI3ej02e/PLj19m3HEL1qe/fgUbo0ZrOZ9957i9Ztkn7h7d3TP4uJU9Ivo3d5EQvO51kUNasSGzu2m1QoyTcjH0wQNVqMjhKvySVX4202quxKSiJfXXeHF+e3kx6nIqxVq1bMmDFDkiYhRJ5ISEjg4sWLVKpUKc3iACL/OH78OGFhYZw7d47ixfP/h7SJiYlUq1aN1atX07p1a3eHU6Cl9381K7mB9DgVYDv77nRU0LEmJrL4+YF42FSoRuXdHJyXX34ZjSZpEqyiKNyKOIH58t8uj1WRAF5JidPAhLYETWmHWvcgyTGabax652cAjkwJo7S3TuYTiXQl/3wkf/6zb98+d4YjhBAiH6tXrx6zZ88mOjqaevXquTucDF26dIk33nhDkqZ8RBKnAkzvoXdU7rHY1GhteV/tTafTodEkzVyym20ol41ocd3jo0rRbihfAk9vL6fEyMqDVcENOo0kTSJdKX8+dDodZrPZjdEIIYQoCIYMGeLuEDKtevXqVK9e3d1hiBQkcRK5InhKc1S6hxIoczzcL6DjP7xuuomRoijE25wXZTLZ7CiqpLKdRpsdRW3DaEu79KgovB7+2dm1a5ebIhFCCCFEUSGJUxGiKAp2e+ar79lsRqevVTY9NpsZjcaazllJVDqN0zC8JA+2M+pN6ht1gUiji1hD/gNA3f3nMoxBFE4P/+zs37+fFi1auCkaIYQQQhQVkjgVEYqiEHm0L7GxRzN9jioRgu8XEN8b2R7l/hptLVrmRoTOIuPiwSPzQw9D/rKgtWV8nCjYJGkSQgghhLtI4lRE2O2mLCVNmeHj0wi1OvvV+9JzvHUdDJqkBMpkMdH+6/bA/cIYWj0oCqa/rayZvA+ZEVW4GQwGp+0//viD2rVruykaIYQQQhQ1kjgVQW3bHHRUwkuP9fZtLpC09kDrxjsd5cjnzJkDwKuvTsv1Ag4GjRpvTdIQP5VdjUpJdLTr1Wq+m3OUmAuxkjQVAWfOnCEkJKkUvyRNQgghhMhrkjgVQRqNIVOJk6J5MMco+RyNxsOxbpO7q95ZzXZiLjxYkC64ii8euryvLChyV1xcHD4+PpQrV44rV64QFxcnSZMQQggh8pwkTgWYoihYEhIAsCQm5Oq9zGYzdrM535Z8Hjq7DfriWrcncyJnJX8/t2/fTseOHSlXrpybIxJCCCFEUSWJUwG27p0p3Dp9NkevqSgKiimpp8luetDjNO/jj7F55P2Pi8liQmW/P8fJmnZFQK2nrPtU2KT8foaFhTkWuRVCCFE4hIeHc+/ePTZs2JCt69y+fZtatWpx6NAhKlasmCOxParjx4/zxBNPcPr0aby9vd0ai8h5Mq6pALtx7nSqtjI1auPh6flI11MUhUsDBnK6UWNON2rM+bBOaR4bEhKCVqt9pPtkRfuv29P8q+Y0/6q5ozCEKPweToKvXLnipkiEEKJwCg8Pp3fv3qnad+7ciUql4t69e7kew4cffsiKFSuyfZ1Zs2bRs2dPp6Tp8uXL9OzZE29vb/z8/Bg3bly6o2aio6NRqVQuH998843Tsf/9739p3rw5er0ePz8/nn76ace+evXq0axZMz744INsPy+R/0iPUwGiACYXvSqjln6J1tMLAA9Pz0fueVFMJkzHjqVq/8vPD5tGw6RJk9DpksqTa7XuGxYXGhCK3kOP1SyL3xZGrpImGaInhBAFh9lsdrxfSI+vr2+272UymYiIiGDz5s2ONpvNRvfu3fH392fPnj3cvn2bIUOGoCgKCxcudHmdkJAQbty44dS2dOlSZs+ezRNPPOFo+/bbbxkxYgQzZ87k8ccfR1EUjh8/7nTe0KFDGTlyJJMnT0ajeXhNS1GQSeJUQCiKwuDgQKK8UvcmaT290Hp55ej9qu3dA8Cpto/xc8fHQaVCp9Ol+kWoKAqKJSmBUcy5s5DSzr470Xs8KHuu99DLsLxCSpImIURBl3LIe15T6XPn7+O+fft47bXXOHz4MH5+fjz11FPMmjXLMRStYsWKPPfcc5w7d47169fTu3dvOnTowIQJE1i7di0TJkzgypUrtGnThuXLlxMcHAykHqq3detW3nnnHU6cOIFGo6Fly5Z8+OGHVKlSJc3YtmzZgoeHBy1bPlhk8qeffuLkyZNcuXKFMmXKADBv3jzCw8N599138fHxSXUdjUZDUFCQU9v69evp168fxYoVA8BqtTJ+/HjmzJnD8OHDHcfVqFHD6bwuXbpw+/Ztfv31Vx5//PHMvsyiAJDEqYAw2RKckqaGfg3wsN3Ntfup9fcTFZUq6eGCoij89cnvmC/F5VockJQoGbQZVwEUBVvKT/RAkiYhRMGkmEycbtTYLfeucTQSlSFn/14eP36cLl26MGPGDCIiIvjrr7948cUXefHFF1m+fLnjuDlz5jB16lSmTJkCwJ49ezAajcydO5cvvvgCtVrNv//9byZNmsSqVatc3is+Pp6JEydSr1494uPjmTZtGk899RRRUVGo1a5nl+zatYsmTZo4te3fv5+6des6kiZISmYSExOJjIykQ4cOGT7vyMhIoqKi+Pjjjx1tR48e5dq1a6jVakJDQ4mJiaFhw4bMnTuXOnXqOI7T6XQ0aNCA3bt3S+JUyEjiVADtfGozxbV+LPz8WbfGoVjsLpMmXQUfVNqkX3CKomC03x9SZ7ORPE0y3mYDm3MPldGWOz1WomDYsmULGo0Gu90uSZMQQuSBTZs2OXpTktke+ls8Z84cBgwYwIQJEwCoVq0aH330Ee3atWPJkiV43R/x8vjjjzNp0iTHeXv27MFisfDJJ584eoxefPFF3n777TTjeeaZZ5y2IyIiCAgI4OTJk9StW9flOdHR0U4JEkBMTAyBgYFObSVLlkSn0xETE5Pm/R++d61atWjVqpWj7cKFCwBMnz6d+fPnU7FiRebNm0e7du04c+YMpUqVchxbtmxZoqOjM3UvUXBI4lQA5cehasFTmqPS3V+oVqtGpVKhKAq9jp7jcFw8AAabiQv3j6+39w+MGr3zRax2cnbAoSgIJkyYwIIFC4DUf7CFEKKgUen11Dga6bZ7Z0WHDh1YsmSJU9vBgwf597//7diOjIzk3LlzTr1EiqJgt9u5ePEitWrVAkjV6wNgMBichtkFBwdz8+bNNOM5f/48U6dO5cCBA9y6dQv7/Q9eL1++nGbiZDKZHMlbSq7eJymKkqn3TyaTia+++oqpU6c6tSfH88YbbziSvOXLl1OuXDm++eYbXnjhBcexer0eo9GY4b1EwSKJUxGgKAo2W+7+51XpNKh1zhMgjXa7I2l6FB4Jp0FJzG5oIh9L/gP2xRdfcPv2bTdHI4QQ2adSqXJ8uFxu8fb2pmrVqk5tV69eddq22+288MILjBs3LtX55cuXd7rWwx6uvpv8oWpaevbsSUhICJ999hllypTBbrdTt27ddKvh+fn5cfeu89SFoKAgDh486NR29+5dLBZLqp4oV9atW4fRaGTw4MFO7clzs1Iuwu7p6UnlypW5fPmy07F37txJd26WKJgkcSrkFEUh8mhfYmOPujWO463rYLCZYM+DbXTOv2SNZitNdyRVtDncvApPrB9C/upXEzkp5ad+d+7ccWMkQggh0tKoUSP++OOPVAlWTrt9+zanTp3i008/pW3btkDScL+MhIaG8uWXXzq1tWzZknfffZcbN244kp2ffvoJT09PGjfOeP5ZREQEvXr1wt/f36m9cePGeHp6cvr0adq0aQOAxWIhOjqaChUqOB174sQJ+vTpk+G9RMEi6zgVcna7ySlp8vVtjFqdta78nGDQqPFOUZLTW6Nx+Uim16glaSrEHh4qERsb66ZIhBBCpOfVV19l//79jBkzhqioKM6ePcvGjRsZO3Zsjt6nZMmSlC5dmqVLl3Lu3Dl+/vlnJk6cmOF5Xbp04Y8//nDqdercuTO1a9dm0KBBHDt2jB07djBp0iRGjBjhqKh37do1atasyaFDh5yud+7cOXbt2sVzzz2X6l4+Pj6MHDmSN998k59++onTp08zatQoAJ599sG88+joaK5du0ZYWNgjvRYi/5LEqQhp2+YgjRutzXfzo0TR4ippclUaVgghhPvVr1+fX3/9lbNnz9K2bVtCQ0OZOnWqoycnp6jVatasWUNkZCR169bl//7v/5gzZ06G59WrV48mTZrw9ddfO9o0Gg3//e9/8fLyonXr1vTt25fevXszd+5cxzEWi4XTp0+nmoe0bNkyypYtS+fOnV3eb86cOfTv359BgwbRtGlTLl26xM8//0zJkiUdx6xevZrOnTun6oUSBZ8M1SuAFEXBkpiQ5fM0GkOakyUtFgv2FGOIk8cTWz3kR0TkHEmahBAif1ixYoXL9vbt26eah9S0aVN++umnNK/lqnpceHg44eHhTm29e/d2uvbDMYSFhXHy5EmntvTmRCWbOnWqo0cpuWx5+fLl2bRpU5rnVKxY0eW1Z86cycyZM9M8T6vVMnfuXKckLKXExESWLFnC6tWrM4xbFDzyrrgAWvfeO9w6cz5HrqUoCsuWLePKlStorFaSR+POmTsXm4cHPNU7R+4jxIEDB5y2JWkSQgiRE7p168bZs2e5du0aISEhbo3l0qVLvPHGG7Ru3dqtcYjcIUP1CqAb5886vi5TozYenp7pHJ0+i8XClStXMjwupGzZVNVxcoqiKBgtRoyWByutJ1jds+q6yD0tWrRwjAWXpEkIIUROGj9+vNuTJoDq1as7lSUXhYv0OBVgo5Z+id7HN8fmLI0fP55r674F4OX7i9idbZ1UNab2oYPp3EcBczzgXI4cmy2pkh4k7belLi2uKAqDtwwm6q8oFLsWmAFA1++6opK0vlAwGAyOMeSLFy9m8eLFbo5ICCGEECLrJHEqwLSeXjla6EGXokdJp9MB4HF/QdL0kiZ/3Suo555KtccbHAvekkZFUZPVRNRfUWnGFBoQit4j76sAipyR/HOT0dodQgghhBD5nSRORVzKN7N2k8nl1w8fr1iSVs5WzDZUJOKpTp00pSukBYqHHpPZitFiu9/TBOt7bqbT6aTV1nf2/RWDToPeQy9VAAso+b4JIYQQojCRxKkIUxSFy0OHQfVqAJzvGOb4gUgeovfw8X998jvmS3GONqe3xpPOge7BaunxNhv19v4BJC14m7xOk+Khp8+nB4i8lLzmQtLwvOSkCcCg1WPQyo9nQSXrNAkhhBCisJF3pkWYYjKR8NtvjsQpLfpGjVDp9SgWu1PSlIrOADrvB9s2G0bN/WF2Om+4nziZzNYUSVNqTSqURK/VpLlf5G9SclwIIYQQhZEkTsKhyo7tXOrwOADV9u5BrU9KelT6pOFyKWeoBE9pjkqnSSr64Hopg0zZ/WprntiQdM+dfX/FoNWj12pkmFcB9fD3TeY1CSGEEKKwkMSpEFMUBZvNmPGB9yUnSslfqw2GNI9V6TSodRpSVdLLIr1Og0ptAcCg02R6eF7SIsC2bN1b5C5JmoQQQghRmEjB50JKURQij/Zl957m7g4lxymKwndzjrL8lTRK9Qm3URQFrVYrSZMQQhRCMTExdOrUCW9vb0qUKAEkjTTYsGEDANHR0ahUKqKiovI0rooVK7JgwYI8udegQYOYOXNmntwrI02bNuW7775zdxhFiiROhZTdbiI29qhj29e3MWp14SjrbTXbibnwoNhAcBVfPHTyo+wuKpWK4cOHO7bNZrMboxFCCJEZ4eHh9O7dO0vnfPDBB9y4cYOoqCjOnDkDwI0bN3jiiSdcHr9z505UKhX37t3LZrRJVqxY4UjYUjp8+DDPP/98jtwjPb///jv//e9/GTt2rKNNURSmT59OmTJl0Ov1tG/fnj/++CPDa927d48xY8YQHByMl5cXtWrVYvPmzY79FStWRKVSpXqMGTPGcczUqVN57bXXsNvtOftERZrk3WZBoChgzvyQu4c1b7aHenW/wGKxYDabnR5Wj4I9WnPo7DY8NamRzIlyk+TXfdmyZaxZs8bN0QghhMhN58+fp3HjxlSrVo2AgAAAgoKC8PT0zNZ1s/uBm7+/P4Z0phfklEWLFvHss89SvHhxR9vs2bOZP38+ixYt4vDhwwQFBdGpUyf+/vvvNK9jNpvp1KkT0dHRrFu3jtOnT/PZZ59RtmxZxzGHDx/mxo0bjse2bdsAePbZZx3HdO/endjYWH788cdceLbClYL9rrkoUBRY1gWuHoKKIVk47cFQqfnzF2G3a10f+FTvbAboXlpPKSThLg+/7v3793dTJEIIkX8oioLV7J4eAA+d+pH/JrZv35769evj5eXFf/7zH3Q6HSNHjmT69OlAUg/IpUuXAPj8888ZMmQIK1asQKVSsX79+lS9V9HR0XTo0AGAkiVLAjjOad++PXXr1kWn0/H5559Tp04dfv31V+bPn8/y5cu5cOECpUqVomfPnsyePZtixYqxc+dOhg4dCjz4+/Pmm28yffp0KlasyIQJE5gwYQIAly9fZuzYsezYsQO1Wk3Xrl1ZuHAhgYGBAEyfPp0NGzbw0ksvMXXqVO7evcsTTzzBZ5995pQUpWS32/nmm2/48ssvHW2KorBgwQLeeOMNnn76aQBWrlxJYGAgX331FS+88ILLay1btow7d+6wb98+tNqk92cVKlRwOsbf399p+7333qNKlSq0a9fO0abRaOjWrRurV69Os9dP5CxJnPI7ixGuHIQs/iK0WCxZOj6kbFnHf14hMiLV84QQwjWr2c7S8b+65d7Pf9gOreejF21auXIlEydO5ODBg+zfv5/w8HBat25Np06dOHz4MIMHD8bHx4cPP/wQvT794f8hISF8++23PPPMM5w+fRofHx+nc1auXMmoUaPYu3ev42+IWq3mo48+omLFily8eJHRo0fzyiuvsHjxYlq1asWCBQuYNm0ap0+fBqBYsWKp7qsoCr1798bb25tff/0Vq9XK6NGj6devHzt37nQcd/78eTZs2MCmTZu4e/cuffv25b333uPdd991+Xx+//137t27R5MmTRxtFy9eJCYmhs6dOzvaPD09adeuHfv27Uszcdq4cSMtW7ZkzJgxfP/99/j7+zNgwABeffVVNJrU3z+z2cyXX37JxIkTU/39bdasGbNnz3Z5H5HzJHEqAsaPH49eXyJVu91odCx0W/vQQem5ERmKi4vD19fXqU2SJiGEKBzq16/Pm2++CUC1atVYtGgRO3bsoFOnTvj7++Pp6YlerycoKCjDa2k0GkqVKgVAQEBAqrlJVatWTfWGP7nHCKBSpUrMmDGDUaNGsXjxYnQ6Hb6+vqhUqnTvv337dn7//XcuXrxISEjSSJ0vvviCOnXqcPjwYZo2bQok9SCtWLHC0cM0aNAgduzYkWbiFB0djUajcQxRhKRiGYCjJytZYGCgo3fOlQsXLvDzzz8zcOBANm/ezNmzZxkzZgxWq5Vp06alOn7Dhg3cu3eP8PDwVPvKli3L5cuXsdvtqNUyAye3SeJUBOh0OnQ6Xap2u9WKhy2ppLckTSIzJGkSQoj0eejUPP9hu4wPzKV7Z0f9+vWdtoODg7l582a2rpmWlD03yX755RdmzpzJyZMniYuLw2q1kpCQQHx8PN7e3pm67qlTpwgJCXEkTQC1a9emRIkSnDp1ypE4VaxY0WlYXkbP1WQy4enp6fL9kqtRGOm9r7Lb7QQEBLB06VI0Gg2NGzfm+vXrzJkzx2XiFBERwRNPPEGZMmVS7dPr9djtdhITEzPsBRTZJ4mTECLT/P39+euvvwBJmoQQwhWVSpWt4XLu9PCQfZVKlWsV2x5OhC5dukS3bt0YOXIkM2bMoFSpUuzZs4fhw4dnafpBWknLw+1Zfa5+fn4YjUbMZrPjw+jknq+YmBiCg4Mdx968eTNVL1RKwcHBaLVap2F5tWrVIiYmxun6kPS6bN++Pc2y43fu3MFgMEjSlEekT68IUhSFeJsNo82OSeeJSeeJ0WYn3vZgQdl4q5V/TBanR7zJgkkDJg2O453Oub+d/DDapDxmYXPz5k2GDRsmSZMQQogMJScANlvGC9YfOXIEq9XKvHnzaNGiBdWrV+f69euprpfRtWrXrs3ly5e5cuWKo+3kyZPExsZSq1atR3gWSRo2bOi4VrJKlSoRFBTkqHgHSfORfv31V1q1apXmtVq3bs25c+ecErUzZ84QHBycaoTQ8uXLCQgIoHv37i6vdeLECRo1avQoT0k8AulxKgAUwJRDQ+kURaHX0XMcjotPavhwRdK/R87hlZjAlvvH1dt3kgRPr9QXCLvfrX0gaY0Cg83EheRz9v6BUZPxJx7ynrvgSJ7TlPKTuIiICDdHJYQQoiCoUKECKpWKTZs20a1bN/R6vcuCDgBVqlTBarWycOFCevbsyd69e/nkk0+cjqlYsSL//PMPO3bsoEGDBhgMhlRlyMPCwqhfvz4DBw5kwYIFjuIQ7dq1czk8MLP8/f1p1KgRe/bscSRRKpWKCRMmMHPmTKpVq0a1atWYOXMmBoOBAQMGOM4dPHgwZcuWZdasWQCMGjWKhQsXMn78eMaOHcvZs2eZOXMm48aNc7qn3W5n+fLlDBkyBI80lo/ZvXu3U3EKkbukxymfUxSFwcGBtK9QLkeuZ7TbHyRNeaSZrzeG+xMWFUXh2U/25+n9xaNJWQhCURQaN27s5oiEEEIUJGXLluWtt97itddeIzAwkBdffDHNYxs2bMj8+fN5//33qVu3LqtWrXIkGslatWrFyJEj6devH/7+/i6ryalUKjZs2EDJkiV57LHHCAsLo3Llyqxduzbbz+f5559n1apVTm2vvPIKEyZMYPTo0TRp0oRr167x008/Oc2funz5Mjdu3HBsh4SE8NNPP3H48GHq16/PuHHjGD9+PK+99prTtbdv387ly5cZNmyYy3iuXbvGvn37HGXaRe5TKUVszE3ym8HY2Fh8fHzcHQ4ARrOV2tOSFi87+XYXDLoHnyoYjbdo/k0Hx3ZDvwY0+PwuKlSMW7kOrdeDXiFFUbDbTQCYTLEcPJRUMa9Vy0hHVb14m40qu44D8Hujylxt+xgA1ffuQUHhatNmAGieXIjKw5OgV5qi0jmP1VZpVQ/Ko5vj8X4/aQJm/KtXQJd68qZB/WBdiZTPtXawD9+MakSL1S0AODjgIAZt+gvYKYqC6W8Ly1/ZA2S/9KpwTarnCSFExhISErh48SKVKlXCy8vFKA1RqCQkJFCjRg3WrFlDy5Yt3R0OL7/8MrGxsSxdutTdoeR76f1fzUpuIEP1CpCdT22muNaPhZ8/m2qfoihEHu1LbOzRTF/PoFajNycmfa1x7nzU25JyI2+9FrUuncQkxcRGb43GaTsj34xsiUqV+dXCFUXhuzlHibkQm+lzRNZJ0iSEEEKk5uXlxeeff86tW7fcHQqQVOZ90qRJ7g6jSJHEqQDRWlVYlUSX++x2k8ukKTbWH7U6f1Zayeq0LavZ7pQ0BVfxzXbpVeFMkiYhhBAibe3auafUvCsvv/yyu0MociRxyudSvmld/OLzaG0ZJwqXL43nypU/AbDbPejRvfCt0TR0dhv0xbWy/lQOk6RJCCGEEMI1+bg+n7Mluu5hKlOjNh6eni73XbnyJ3a7FrtdS0hI+VRrFRQGWk+NJE25YP/+B4U7JGkSQgghhHhAepwKkBHzFuFTMmnVaI80Vq9OadKkSXh7e0uCIdIVFxdHXFwc5cqVo0WLFvmqcIoQQgghRH4hiVMBovXUOVXRy4hOp5OkSaQr5ZymK1euUK5cOUmahBBCCCFckKF6wm0URcFkNbk7jCLr6tWrTnOaKlWq5MZohBBCCCHyN+lxEm4z4qcRHL8T6e4wiqSrV68SEhLi1GaxWNwUjRBCCCFE/ieJUxGgKApGux0Ao83u5mge+P3W76ju93mGBoSi98ifZdMLG1dJkxSCEEIIIYRInyROhZyiKPQ6eo7DcfGp9tnNNtDoHnztJjv77qSUVymZj5UHJGkSQghRUDz22GOMHDmSAQMGuDuUDN28eZM6deoQFRVF2bJl3R2OyCUyx6mQM9rtLpOmUCPEzvmd4j0XUbznImLei+LGOwfdECGOniZLoi3Dh8ie6tWrO21L0iSEEEVTeHg4KpWKkSNHpto3evRoVCoV4eHheR/YfZs2bSImJob+/fs72hITExk7dix+fn54e3vTq1cvrl69mu51rFYrU6ZMoVKlSuj1eipXrszbb7+N3f5gBM706dOpWbMm3t7elCxZkrCwMA4edH5PFBMTw6BBgwgKCsLb25tGjRqxbt06x/6AgAAGDRrEm2++mUOvgMiPpMepCDneug4GjRrFbOfuWwfIqH9HV8EHlTb3c2tFUfhuzlFiLsTm+r2KOqPR6OjZk6RJCCGKtpCQENasWcMHH3yAXp/0IWZCQgKrV6+mfPnybo3to48+YujQoajVD96HTJgwgR9++IE1a9ZQunRpXnrpJXr06EFkZCQajcbldd5//30++eQTVq5cSZ06dThy5AhDhw7F19eX8ePHA0kfKi5atIjKlStjMpn44IMP6Ny5M+fOncPf3x+AQYMGERsby8aNG/Hz8+Orr76iX79+HDlyhNDQUACGDh1Ks2bNmDNnDiVLlszlV0i4g/Q4FUCKomCzGVM9MmLQqPHWaDBo1I6k6Z/NL/H3Dy8S9FpDgqc0dxwbPKU5/iPr58nwOavZnqWkKbiKLx46+dHNrJMnT9KhQwfHtqIokjQJIUQuURQFS0KCWx5Z/d3eqFEjypcvz3fffedo++677wgJCXEkA8m2bt1KmzZtKFGiBKVLl6ZHjx6cP3/esd9sNvPiiy8SHByMl5cXFStWZNasWY7906dPp3z58nh6elKmTBnGjRuXZly3bt1i+/bt9OrVy9EWGxtLREQE8+bNIywsjNDQUL788kuOHz/O9u3b07zW/v37efLJJ+nevTsVK1akT58+dO7cmSNHjjiOGTBgAGFhYVSuXJk6deowf/584uLi+P33352uM3bsWJo1a0blypWZMmUKJUqU4OjRo45j6tWrR1BQEOvXr08zHlGwSY9TAaMoCpFH+xIbezTjgzNzPVsi2Myodc6f1Kh1GrfMORo6uw1aT9efGiXz0KllPlQmnTx5kjp16gBQtWpVzp075+aIhBCicLMmJvLRkD5uufe4leuytN4jJPWSLF++nIEDBwKwbNkyhg0bxs6dO52Oi4+PZ+LEidSrV4/4+HimTZvGU089RVRUFGq1mo8++oiNGzfy9ddfU758ea5cucKVK1cAWLduHR988AFr1qyhTp06xMTE8Ntvv6UZ0549ezAYDNSqVcvRFhkZicVioXPnzo62MmXKULduXfbt20eXLl1cXqtNmzZ88sknnDlzhurVq/Pbb7+xZ88eFixY4PJ4s9nM0qVL8fX1pUGDBk7XWbt2Ld27d6dEiRJ8/fXXJCYm0r59e6fzmzVrxu7duxk2bFiaz08UXJI4FTB2uyndpCk21h+7veB+W7WemgwTJ5E5KZMmwOmTQSGEEAKShqBNnjyZ6OhoVCoVe/fuZc2aNakSp2eeecZpOyIigoCAAE6ePEndunW5fPky1apVo02bNqhUKipUqOA49vLlywQFBREWFoZWq6V8+fI0a9YszZiio6MJDAx0GqYXExODTqdLNQQuMDCQmJiYNK/16quvEhsbS82aNdFoNNhsNt59913+9a9/OR23adMm+vfvj9FoJDg4mG3btuHn5+fYv3btWvr160fp0qXx8PDAYDCwfv16qlSp4nSdsmXLcuzYsTTjEQVbwX2HLTiwvw82m/O3MClpUhESEoJWq8Vizz/lx0XeeThpApnTJIQQecHD05NxK9dlfGAu3Tur/Pz86N69OytXrkRRFLp37+6UMCQ7f/48U6dO5cCBA9y6dctRXOHy5cvUrVuX8PBwOnXqRI0aNejatSs9evRw9A49++yzLFiwgMqVK9O1a1e6detGz5498fBw/TbUZDLhlcmeM0VR0h2FsnbtWr788ku++uorR9W7CRMmUKZMGYYMGeI4rkOHDkRFRXHr1i0+++wz+vbty8GDBwkICABgypQp3L17l+3bt+Pn58eGDRt49tln2b17N/Xq1XNcR6/XYzRmPH1CFEySOBVgNpsHdruWSZMmodPpnPZptdrcH86mKGCWXw75zYEDB2jZsqVTmyRNQgiRN1QqVZaHy7nbsGHDePHFFwH4+OOPXR7Ts2dPQkJC+OyzzyhTpgx2u526detiNpuBpPlSFy9eZMuWLWzfvp2+ffsSFhbGunXrCAkJ4fTp02zbto3t27czevRo5syZw6+//opWq011Lz8/P+7evevUFhQUhNls5u7du069Tjdv3qRVq1ZpPreXX36Z1157zVGdr169ely6dIlZs2Y5JU7e3t5UrVqVqlWr0qJFC6pVq0ZERASTJ0/m/PnzLFq0iBMnTjg+lGzQoAG7d+/m448/5pNPPnFc586dO46CEqLwkRn2hYBOp0v1yJOkaVkXmFs1d+8jskSSJiGEEFnVtWtXzGYzZrPZ5Vyh27dvc+rUKaZMmULHjh2pVatWqsQGwMfHh379+vHZZ5+xdu1avv32W+7cuQMk9cT06tWLjz76iJ07d7J//36OHz/uMp7Q0FBiYmKc7tG4cWO0Wi3btm1ztN24cYMTJ06kmzgZjUanIX8AGo3GqRy5K4qikJiY6LgGkKnrnDhxIlVhDVF4SI+TeDQWI1xJscZBSAvQGtwXjwBgyZIlTtuSNAkhhMiIRqPh1KlTjq8fVrJkSUqXLs3SpUsJDg7m8uXLvPbaa07HfPDBBwQHB9OwYUPUajXffPMNQUFBlChRghUrVmCz2WjevDkGg4EvvvgCvV7vNA8qpdDQUPz9/dm7dy89evQAwNfXl+HDh/PSSy9RunRpSpUqxaRJk6hXrx5hYWGOczt27MhTTz3l6EHr2bMn7777LuXLl6dOnTocO3aM+fPnO4o3xMfH8+6779KrVy+Cg4O5ffs2ixcv5urVqzz77LMA1KxZk6pVq/LCCy8wd+5cSpcuzYYNG9i2bRubNm1y3NtoNBIZGcnMmTMf9Vsh8jlJnIq6+2+s7SbTo19j0jnw9oMMerkURcFoycZ9RIZWrlzJ9evX2bFjR4afpgkhhBDJfHx80tynVqtZs2YN48aNo27dutSoUYOPPvrIqaJcsWLFeP/99zl79iwajYamTZuyefNm1Go1JUqU4L333mPixInYbDbq1avHDz/8QOnSpV3eT6PRMGzYMFatWuVInCApOfPw8KBv376YTCY6duzIihUrnJK98+fPc+vWLcf2woULmTp1KqNHj+bmzZuUKVOGF154gWnTpjnu9b///Y+VK1dy69YtSpcuTdOmTdm9e7djWJ5Wq2Xz5s289tpr9OzZk3/++YeqVauycuVKunXr5rjX999/T/ny5Wnbtm3WXnxRYEjiVIgpioLRlvabZ0VRwG4F4GzrNo9+I50hU0nT4C2DOfbnH8CMR7+XSGXHjh106tTJkSilHMYghBBCuLJixYp092/YsMFpOywsjJMnTzq1pRzVMGLECEaMGOHyWr1796Z3795Zim/ChAnUqVOHS5cuOXqmvLy8WLhwIQsXLkzzvOjoaKft4sWLs2DBgjTLj3t5eTmtY5WWatWq8e2336Z7zAcffOBIyEThJHOcCilFUeh19Bz19v6R9kE2M5B6KJe+USNU91cQzykmq4mov6JStYcGhKL3yNl7FSU7duwgLCwsw6pCQgghREESGBhIREQEly9fdncomXLz5k369OmTqsy5KFykx6mQMtrtHI6Ld2w3LW7Ay6pgt9lQzLZUx1fZvg2PUqUAUOn1efImfNuTP1PaUAyrWYaUPYrkpEkIIYQojJ588kl3h5BpAQEBvPLKK+4OQ+QytydOixcvZs6cOdy4cYM6deqwYMGCNMeGfvfddyxZsoSoqCgSExOpU6cO06dPT3O1aJHkl7NQ7MKf3Fj3Z5rHqPV61Ia8Le6w5vVIdEgvyaPYuHFjqj8oUghCCCGEECL3uHWo3tq1a5kwYQJvvPEGx44do23btjzxxBNpdsvu2rWLTp06sXnzZiIjI+nQoQM9e/aUFZoz4HHpb5fpia5c/qqCF1zFFw+djB7NyMNJk0qlkqRJCCGEECKXubXHaf78+QwfPpznnnsOgAULFvDjjz+yZMkSZs2aler4hyf2zZw5k++//54ffvihUNXMVxQFkzWp+pzJlpBj1w2e0hyVTuO4h/XmDe58ksFJuWzo7DZoPZNi8tCpZZ5OBg4cOJAqaZLqeUIIIYQQuc9tiZPZbCYyMjLVOgCdO3dm3759mbqG3W7n77//ptT9uTmuJCYmOhYwA4iLi3u0gPNIcvU5V4UUskul06DWaVAUhcsDBmLKBz11Wk+NI3ESGatdu7bja0mahBBCCCHyjtvGRd26dQubzUZgYKBTe2BgIDExMZm6xrx584iPj6dv375pHjNr1ix8fX0dj5CQkGzFndsSbAkuk6aAO554abxy5B6KyZQqaVJ5eSWt6WSOz+TDmCOxiKzx8fEhNjaWoKAgSZqEEEIIIfKQ24tDPDw0K7NllVevXs306dP5/vvvCQgISPO4yZMnM3HiRMd2XFxcvk+eku20BqC9fIzFZ1vgYVOhGp57w9hUAMu6wJWDuXYP8WiWL1/OsGHDmDdvHhMnTsTHx4cbN264OywhhBBCiCLFbT1Ofn5+aDSaVL1LN2/eTNUL9bC1a9cyfPhwvv766wzLMXt6euLj4+P0KCj0VyPRKwpamxoVKtDmYjEHi+nRkqaQFrkbVxGXnDQBvPTSS26ORgghhBCi6HJbj5NOp6Nx48Zs27aNp556ytG+bdu2dOv2r169mmHDhrF69Wq6d++eF6HmHyoVrhaszXGTzoEuk8mQ1nA/LpHTUiZNAGq1VBwUQghRMFSsWJEJEyYwYcKETB2/c+dOOnTowN27dylRokS27v3YY48xcuRIBgwYkK3r5IWbN29Sp04doqKiKFu2rLvDERlw6zuxiRMn8p///Idly5Zx6tQp/u///o/Lly8zcuRIIGmY3eDBgx3Hr169msGDBzNv3jxatGhBTEwMMTExxMbGuuspFE46A+i8M/eQpClXLF68OFXSZLOlXrhYCCGEeBTh4eGoVCree+89p/YNGzYU6Aq3mzZtIiYmhv79+zvaEhMTGTt2LH5+fnh7e9OrVy+uXr2a4bWuXbvGv//9b0qXLo3BYKBhw4ZERkY69qtUKpePOXPmOI5ZunQp7du3x8fHB5VKxb1795zuERAQwKBBg3jzzTez/+RFrnNr4tSvXz8WLFjA22+/TcOGDdm1axebN2+mQoUKANy4ccNpTadPP/0Uq9XKmDFjCA4OdjzGjx/vrqeQryiKQrzNRrzNhtEmhQMKqsWLFzNmzBjHtkajkaRJCCFEjvPy8uL999/n7t277g4lx3z00UcMHTrUaZTGhAkTWL9+PWvWrGHPnj38888/9OjRI92/rXfv3qV169ZotVq2bNnCyZMnmTdvnlNv2I0bN5wey5YtQ6VS8cwzzziOMRqNdO3alddffz3New0dOpRVq1YVqu9DYeX2sT+jR48mOjqaxMREIiMjeeyxxxz7VqxYwc6dOx3bO3fuRFGUVI8VK1bkfeD5jKIo9Dp6jiq7jlNl13Hq7f0jz+9vtBjTfCSvSyUy9nDSZLVa3RiNEEKIrFAUBbvZ5pZHVhdDDwsLIygoyOXamSl9++231KlTB09PTypWrMi8efOc9t+8eZOePXui1+upVKkSq1atctofHR2NSqUiKirK0Xbv3j1UKpXT+7yH7du3j8ceewy9Xk9ISAjjxo0jPj4+zeNv3brF9u3b6dWrl6MtNjaWiIgI5s2bR1hYGKGhoXz55ZccP36c7du3p3mt999/n5CQEJYvX06zZs2oWLEiHTt2pEqVKo5jgoKCnB7ff/89HTp0oHLlyo5jJkyYwGuvvUaLFi3SvFe9evUICgpi/fr1aR4j8ge3V9UTOcNot3M4LvUvk6bFDXjZ/s7Ve2dq7SkFPOw6FLs2V2MpDLy8vEhISJCkSQghCiDFYuf6tMytR5nTyrzdyrHQfWZoNBpmzpzJgAEDGDduHOXKlUt1TGRkJH379mX69On069ePffv2MXr0aEqXLk14eDiQNOzvypUr/Pzzz+h0OsaNG8fNmzez9VyOHz9Oly5dmDFjBhEREfz111+8+OKLvPjiiyxfvtzlOXv27MFgMFCrVi2n+C0WC507d3a0lSlThrp167Jv3z66dOni8lobN26kS5cuPPvss/z666+ULVuW0aNHM2LECJfH//nnn/z3v/9l5cqVj/R8mzVrxu7du52G6Yv8RxKnQuh46zoYNGpQFDxNNmL4M1fvZ7KaMkyaev8xnqC/K2NG4cMSCbkaT0FnMplYs2aN0/hsIYQQIjc89dRTNGzYkDfffJOIiIhU++fPn0/Hjh2ZOnUqANWrV+fkyZPMmTOH8PBwzpw5w5YtWzhw4ADNmzcHICIiwil5eRRzoDDV7wAAeKRJREFU5sxhwIABjuIS1apV46OPPqJdu3YsWbIEL6/Ua1tGR0cTGBjoNEwvJiYGnU5HyZIlnY7NaN3QCxcusGTJEiZOnMjrr7/OoUOHGDduHJ6enk7z75OtXLmS4sWL8/TTTz/S8y1btizHHlpjU+Q/kjgVQgaNGoNazV+f/M7dS3F5eu+dfXei99A7tVkSbXx54HCqY4Mq++Chc/toUbebOXMmb7zxBlqtFrPZDCBJkxBCFFAqrZoyb7dy270fxfvvv8/jjz/uctmLU6dOpap23Lp1axYsWIDNZuPUqVN4eHjQpEkTx/6aNWtmuzJeZGQk586dcxr2pygKdrudixcvukzMTCaTy4TKlYzWDbXb7TRp0oSZM2cCEBoayh9//MGSJUtcJk7Lli1j4MCBmb7/w/R6PUaj8ZHOFXlH3rXmY3Y12NSg9rCj9rBjsxmx2TL3n0qx2DGnSJp0FXwe+RdqVug99Bi0hlSPZIPeefDHpNf4hgW6ck9OSE6aACwWC2vWrHFzREIIIbJDpVKh1mnc8njUv6mPPfYYXbp0cVnAwFWCkXIuVfLX6d07uQco5XkWiyXdmOx2Oy+88AJRUVGOx2+//cbZs2ed5hml5Ofnl6rAQlBQEGazOVV7RuuGBgcHU7t2bae2WrVqORUtS7Z7925Onz7Nc889l+5zSs+dO3fw9/d/5PNF3pAep3wm5S+VXS1L46mG+o+dBmDvwaaPdM3gN5qh1llQWe4nXWYTKo0dRSEpOwOw5M2nHFrPB8lbUU+apk2bxowZMxzbWq1WepqEEEK4xXvvvUfDhg2pXr26U3vt2rXZs2ePU9u+ffuoXr06Go2GWrVqYbVaOXLkCM2aNQPg9OnTTmW3kxOCGzduEBoaCuBUKMKVRo0a8ccff1C1atVMP4fQ0FBiYmK4e/euY2he48aN0Wq1bNu2jb59+zriOHHiBLNnz07zWq1bt+b06dNObWfOnHFUfk4pIiKCxo0b06BBg0zH+rATJ07Qvn37Rz5f5A1JnPIZuz1z1ed8fBphtyd9+xRFQTE+OE8xmrDbkhMwBfVX3VDdOOLYrwZqPgt2q4rT64KTGj+sn+s/DQoKJrOU1QbXSVPyMD0hhBAir9WrV4+BAweycOFCp/aXXnqJpk2bMmPGDPr168f+/ftZtGgRixcvBqBGjRp07dqVESNGsHTpUjw8PJgwYQJ6/YNh+3q9nhYtWvDee+9RsWJFbt26xZQpU9KN59VXX6VFixaMGTOGESNG4O3tzalTp9i2bVuqGJOFhobi7+/P3r176dGjBwC+vr4MHz6cl156idKlS1OqVCkmTZpEvXr1CAsLc5zbsWNHnnrqKV588UUA/u///o9WrVoxc+ZM+vbty6FDh1i6dClLly51umdcXBzffPNNqkqDyZLXHD137hyQVPSiePHilC9fnlKlSgFJJcsjIyMdwwJF/iVD9fKx1ofu0HrXHX6PqMHvETVo3fww7dsdp32749Sv9yWQ1GNzeegwzrRu4zjvTOs2nL2/rSLRKWnKUEgLSDG0LqcoKHxVzEyLOb/k+LULmldffdUpafL09JSkSQghhNvNmDEjVUnzRo0a8fXXX7NmzRrq1q3LtGnTePvttx0V9QCWL19OSEgI7dq14+mnn+b5558nICDA6TrLli3DYrHQpEkTxo8fzzvvvJNuLPXr1+fXX3/l7NmztG3bltDQUKZOnUpwcHCa52g0GoYNG5aqHPoHH3xA79696du3L61bt8ZgMPDDDz+g0TyoQHj+/Hlu3brl2G7atCnr169n9erV1K1blxkzZrBgwQIGDhzodO01a9agKAr/+te/XMb0ySefEBoa6qjG99hjjxEaGsrGjRsdx3z//feUL1+etm3bpvuaCPdTKVkt+l/AxcXF4evrS2xsLD4+Pu4OBwCj2UrtaT8CcOiNJnT8LukTkP2Xr+BpUfHR6dYAjFu5Du39SYdms9nxycQz36zDovGg24crANg8Phy9TaF4z0WoSKCsVx8AzqwPxG59MDzOq159TFEnAKhxYDdqgz4pacriEDqjxUjzr5Iq6RwccNBpThMkFYdYNH6nUzW9JhVK8s3IlkVyuF7K5+zp6UlCglQZFEKIgighIYGLFy9SqVKlRy4KIHLWn3/+SZ06dYiMjHQ5rC4/atasGRMmTGDAgAHuDqXQSu//alZyAxmqVwhV37sHL5tCzHtRTu1Vf90HugdJjaIonGl8vwqOzuC0LzcdmRJGaW9dkUyaIOlTt2HDhuHl5YXJJAsDCyGEEDklMDCQiIgILl++XCASp5s3b9KnT580e6xE/iJD9QohlUGP2pA6CVLfb09+uCtxMWSj8k9BtXjxYuLikqocDh06FEVRJGkSQgghcsGTTz5ZYIa9BQQE8MorrxS590UFlSROhYACJHh6ujsMkYbRo0czZswYfH19HcmTEEIIIYQoWGSoXgGnABP+bxonq1TP8FiR94YPH86yZcsc2x06dCAyMtKNEQkhhBBCiEchPU4FnFWtcUqamvl6Y1Dn3bdVURRM1rSHnCmKgiWxaJYgfzhpKlasmCRNQgghhBAFlPQ4FSK/N6qMv09xVCoVeVEqUVEUBm8ZTNRfUWnu/27OUWIuxOZBNPnLkCFD+Pzzzx3bxYsXl2F6QgghhBAFmCRO+ZjFrkZtz3zvkV6lQrHYUQAlDxaaNVlNTklTaEAoeo8HC95ZzXZJmpCkSQghhBCiMJDEKR/77HwzNImZ/xbd+uIssVficzGitO3su5NSXqXSrAoz6J1WfDj35zyOyj1SJk0+Pj7Exha95FEIIYQQorCROU4FRJkatfHIoHKe9XrqpElbvnhuheRE76FPt5Sm1rPo/KglrymdvJiaEEIIIYQo+IrOu9kCalS1A4z7bCX933o/0zX+g6c0p8zbrSjzdiv8h9fN5QgFQJ8+fejQoYNjW1EU7t27576AhBBCCDeZPn06DRs2dHcY6dq5cycqlSpbf6tPnz5NUFAQf//9d84FlosWLVpEr1693B1GgSaJUz6nVdvQenllaWE0lU6D+v5DFlTLfT179uTbb79l586dTsmTEEIIkd/t27cPjUZD165dU+3LLwlQbsTRqlUrbty4ga+v7yNf44033mDMmDEUL/5gdM/x48dp164der2esmXL8vbbbztGoriSnMC5ehw+fNhx3OHDh+nYsSMlSpSgZMmSdO7cmaioKKfrPPnkkwQHB+Pt7U3Dhg1ZtWqV071GjBjB4cOH2bNnzyM/56JOEqf85qH/XHarCrvRhN1oTPUoKBQUTHlQrMIdevbsyaZNmxzbf/zxhxujEUIIIbJm2bJljB07lj179nD58mV3h5NndDodQUFBj/wB89WrV9m4cSNDhw51tMXFxdGpUyfKlCnD4cOHWbhwIXPnzmX+/PlpXic5gUv5eO6556hYsSJNmjQB4O+//6ZLly6UL1+egwcPsmfPHnx8fOjSpQsWiwVISoDr16/Pt99+y++//86wYcMYPHgwP/zwg+Nenp6eDBgwgIULFz7ScxaSOOU7itk5ITqzIYjTLdpyulFjp8fZ1m3cFGHWKCh8VcxMizm/uDuUHPfEE084JU3+/v7cvHnTjREJIYRwN0VRMJvNbnmk17PhSnx8PF9//TWjRo2iR48erFixwrFvxYoVvPXWW/z222+OHpDk/bGxsTz//PMEBATg4+PD448/zm+//ZbuvZYvX06tWrXw8vKiZs2aLF682Gn/1atX6d+/P6VKlcLb25smTZpw8ODBdOOYP38+9erVw9vbm5CQEEaPHs0///zjuOalS5fo2bMnJUuWxNvbmzp16rB582Yg9VC99I515euvv6ZBgwaUK1fO0bZq1SoSEhJYsWIFdevW5emnn+b1119n/vz5aX5vkhO45Efp0qXZuHEjw4YNcyR1p0+f5u7du7z99tvUqFGDOnXq8Oabb3Lz5k1Hsvv6668zY8YMWrVqRZUqVRg3bhxdu3Zl/fr1Tvfr1asXGzZswGRKew1OkTapqpfPKImJ7g4hR1mA6x52x3aTCiXRazXuCyiHdOrUie3btzu2AwIC+PPPP90YkRBCiPzAYrEwc+ZMt9z79ddfR6fTZfr4tWvXUqNGDWrUqMG///1vxo4dy9SpU1GpVPTr148TJ06wdetWx987X19fFEWhe/fulCpVis2bN+Pr68unn35Kx44dOXPmDKVKlUp1n88++4w333yTRYsWERoayrFjxxgxYgTe3t4MGTKEf/75h3bt2lG2bFk2btxIUFAQR48exW63pxkHgFqt5qOPPqJixYpcvHiR0aNH88orrziSsjFjxmA2m9m1axfe3t6cPHmSYsWKuXwtsnIswK5duxw9Qsn2799Pu3bt8ExRzKtLly5MnjyZ6OhoKlWqlOH3ZOPGjdy6dYvw8HBHW40aNfDz8yMiIoLXX38dm81GREQEderUoUKFCmleKzY2llq1ajm1NWnSBIvFwqFDh2jXrl2G8Qhnkjjlc9X37kHr6ZWq3Ww2w4IFeR9QNhyZEkZpb12Bn3f1cNIUGBhITEyMGyMSQgghsi4iIoJ///vfAHTt2pV//vmHHTt2EBYWhl6vp1ixYnh4eBAUFOQ45+eff+b48ePcvHnTkSDMnTuXDRs2sG7dOp5//vlU95kxYwbz5s3j6aefBqBSpUqcPHmSTz/9lCFDhvDVV1/x119/cfjwYUfiVbVqVcf5ruIAmDBhguPrSpUqMWPGDEaNGuVInC5fvswzzzxDvXr1AKhcuXKar0VWjgWIjo6mcePGTm0xMTFUrFjRqS0wMNCxLzOJU0REBF26dCEkJMTRVrx4ccccphkzZgBQvXp1fvzxRzw8XL+VX7duHYcPH+bTTz91avf29qZEiRJER0dL4vQIJHHK59R6A2qv1ImTOo3/KPmZoZAUq0iZJAUFBXHjxg03RiOEECI/0Wq1vP766267d2adPn2aQ4cO8d133wHg4eFBv379WLZsGWFhYWmeFxkZyT///EPp0qWd2k0mE+fPn091/F9//cWVK1cYPnw4I0aMcLRbrVZHz1FUVBShoaEue6vS88svvzBz5kxOnjxJXFwcVquVhIQE4uPj8fb2Zty4cYwaNYqffvqJsLAwnnnmGerXr+/yWlk5Nvn5erl4f/bw+5zkIXqZef9z9epVfvzxR77++utU9xo2bBitW7dm9erV2Gw25s6dS7du3Th8+DB6vd7p+J07dxIeHs5nn31GnTp1Ut1Hr9djLEBz5fOTgvfuWxQIiqJgSSycBSGOHz9O9erVMRqNXL161d3hCCGEyEdUKlWWhsu5S0REBFarlbJlyzraFEVBq9Vy9+5dSpYs6fI8u91OcHAwO3fuTLWvRIkSLo+HpOF6zZs3d9qn0SQN3X/4jX9mXLp0iW7dujFy5EhmzJhBqVKl2LNnD8OHD3cUTHjuuefo0qUL//3vf/npp5+YNWsW8+bNY+zYsamul5VjAfz8/Lh7965TW1BQUKoRKMlzn5N7ntKzfPlySpcunapk+FdffUV0dDT79+9HrVY72kqWLMn3339P//79Hcf++uuv9OzZk/nz5zN48GCX97lz5w7+/v4ZxiNSk+IQIscpisJ3c46y/JXCU+6yVatWTp8WnTlzRpImIYQQBZLVauXzzz9n3rx5REVFOR6//fYbFSpUcJSx1ul02GzOH4I2atSImJgYPDw8qFq1qtPDz88v1b0CAwMpW7YsFy5cSHV88tC1+vXrExUVxZ07d1zG6yqOI0eOYLVamTdvHi1atKB69epcv3491bkhISGMHDmS7777jpdeeonPPvsszdclK8eGhoZy8uRJp7aWLVuya9eupOkU9/3000+UKVMm1RC+hymKwvLlyxk8eHCqnkOj0YharXZ6H5K8nZyYQlJPU/fu3XnvvfdcDpkEOH/+PAkJCYSGhqYbj3BNEieR46xmOzEXYt0dRo5p1aoV+/fvBzLX1S6EEELkZ5s2beLu3bsMHz6cunXrOj369OlDREQEgKPoQlRUFLdu3SIxMZGwsDBatmxJ7969+fHHH4mOjmbfvn1MmTKFI0eOuLzf9OnTmTVrFh9++CFnzpzh+PHjLF++3FGm+1//+hdBQUH07t2bvXv3cuHCBb799lvH315XcVSpUgWr1crChQu5cOECX3zxBZ988onTfSdMmMCPP/7IxYsXOXr0KD///HOqYgmPciwkFX3Yv3+/U0I3YMAAPD09CQ8P58SJE6xfv56ZM2cyceJEx/uHQ4cOUbNmTa5du+Z0vZ9//pmLFy8yfPjwVPfq1KkTd+/eZcyYMZw6dYo//viDoUOH4uHh4Vg/MjlpGjduHM888wwxMTHExMSkSkZ3795N5cqVqVKlSprPTaRNEqfCSFHAHH//4d4xrIPeaeXW+2dXs2bNHL+4gQw/MRJCCCHyu4iICMLCwlwu/vrMM88QFRXF0aNHeeaZZ+jatSsdOnTA39+f1atXo1Kp2Lx5M4899hjDhg2jevXq9O/fn+jo6DSHoz333HP85z//YcWKFdSrV4927dqxYsUKR4+TTqfjp59+IiAggG7dulGvXj3ee+89x1A+V3E0bNiQ+fPn8/7771O3bl1WrVrFrFmznO5rs9kYM2YMtWrVomvXrtSoUSNVGfRHORagW7duaLVap2JRvr6+bNu2jatXr9KkSRNGjx7NxIkTmThxouMYo9HI6dOnHcMJU35PWrVq5TJZq1mzJj/88AO///47LVu2pG3btly/fp2tW7cSHBwMJJWPNxqNzJo1i+DgYMcjuSBHstWrVzvNNRNZo1KyWvS/gIuLi8PX15fY2Fh8fHzcHQ4ARrOV2tN+BODA2Mp02t4XgEE7yvJ/SzegdTH50Gw2M3PmTCxqDRFtewKwe/vf6G0KZavOQHX1UOobvX4ddN6OTbvRyOlGSRVhahyNRG0wZC1ui5HmXyWNVz444CAGbdL5lkQbS8f/CsC/57SmwbtJv1ROvt0Fg67gTKtr3LgxR48edWxXrlzZ5cRXIYQQRVNCQgIXL16kUqVKLgsFiMJt8eLFfP/99/z444/uDiVTTpw44Sgb7yppLszS+7+aldyg4LyLFZmiItF10hTSArRZS4yKsoYNGzot5idJkxBCCCFSev7557l79y5///03xYsXd3c4Gbp+/Tqff/55kUuacpIkToXZpHOgu58saQ0g83MypU+fPk5JU5UqVTh37pwbIxJCCCFEfuPh4cEbb7zh7jAyrXPnzu4OocCTOU6Fmc6QNDRP5y1JUxYsSLGwcLVq1SRpEkIIIYQQkjgJ8bBy5cpx5coVunbtypkzZ9wdjhBCCCGEyAckcXIzRVEwmvPfQrFJcVkzeNhQ7FoUuxaj2ea0z4yCGQVTPnxurtSuXRuVSsWOHTuApORpy5Ytbo5KCCGEEELkFzLHyY0URaHPJ/uJvHQ344NdnQ9Y75fqzElZi2sGAE1m7HJuLpH0z4dzfsnR2HJD1apVHYUfwsLCKGKFJoUQQgghRCZI4uRGJovNKTlpUqEk+kwmQoqisKFhW/70LZ3rceWEJhVKotfmfJKXXSmTJoAGDRq4MRohhBBCCJFfSeKUTxyZEkZpbx1/38xcIQKTXXFKmpoWN+Bl+ztX4jLoXCc8RouJ9mvb4WHXseXprRi0egAsiXa+mLIPgGFz2qD11KDXahyrZucXVapU4cKFC47tRo0aERkZ6caIhBBCCCFEfiWJUz5h0GU+sVAUBbPZ7Ng+2rQ6gVodN9b9mStxpbVorYKap06NJujvynx35KjTPh2q++d7oE0j8XKnSpUqER0d7diWpEkIIYQo/FQqFevXr6d3797uDiXTbt++Ta1atTh06BAVK1Z0dzgZ2rRpE1OnTiUyMhK1unCVUyhcz6YIUBSFZcuW8eGHHzraDBp1rvfmKIqC0WJ0evxjjCfo78ppnhNcxRcPXf77ETtw4IBT0tS0aVNJmoQQQhQp4eHhqFQqVCoVWq2WypUrM2nSJOLj490dWo6YPn06DRs2dHcYOWLWrFn07NnTKWm6fPkyPXv2xNvbGz8/P8aNG+f0oborMTExDBo0iKCgILy9vWnUqBHr1q1zeWxiYiINGzZEpVIRFRXl8pjbt29Trlw5VCoV9+7dc7T36NEDlUrFV199ldWnmu9Jj1MBY7FYuHLlCqgf9OJotR5gB1BQkZDj91QUhcFbBhP1V5RTu4dNx3PMAaD/zMb4eBdz3q/L/YTuUbRo0QK1Wo3dbqdly5bs27fP3SEJIYQQea5r164sX74ci8XC7t27ee6554iPj2fJkiXuDq1AMZvN6HS6XLm2yWQiIiKCzZs3O9psNhvdu3fH39+fPXv2cPv2bYYMGYKiKCxcuDDNaw0aNIjY2Fg2btyIn58fX331Ff369ePIkSOEhoY6HfvKK69QpkwZfvvttzSvN3z4cOrXr8+1a9dS7Rs6dCgLFy7k3//+9yM86/wr/3UHiKxTqUBR8Ne9QhmvnP8BNVlNqZKmhxU3eKP11Dg98lvSFBcX5/jaZrNx5coVSZqEEELkKEVRsNmMbnlktSqsp6cnQUFBhISEMGDAAAYOHMiGDRuABz02X3zxBRUrVsTX15f+/fvz998P5lMrisLs2bOpXLkyer2eBg0aOPVgrFixghIlSjjdc8OGDU7vD5Lvs2zZMsqXL0+xYsUYNWoUNpuN2bNnExQUREBAAO+++67TdS5fvsyTTz5JsWLF8PHxoW/fvvz555+O+7711lv89ttvjl61FStWOM69desWTz31FAaDgWrVqrFx40ana//66680a9YMT09PgoODee2117BarY797du358UXX2TixIn4+fnRqVMnAObPn0+9evXw9vYmJCSE0aNH888//zjOGzZsGPXr1ycxMRFI+jC8cePGDBw4MM3v0ZYtW/Dw8KBly5aOtp9++omTJ0/y5ZdfEhoaSlhYGPPmzeOzzz5zeq/zsP379zN27FiaNWtG5cqVmTJlCiVKlODoUefpFlu2bOGnn35i7ty5aV5ryZIl3Lt3j0mTJrnc36tXLw4dOuQ0l7wwkB6nwsJixFN96sF2SAvQGnL8Njv77kTvkVwEwsaXhw4D5Lsk6WHBwcHExMRQsmRJ7ty5A/x/e/cdV1X9P3D8dbnA5TJdKCAo4ATFSc4cJIojZ+ZMw1Vm5bZcuUdpmiNH31+o5TYHmblQU3EULpyEiii5MnOgsrnn9wdx8sp2cDHfz8fjPuJ+zud8zvtcj3bffD7nfdKe1SSEEEI8TwZDPHv3+Zjk2I0bnUarffr/9+v1epKTk9X3UVFRBAcHs2XLFu7evUunTp34/PPP1SRm7NixbNy4kUWLFlGuXDn279/PO++8g6OjI40aNcr1caOioti2bRvbt28nKiqKjh07Eh0dTfny5dm3bx+HDh2id+/eNGnShDp16qAoCu3atcPGxoZ9+/aRkpLCgAED6Ny5M3v37qVz586cOXOG7du3s2vXLgAcHBzU402cOJEZM2Ywc+ZM5s+fT/fu3bly5QpFihTh2rVrtGzZksDAQL7//nt+//13+vXrh5WVFRMmTFDH+O677/jggw84ePCgmrCamZkxb9483N3diY6OZsCAAXzyyScsXLgQgHnz5lG1alVGjhzJV199xWeffcbt27fV7ZnZv38/vr6+Rm2HDx+mcuXKuLi4qG0BAQEkJiZy7Ngx/Pz8Mh3r9ddfZ+3atbRq1YpChQqxbt06EhMTady4sdrnzz//pF+/fgQHB2Ntnfm1dO7cOSZNmsRvv/2WZWJUunRpihcvTmhoKJ6eWd/W8bKRxOk/yDAoErNCJdJmop4zvbke638SsmTDy/FwWycnJ/W3UHfvPt8y60IIIcR/QVhYGKtWraJJkyZqm8FgYNmyZdjZ2QFpS712797N1KlTefToEbNnz2bPnj3qbIinpycHDhzgm2++yVPiZDAYWLJkCXZ2dnh7e+Pn50dkZCRbt27FzMyMChUq8MUXX7B3717q1KnDrl27OHXqFNHR0bi5uQGwfPlyKlWqxJEjR3jttdewtbXF3NwcJyenDMcLDAyka9euAEybNo358+cTFhZG8+bNWbhwIW5ubnz99ddoNBoqVqzI9evX+fTTTxk3bpxa7KBs2bLMmDHDaNzBgwerP3t4eDB58mQ++OADNTGytbVlxYoVNGrUCDs7O2bNmsXu3buNkronXb582ShBgrR7lUqUKGHUVrhwYSwtLbl582aWY61du5bOnTtTtGhRzM3Nsba2ZtOmTZQpUwZIm0EMDAykf//++Pr6Gt0Pni4xMZGuXbsyc+ZMSpUqle2MUsmSJTMd42UmiZPJKehJhKRHgDmkxD37kBbWLyRpehmVKFGCW7duqe/9/f1NGI0QQoj/OjMzPY0bnTbZsfNiy5Yt2NrakpKSQnJyMm3btjW6R8bd3V1NmiBt9Ub6/1PPnTtHQkKCukwtXVJSUob7ZXLy5HFKlCiBVqs1qsj2+P/PIyIicHNzU5MmAG9vbwoVKkRERASvvfZatserUqWK+rONjQ12dnZGY9etW9doJU39+vV5+PAhV69epVSpUgAZZoEAfvnlF6ZNm8a5c+eIjY0lJSWFhIQEHj16hI2NDQB169Zl+PDhTJ48mU8//ZSGDRtmG2t8fDxWVlYZ2jNb6aMoSrYrgMaOHcvdu3fZtWsXxYoVIzg4mLfffpvQ0FB8fHyYP38+sbGxjBo1KssxRo0ahZeXV67uXdLr9cTFPYfvtQWIJE6mpCist5yIr9l5SF9GqpiBpywhex6KFy/OX3/9pb5v3rw527ZtM2FEQggh/us0Gs0zLZfLT35+fixatAgLCwtcXFywsLAw2v7ke41Gg8FgAFD/+/PPP1OyZEmjfjqdDkhbuvbkfVePLwXM7jjZHTurBCGnxCE355XZGOnn8Hh7eiKU7sqVK7Rs2ZL+/fszefJkihQpwoEDB+jTp4/RORsMBg4ePIhWq+XChQs5xlqsWLEMq2WcnJz47bffjNru3r1LcnJyhpmodFFRUXz99decOXOGSpUqAVC1alVCQ0NZsGABixcvZs+ePfz666/qn186X19funfvznfffceePXs4ffq0ei9b+mdTrFgxxowZw8SJE9X97ty5g6OjY47n+DKRxMmUkuPSkibx3Dk6OnL79m31vSRNQgghhDEbGxvKli37VPt6e3uj0+mIiYnJclmeo6MjDx48MJpxyaq0dV6PHRMTwx9//KHOOp07d4779+/j5eUFgKWlJampeb+lwNvbmw0bNhglUIcOHcLOzi5Dgvi4o0ePkpKSwqxZs9SZsnXr1mXoN3PmTCIiIti3bx8BAQEsXbqUXr16ZTlu9erVWbFihVFb3bp1mTp1Kjdu3MDZ2RlIKxih0+moWbNmpuOkz/w8+VwlrVarJo3z5s1jypQp6rbr168TEBDA2rVrqV27NgAbNmwgPj5e7XPkyBF69+5NaGiouuQPICEhgaioqDzPPhZ0UlWvgIgb9DuMvg4Dwkwdyn/C40nTm2++KUmTEEII8RzZ2dkxfPhwhgwZwnfffUdUVBQnTpxgwYIFfPfddwDUrl0ba2trRo8ezcWLF1m1apVRdbun5e/vT5UqVejevTvHjx8nLCyMnj170qhRI3UJXXqBhvDwcG7fvq1WssvJgAED+OOPP/j444/5/fff+fHHHxk/fjxDhw7N9mGuZcqUISUlhfnz53Pp0iWWL1/O4sWLjfqEh4czbtw4goKCqF+/PnPnzmXQoEHZ3icUEBDA2bNnjWadmjVrhre3Nz169ODEiRPs3r2b4cOH069fP+zt7QG4du0aFStWJCws7XtlxYoVKVu2LO+//z5hYWFERUUxa9YsQkJC1IcBlypVisqVK6uv8uXLq+eWXlCrTJkyRn08PDwA8PLyonjx4mqM6TNXj1cD/C+QxKmgsLAGSxuwzLiONT8oikJcUso/r5ej6EN2Bg0aBMBbb73FTz/9ZOJohBBCiP+eyZMnM27cOKZPn46XlxcBAQH89NNP6pfpIkWKsGLFCrZu3YqPjw+rV682qkz3tDQaDcHBwRQuXJiGDRvi7++Pp6cna9euVfu89dZbNG/eHD8/PxwdHVm9enWuxi5ZsiRbt24lLCyMqlWr0r9/f/r06cPYsWOz3a9atWrMnj2bL774gsqVK7Ny5UqmT5+ubk9ISKB79+4EBgbSunVrIO05SP7+/vTo0SPL2TEfHx98fX2NZq+0Wi0///wzVlZW1K9fn06dOtGuXTuj8uHJyclERkaqM00WFhZs3boVR0dHWrduTZUqVfj+++/57rvvaNmyZa4+m7xYvXo13bt3z7Iy38tKo+S16P9LLjY2FgcHB+7fv69m5aYS9/A+1l+m3WQYNzwGa1sHYu/+Qf3NaRdwj90lGfK/YCweuykwKSmJadOmkWymJahB2l+8qIY+6OMfYfZl2nS1YfgfmNnmfG6GuDgia6RN6U4csJBfr2e8ge/kGH/QJNF4XWMgrRy5WlUvMZWlnxwA4L25jbDQaTPsn59at24tSZIQQoh8k5CQQHR0NB4eHpnewC/E87B161aGDx/OmTNnsp31Kij++usvKlasyNGjR9Uk2tSy+7ual9xA7nEqYB7PYxXMSEpKQnnsL0lSUtILOe6JmLtgbnwzYMkUM5aPOIAGDX2ZCaA+t6mgcXBwIDY2Fo1Gk+cHAAohhBBCFFQtW7bkwoULXLt2zaiSYEEVHR3NwoULC0zS9DxJ4lSAKIrCpjkz4J976x6V82Hm7Nm52RGSn0+5x19H+LF6zGEALAANOVencS7jgLml6X4DYm9vb/Qk8zVr1tClSxeTxSOEEEII8Tyl34LwMqhVqxa1atUydRgvhCROBUhKYiK3Ll9UEyeVoqB9Yu2rs6szVokJoChY/i8Arh/D8E+SkxoXR1xqxnKfT1Ieq4qitmmSsPxnnC7TamJuaUZCSjzNN7YAjJfqpTO3NMtV+c8X4cmkqXfv3pI0CSGEEEKI504SpwJu2LBh3O73HgmZlO9Mf2TaRQCc/92w3u+pj9diY3P6MQ0A/+A3SNH+szTwn9uXLHRaLCxMey9TOjs7Ox4+fKi+7927N0FBQSaMSAghhBBC/FcV/DvMXnHahORMk6bn6feSZiRqLXPsV714dfTmeXsq+Ytia2trlDR98MEHkjQJIYQQQogXRmacCghFUUhNjcNMazBqv/nFv8UYbFp8iUabVsAhXgvN/GzRpyZw9nA7AK4nrEDBii7lPiHRLIntb23HSptzolNMawFTQgHY1mE7G48eB9KW5T1eKU9vrjfZkrwnPXr0SP35gw8+YOHChSaMRgghhBBC/NdJ4lQAKMDZiN48eHgS7+7Atcxr3mu0OjT/VL7TaCFBZ4VZqoKZeVoVOY25DvNSRYjVJYNGg7VdkQz3I2XGLClF/dnaQv/Yz9YFZlnek9Kf6D1o0CDmzJlj6nCEEEIIIcR/nCROBYDBDB48PJmx3WD8x+M8tjZm/zxILC7VAL+ezbA93lILuXvG20vH3t6et99+W12SJ2XHhRBCCCFEfpF7nAqYcysfL6lnvCzOzFKrvjSZlP82s9QWmKV0z5ter+fBgwcsWbKEAQMGmDocIYQQQgjxipHEqYAxpMofyZOsrKxISEhQ39vZ2ZkwGiGEEOK/b+/evWg0Gu7du2fqUABo3LgxgwcPfi5j5ebcJkyYQLVq1XI9pkajITg4+Jljy8rly5fRaDSEv+CCYek+++wz3nvvvXw51vPw2muvsXHjxhd+HPmWLgo0S0tLEhMT1feffPIJX3zxhQkjEkIIIV5+gYGBaDQaNBoNFhYWeHp6Mnz4cKPiSy+b9OQiu9eECRNyNdbw4cPZvXv3iw04D9zc3Lhx4waVK1d+4cf6888/mTt3LqNHjzZqX7hwIR4eHlhZWVGzZk1CQ0OzHefxa+zxV6VKldQ+GzduxNfXl0KFCmFjY0O1atVYvny50TgPHjxg8ODBlC5dGr1eT7169Thy5IhRn88++4yRI0diMBgXWXveJHF6BSmKQnJiqtErXXLii73g8sLS0pLk5H8f5PvZZ59J0iSEEEI8J82bN+fGjRtcunSJKVOmsHDhQoYPH56vMTz+//lnlZ5cpL+GDRtGpUqVjNpye362trYULVr0ucX2rLRaLU5OTpibv/jyBEFBQdStWxd3d3e1be3atQwePJgxY8Zw4sQJGjRoQIsWLYiJiclynLlz5xp99n/88QdFihTh7bffVvsUKVKEMWPGcPjwYU6dOkWvXr3o1asXO3bsUPv07duXkJAQli9fzunTp2nWrBn+/v5cu3ZN7dOqVSvu379vtN+LIInTK0ZRFDbOPM43g/by9T+vbz45oG5fPvaQCaP7V2ZJ06RJk0wYkRBCCJEzRVF4lJpqkldeiybpdDqcnJxwc3OjW7dudO/ePdvlZocOHaJhw4bo9Xrc3NwYOHCg0QxVZsvVChUqxLJly4B/Z4TWrVtH48aNsbKyYsWKFfz999907doVV1dXrK2t8fHxYfXqvFe6Sk8u0l+2traYm5tnaEt37NgxfH19sba2pl69ekRGRqrbMluqt2TJEipVqoROp8PZ2ZmPPvooy1gmTZpEiRIl1KV1OX127u7uTJs2jd69e2NnZ0epUqX43//+p25/cqle+nLD3bt3Z3kOAFOmTKF48eLY2dnRt29fRo4cmeMSxDVr1tCmTRujttmzZ9OnTx/69u2Ll5cXc+bMwc3NjUWLFmU5joODg9Fnf/ToUe7evUuvXr3UPo0bN6Z9+/Z4eXlRpkwZBg0aRJUqVThwIO27aXx8PBs2bGDGjBk0bNiQsmXLMmHCBDw8PIyOrdVqadmy5VNdN3khVfVeRooCSY+wTo3HOjUh5/6PSUkycOPSPVbZJnHdPOvZJecyDphnUoAivxQqVIi//voLgKlTp2aYLhZCCCEKojiDgTL7T5vk2FENfbDRPv1jRPR6fZYzQKdPnyYgIIDJkycTFBTEX3/9xUcffcRHH33E0qVL83ScTz/9lFmzZrF06VJ0Oh0JCQnUrFmTTz/9FHt7e37++Wd69OiBp6cntWvXfurzycmYMWOYNWsWjo6O9O/fn969e3Pw4MFM+y5atIihQ4fy+eef06JFC+7fv59pX0VRGDx4MMHBwRw4cIBy5crl+rObNWsWkydPZvTo0axfv54PPviAhg0bUrFixac6h5UrVzJ16lQWLlxI/fr1WbNmDbNmzcLDwyPL8e7evcuZM2fw9fVV25KSkjh27BgjR4406tusWTMOHcr9L9yDgoLw9/endOnSmW5XFIU9e/YQGRmprjBKSUkhNTUVKysro756vV5NrtLVqlWLGTNm5DqepyGJ08tGUWBJADZ//MalpxwiGTJNmmqWKsSHE2qj0WgwtzQzaYW+W7du4erqyoABAyRpEkIIIV6wsLAwVq1aRZMmTTLdPnPmTLp166YWaChXrhzz5s2jUaNGLFq0KMMX2+wMHjyYDh06GLU9voTu448/Zvv27fzwww8vNHGaOnUqjRo1AmDkyJG0atWKhISETM9lypQpDBs2jEGDBqltr732mlGflJQUevbsydGjRzl48CCurq5A7j+7li1bqpWDP/30U7766iv27t2bbeKU3TnMnz+fPn36qDM848aNY+fOnTx8+DDL8a5cuYKiKLi4uKhtt2/fJjU1lRIlShj1LVGiBDdv3sxyrMfduHGDbdu2sWrVqgzb7t+/T8mSJUlMTESr1bJw4UKaNm0KpBUEq1u3LpMnT8bLy4sSJUqwevVqfvvtN8qVK2c0TsmSJYmJicFgMGBm9mJ++S+J08smOQ7++C1ju1sdsLCGlPg8DXd0rD/Wlmm/ndJbmLacubm5OQaDQb2x7+rVqyaLRQghhHga1mZmRDX0Mdmx82LLli3Y2tqSkpJCcnIybdu2Zf78+Zn2PXbsGBcvXmTlypVqm6IoGAwGoqOj8fLyyvVxH5/NAEhNTeXzzz9n7dq1XLt2jcTERBITE7GxscnT+eRVlSpV1J+dnZ2BtF/clipVyqjfrVu3uH79epZJZbohQ4ag0+n49ddfKVasmNqe28/u8Xg0Gg1OTk7cunXrqc8hMjIywyNcatWqxZ49e7IcLz4+7XtkZsnjk98RFUXJ9ffGZcuWUahQIdq1a5dhm52dHeHh4Tx8+JDdu3czdOhQPD09ady4MQDLly+nd+/elCxZEq1WS40aNejWrRvHjx83Gkev12MwGEhMTESv1+cqrrySxKkgUhR0yaBNSYHUxMeaFeKS47H+533lusHEaa0Iq1UGaysbSIknPo+Jk7WlFmtL018G5ubmpKamFal4svy4EEII8bLQaDTPtFwuP/n5+bFo0SIsLCxwcXHBwsIiy74Gg4H333+fgQMHZtiWnmhoNJoM91lltvTvyYRo1qxZfPXVV8yZMwcfHx9sbGwYPHgwSUlJT3Naufb4+aYnAJlVZcvtl/CmTZuyevVqduzYQffu3dX23Hx2T8aTHlNOVeJyOofMkp3spCd8d+/exdHRUW3TarUZZpdu3bqVYRYqM4qisGTJEnr06IGlpWWG7WZmZpQtWxaAatWqERERwfTp09XEqUyZMuzbt49Hjx4RGxuLs7MznTt3zrDk8M6dO1hbW7+wpAkkcSp4FIVJy1OpeA3gRxL5Ud3Ub2c/ztw7Sdg/7+O0VsRp9TQObolGScxstJfC40kTpN2AKIQQQogXy8bGRv3CmpMaNWpw9uzZbPs7Ojpy48YN9f2FCxeIi4vLcezQ0FDatm3LO++8A6R98b9w4UKeZrFeJDs7O9zd3dm9ezd+fn5Z9mvTpg2tW7emW7duaLVaunTpAuTus3sRKlSoQFhYGD169FDbjh49mu0+ZcqUwd7ennPnzlG+fHkgrWBXzZo1CQkJoX379mrfkJAQ2rZtm2Mc+/bt4+LFi/Tp0ydXcSuKYvQomnQ2NjbY2Nhw9+5dduzYkeF+pjNnzlCjRo1cHeNpSVU9E1OAVO2/vw3QGpR/kiZjuupVOXL/VK7HrV68OnrzF5dxPy9ardYoaVqwYEGGaWUhhBBCmNann37K4cOH+fDDDwkPD+fChQts3ryZjz/+WO3zxhtv8PXXX3P8+HGOHj1K//79s53FSle2bFlCQkI4dOgQERERvP/++7m+dya/TJgwgVmzZjFv3jwuXLjA8ePHM13W2L59e5YvX06vXr1Yv349kLvP7kX4+OOPCQoK4rvvvuPChQtMmTKFU6dOZbu8zszMDH9//wyFF4YOHcq3337LkiVLiIiIYMiQIcTExNC/f3+1z6hRo+jZs2eGMYOCgqhdu3amz6CaPn06ISEhXLp0id9//53Zs2fz/fffq0k0wI4dO9i+fTvR0dGEhITg5+dHhQoVjKrzQVoC3qxZs1x/Pk9DZpxMSFEUjlV14L7Dv/+omPHvz+vbt6KXU3uc+1YjwQJYXSetOMQT9nbai7XWOAfWm+tNer9Sbmi1WqPp5CVLlmT4SyCEEEII06tSpQr79u1jzJgxNGjQAEVRKFOmDJ07d1b7zJo1i169etGwYUNcXFyYO3cux44dy3Hszz77jOjoaAICArC2tua9996jXbt23L9//0WeUp68++67JCQk8NVXXzF8+HCKFStGx44dM+3bsWNHDAYDPXr0wMzMjA4dOuT42b0I3bt359KlSwwfPpyEhAQ6depEYGAgYWFh2e733nvv0adPH2bMmKEWWejcuTN///03kyZNUh/Eu3XrVqMKeTdu3MjwXKf79++zYcMG5s6dm+mxHj16xIABA7h69Sp6vZ6KFSuyYsUKo8/m/v37jBo1iqtXr1KkSBHeeustpk6dapSUX7t2jUOHDrFixYo8f055oVHyWvT/JRcbG4uDgwP379/H3t7epLE8uH+TsGP11ff2dtUJnZVAi/AoANa83ZbRYyei0+mIS46j9qra6A0Gwq6kFU3wfH07cVp9nsqPJiem8vWgvcwtlHYP0blJASa5x8ne3p4HDx6o7yVpEkII8bJJSEggOjoaDw+PPFWVE8JUmjZtipOTE8uXL8+yj6Io1KlTh8GDB9O1a9d8jO7pjRgxgvv37xs9++px2f1dzUtuIDNOBYRv9V3orZzYTye1LcVMS7xBISU1lfhUA4pGh6LJ/ibBl8XOnTupW7cuAKtXr1bXAQshhBBCiGcXFxfH4sWLCQgIQKvVsnr1anbt2kVISEi2+2k0Gv73v/9x6lTubxExteLFixuVtH9RJHEqIMzM0u5HWt+8Ky3DJwOwsnYzgn79/d9Obt9inRoPl5vnaWxFUUhJSku4khNTc+idP+rUqcPhw4e5fPmyJE1CCCGEyJXQ0FBatGiR5fbsnlH0qtFoNGzdupUpU6aQmJhIhQoV2LBhA/7+/jnuW7VqVapWrZoPUT4fI0aMyJfjSOJUQCiKQmx8PDeKl8zTfrUcbLJ9boOiKGyceZybl0y/TtjMzAxFUfjjjz9wdXWlTp061KlTx9RhCSGEEOIl4evrS3h4uKnDeCno9Xp27dpl6jD+UyRxKiC2zJrG5UtXoftgta37bzsZMfIzLCwtiE+Op/HaRhQx/DtjdLp+Jayt7LItApGSZChQSROAm5tbjs8REEIIIYR4kl6vz/ey3kKkk8SpgPjzUhRojMuHlyruiIOVDo1GgyZVw/LrMVRP/PdhcDZaLeShcl6vGa9jodMSl5TC3Kn59xuIx5MmgB9//DGb3kIIIYQQQhQ8kjgVYJ1bt/t3Nik53ihpwq0OWFjnaTwLnTbtpcm/2Z4nZ8N+/PFH2rRpk2/HF0IIIYQQ4nmQxKkAy2oJXtzg01g7uOVptskUnox/165dNGnSxETRCCGEEEII8fSyriogCi4L6wKfNLVu3drovSRNQgghhBDiZSaJ00tAURTiU+JNHUae/PTTT+rPkjQJIYQQQoiXnSROBZyiKPTc1pMWG/P27CZT2bx5s/qzoigoiiJJkxBCCCEKnMaNGzN48OBnHicyMhInJycePHjw7EHlg6+//lruN39KkjgVIA1LvJWhLT4lnvC/wo3a9OZW+RRR3mg0Gtq2bStlQoUQQogCLjAwMK1qr0aDhYUFnp6eDB8+nEePHpk6tHyzceNGJk+e/MzjjBkzhg8//BA7Ozu17fTp0zRq1Ai9Xk/JkiWZNGlSrh7F8vPPP1O7dm30ej3FihWjQ4cORtt3795NvXr1sLOzw9nZmU8//ZSUlBSjPoqi8OWXX1K+fHl0Oh1ubm5MmzZN3d6vXz+OHDnCgQMHnvHMXz1SHKKAMNNYUMTKxahNY5F5Xpvdc5tM5fGYoqKiTBiJEEIIIXKjefPmLF26lOTkZEJDQ+nbty+PHj1i0aJFpg4tXxQpUuSZx7h69SqbN29mzpw5altsbCxNmzbFz8+PI0eOcP78eQIDA7GxsWHYsGFZjrVhwwb69evHtGnTeOONN1AUhdOnT6vbT506RcuWLRkzZgzff/89165do3///qSmpvLll1+q/QYNGsTOnTv58ssv8fHx4f79+9y+fVvdrtPp6NatG/Pnz+f1119/5s/gVSIzTgWEAsRrn0iICmCClJknE7nDhw+bKBIhhBBC5JZOp8PJyQk3Nze6detG9+7dCQ4OBmDChAlUq1aN5cuX4+7ujoODA126dDFajqYoCjNmzMDT0xO9Xk/VqlVZv369un3ZsmUUKlTI6JjBwcFG3xvSj7NkyRJKlSqFra0tH3zwAampqcyYMQMnJyeKFy/O1KlTjcaJiYmhbdu22NraYm9vT6dOnfjzzz8zjJtd/E8u1VuxYgW+vr7Y2dnh5OREt27duHXrVraf4bp166hatSqurq5q28qVK0lISGDZsmVUrlyZDh06MHr0aGbPnp3lrFNKSgqDBg1i5syZ9O/fn/Lly1OhQgU6duyo9lmzZg1VqlRh3LhxlC1blkaNGjF9+nQWLFignldERASLFi1SH//i4eFBtWrV8Pf3NzpemzZtCA4OJj7+5bqH3tQkcSoAFGD5m31o5edg6lDy7Mmk6ezZs9SpU8dE0QghhBCmpSgKcUkpJnnlZilYdvR6PcnJyer7qKgogoOD2bJlC1u2bGHfvn18/vnn6vaxY8eydOlSFi1axNmzZxkyZAjvvPMO+/bty9Nxo6Ki2LZtG9u3b2f16tUsWbKEVq1acfXqVfbt28cXX3zB2LFj+fXXX9XPuF27dty5c4d9+/YREhJCVFQUnTt3zjBudvE/KSkpicmTJ3Py5EmCg4OJjo4mMDAw29j379+Pr6+vUdvhw4dp1KgROp1ObQsICOD69etcvnw503GOHz/OtWvXMDMzo3r16jg7O9OiRQvOnj2r9klMTMTKyvh2Db1eT0JCAseOHQPSinN5enqyZcsWPDw8cHd3p2/fvty5c8doP19fX5KTkwkLC8v2/IQxWapXACSi41qJUqYOI88yS5q8vb1NFI0QQghhevHJqXiP22GSY5+bFIC15dN9tQsLC2PVqlVGBZ0MBgPLli1T793p0aMHu3fvZurUqTx69IjZs2ezZ88e6tatC4CnpycHDhzgm2++oVGjRrk+tsFgYMmSJdjZ2eHt7Y2fnx+RkZFs3boVMzMzKlSowBdffMHevXupU6cOu3bt4tSpU0RHR+Pm5gbA8uXLqVSpEkeOHOG1117LMf7M9O7dW/3Z09OTefPmUatWLR4+fIitrW2m+1y+fJmaNWsatd28eRN3d3ejthIlSqjbPDw8Moxz6dIlIG2mbPbs2bi7uzNr1iwaNWrE+fPnKVKkCAEBAcyZM4fVq1fTqVMnbt68yZQpUwC4ceOGOs6VK1f44Ycf+P7770lNTWXIkCF07NiRPXv2qMezsbGhUKFCXL58OU9/Vq86mXEqYDof2Z2xUVHQP+NvkZ63c+fOGb2XpEkIIYR4uWzZsgVbW1usrKyoW7cuDRs2ZP78+ep2d3d3o4IHzs7O6tK1c+fOkZCQQNOmTbG1tVVf33//fZ7vdX7yOCVKlMDb2xszMzOjtvRjR0RE4ObmpiZNAN7e3hQqVIiIiIhcxZ+ZEydO0LZtW0qXLo2dnR2NGzcG0pYFZiU+Pj7DLBBk/OVy+mxgVvepGwwGIK3QxFtvvUXNmjVZunQpGo2GH374AYBmzZqpS/l0Oh3ly5enVatWAGi1WnWcxMREvv/+exo0aEDjxo0JCgril19+ITIy0uiYer2euLi4LM9NZCQzTgWMuSHVuEFR+P7Gn1RPTDJNQFnw9vamefPmbN++XZImIYQQ4h96Cy3nJgWY7Nh54efnx6JFi7CwsMDFxQULCwuj7U++12g06hf89P/+/PPPlCxZ0qhf+hI1MzOzDMsHH18KmN1xsju2oiiZJiBPtmc3xpMePXpEs2bNaNasGStWrMDR0ZGYmBgCAgJISsr6O1ixYsW4e/euUZuTkxM3b940aktP2NJnnp7k7OwMYPR9SqfT4enpaZS4DR06lCFDhnDjxg0KFy7M5cuXGTVqlDqL5ezsjLm5OeXLl1f38fLyAtISwAoVKqjtd+7cwdHRMctzExlJ4lTAtE30BTb+25Acb5w0udUBC+t8jyudh4cH0dHRAGzbts1kcQghhBAFkUajeerlcvnNxsbmqR8h4u3tjU6nIyYmJsulXo6Ojjx48IBHjx5hY2MDQHh4+NOGa3TsmJgY/vjjD3XW6dy5c9y/f19NEvLq999/5/bt23z++efqmEePHs1xv+rVq2dYhVO3bl1Gjx5NUlISlpaWAOzcuRMXF5cMS/jS1axZE51OR2RkpFrpLjk5mcuXL1O6dGmjvhqNBheXtErMq1evxs3NjRo1agBQv359UlJSiIqKokyZMgCcP38ewGicqKgoEhISqF69eo7nKP4lS/UKGHOy/m1R3ODT0Hu7yartaTQaLl++XCDLoQshhBAi/9jZ2TF8+HCGDBnCd999R1RUFCdOnGDBggV89913ANSuXRtra2tGjx7NxYsXWbVqFcuWLXvmY/v7+1OlShW6d+/O8ePHCQsLo2fPnjRq1ChDoYbcKlWqFJaWlsyfP59Lly6xefPmXD3jKSAggMOHD5Oa+u+KoW7duqHT6QgMDOTMmTNs2rSJadOmMXToUPU7VFhYGBUrVuTatWsA2Nvb079/f8aPH8/OnTuJjIzkgw8+AODtt99Wx545cyanT5/m7NmzTJ48mc8//5x58+apS/X8/f2pUaMGvXv35sSJExw7doz333+fpk2bGs1ChYaG4unpqSZXInckcTIxRYEkA2BIAEMCiWYZp7BVFtZPnTQpPF7lJzXnHZ4gyZIQQgghHjd58mTGjRvH9OnT8fLyIiAggJ9++kldNlakSBFWrFjB1q1b8fHxYfXq1UyYMOGZj6vRaAgODqZw4cI0bNgQf39/PD09Wbt27VOP6ejoyLJly/jhhx/w9vbm888/N3o2UlZatmyJhYUFu3btUtscHBwICQnh6tWr+Pr6MmDAAIYOHcrQoUPVPnFxcURGRhotXZw5cyZdunShR48evPbaa1y5coU9e/ZQuHBhtc+2bdto0KABvr6+/Pzzz/z444+0a9dO3W5mZsZPP/1EsWLFaNiwIa1atcLLy4s1a9YYxb169Wr69ev3NB/VK02jPGvtypdMbGwsDg4O3L9/H3t7e9PGcu8G72xrQnTSv7NMuiSF5bPSEpuS+0Iwt7XCembabwPiRkRhbVMsT8dITkzlm0F7WWWbxHXzjOt6c1OB58mk6Y8//jB6XoEQQgjxKkpISCA6OhoPD49MCwSIV8PChQv58ccf2bHDNNUU8+rMmTM0adKE8+fP4+Dw8j0K52lk93c1L7nBy7EI9z8qITXh36RJUdAlg+6xCSe9tQOxKfd41juakiHTpMm3dOEcbySVpEkIIYQQImvvvfced+/e5cGDB0ZV/Aqq69ev8/33378ySdPzJIlTQaAojFtXmsr/1PBP9/6u9zlz7yTP89FkR8f6Y22ZlizpLbTZLsGTpEkIIYQQInvm5uaMGTPG1GHkWrNmzUwdwktLEqcCQJdMhqRJV70qR+6fQv9Ym9782ZcBWFtqn6raT0FY2iiEEEIIIYSpSHGIAkZp9QVlftlHie+CMhSCyO8CDffv31f/K0mTEEIIIYR4lUniVNCY6zDT63OVJCmKQnJiao6vvNBoNMyePRtIK42pKIokTUIIIYQQ4pUnS/VMKNuChoqC3mBAn0UfRVHYOPM4Ny/df27xpCdrw4YNw8XFhS5dujy3sYUQQgghhHiZSeJkQnGZTAbpUkmrsPd9W8KuXs1y35QkwwtJmtK1bNnyuY0thBBCCCHEy04SJxNKTU7M0KYBSIlHe/WI8Qa3OmkPwM1ErxmvY6HLuqx4XFIKc6fuynL7k0mT3NMkhBBCCCGEMUmcCrhGpUqyrfN+rK2LZigWkc5Cp802cbLQZL0kUJImIYQQQgghcibFIQq4eI0GLK2zTJqehSRNQgghhHhS48aNGTx4sPre3d2dOXPm5Hscz+O4DRs2ZNWqVc8noBfs1q1bODo6cu3aNVOHIrIgidMrzMrq3+dCSdIkhBBCvDoCAwPRaDQZXhcvXmTjxo1MnjzZ1CFy5MgR3nvvvafef8uWLdy8edOo2FViYiIff/wxxYoVw8bGhjZt2nA1m3vKIS2By+yz+vDDD436RURE0KZNGxwcHLCzs6NOnTrExMQAcPny5UzH0Gg0/PDDDwAUL16cHj16MH78+Kc+Z/FiSeL0CouPj6dy5cqSNAkhhBCvoObNm3Pjxg2jl4eHB0WKFMHOzu6Zxk5OTn7m+BwdHbG2zvz+7tyYN28evXr1wszs36+7gwcPZtOmTaxZs4YDBw7w8OFD3nzzTVJTs358y5EjR4w+o5CQEADefvtttU9UVBSvv/46FStWZO/evZw8eZLPPvtM/SW1m5tbhs964sSJ2NjY0KJFC3WcXr16sXLlSu7evfvU5y1eHEmc/oMURSEuKeWx17//GNjoLLG0tFTfnz59WpImIYQQ4nlRFEh6ZJpXdo85yYROp8PJycnopdVqMyzVA3jw4AHdunXD1tYWFxcX5s+fb7Rdo9GwePFi2rZti42NDVOmTAFg0aJFlClTBktLSypUqMDy5cuN9pswYQKlSpVCp9Ph4uLCwIED1W1PLtXLru+Tbt++za5du2jTpo3adv/+fYKCgpg1axb+/v5Ur16dFStWcPr0aXbtyrqIlqOjo9FntGXLFsqUKUOjRo3UPmPGjKFly5bMmDGD6tWr4+npSatWrShevDgAWq02w2e9adMmOnfujK2trTqOj4+Puk0UPFIcogCKT07gaX/PoygKHRcf5tiVjL+puPbtB4BCcnIyPj4+nD59+pniFEIIIcQTkuNgmotpjj36OljavJChZ86cyejRo5kwYQI7duxgyJAhVKxYkaZNm6p9xo8fz/Tp0/nqq6/QarVs2rSJQYMGMWfOHPz9/dmyZQu9evXC1dUVPz8/1q9fz1dffcWaNWuoVKkSN2/e5OTJk5kePy99AQ4cOIC1tTVeXl5q27Fjx0hOTqZZs2Zqm4uLC5UrV+bQoUMEBATk+DkkJSWxYsUKhg4dqt4rbjAY+Pnnn/nkk08ICAjgxIkTeHh4MGrUKNq1a5fpOMeOHSM8PJwFCxZk2FarVi1CQ0Pp3bt3jvGI/CWJUwHU7se27H7KfeOTUzNPmv6vPyl3/l3De/Dgwac8ghBCCCH+C7Zs2WI029GiRQv1fpsn1a9fn5EjRwJQvnx5Dh48yFdffWWUOHXr1s3oy363bt0IDAxkwIABAAwdOpRff/2VL7/8Ej8/P2JiYnBycsLf3x8LCwtKlSpFrVq1Mj1+XvpC2j1FJUqUMFqmd/PmTSwtLSlcuLBR3xIlSnDz5s0sx3pccHAw9+7dIzAwUG27desWDx8+5PPPP2fKlCl88cUXbN++nQ4dOvDLL78YzUylCwoKwsvLi3r16mXYVrJkSU6cOJGreET+ksSpgKviWBW9uf6p9j061h9rSy02OgujdiWPU/lCCCGEyCUL67SZH1MdOw/8/PxYtGiR+t7GJuvZqrp162Z4/2TFO19fX6P3ERERGYo71K9fn7lz5wJp9wjNmTMHT09PmjdvTsuWLWndujXm5hm/nualL6Tdx/14EazsKIqSodJwVoKCgmjRogUuLv/OKhoMBgDatm3LkCFDAKhWrRqHDh1i8eLFGRKn+Ph4Vq1axWeffZbpMfR6PXFxcbmKR+QvucepAFoZ8G/ZzIUNF5GSZCA5MTXDKyeSNAkhhBD5TKNJWy5nilceH11iY2ND2bJl1Zezs3MeT9X4eJklXk/2eTxJcXNzIzIykgULFqDX6xkwYAANGzbMtLBEXvoCFCtWLEOBBScnJ5KSkjK037p1ixIlSuR4vleuXGHXrl307ds3w7HMzc3x9vY2avfy8lKr6j1u/fr1xMXF0bNnz0yPc+fOHRwdHXOMR+Q/mXEqYDQksP3L3wlMu5eQpZ8eJEXJ3W9MnmSjszR6L0mTEEIIIZ7Gr7/+muF9xYoVs93Hy8uLAwcOGCUIhw4dMrrvSK/X06ZNG9q0acOHH35IxYoVOX36NDVq1MgwXl76Vq9enZs3b3L37l11aV7NmjWxsLAgJCSETp06AXDjxg3OnDnDjBkzcvwMli5dSvHixWnVqpVRu6WlJa+99hqRkZFG7efPn6d06dIZxgkKCqJNmzZZJkdnzpyhcePGOcYj8p8kTgVMaat3CbTNfYLjXMYBc8vMJw4X/18Q/fulrTWWpEkIIYQQT+vgwYPMmDGDdu3aERISwg8//MDPP/+c7T4jRoygU6dO1KhRgyZNmvDTTz+xceNGtYLdsmXLSE1NpXbt2lhbW7N8+XL0en2myUZe+kJa4uTo6MjBgwd58803AXBwcKBPnz4MGzaMokWLUqRIEYYPH46Pjw/+/v7qvk2aNKF9+/Z89NFHapvBYGDp0qW8++67mS4PHDFiBJ07d6Zhw4b4+fmxfft2fvrpJ/bu3WvU7+LFi+zfv5+tW7dmGndcXBzHjh1j2rRp2X62wjQkcSrADK616T2yWbZT7+aWZhmmwVNTU9FqtfTo2YOqlb2oU6fOiw5VCCGEEP9hw4YN49ixY0ycOBE7OztmzZqVYxW6du3aMXfuXGbOnMnAgQPx8PBg6dKl6mxKoUKF+Pzzzxk6dCipqan4+Pjw008/UbRo0Qxj5aUvpJX/7t27NytXrlQTJ4CvvvoKc3NzOnXqRHx8PE2aNGHZsmVotVq1T1RUFLdv3zYab9euXcTExGRZ6a59+/YsXryY6dOnM3DgQCpUqMCGDRt4/fXXjfotWbKEkiVLGlX2e9yPP/5IqVKlaNCgQabbhWlplFdsKiI2NhYHB4cC8dDXi1cjaL+7E7okheWz0u5Z0r85kV2PbHl3xutY2Nrleb2yRqPBzLoQLgO+I3JqS6wtJTcWQgghXoSEhASio6Px8PDIdSECkX/+/PNPKlWqxLFjx7KcmSpoatWqxeDBg+nWrZupQ/lPye7val5yAykOUcAo6NLuaXqKmzzV5wnE3ePe7m9eRHhCCCGEEC+FEiVKEBQUlGmBhoLo1q1bdOzYka5du5o6FJEFmY74D0jPlNOZFylJ0WYDTBiREEIIIYTptW3b1tQh5Frx4sX55JNPTB2GyIbMOL3knkyaAEr2k9kmIYQQQgghnidJnF5imSVNjxIzf56BEEIIIYQQ4ulJ4vQSc3JyMnr/itX5EEIIIYQQIt/IPU4FTAIKSSjEJaVgock+Ebp9L/afh9wqPEpMJi4phbik1PwJVAghhBBCiFeIJE4mpKCAoqB7bHVdV+K5V8iC2VN3ZbpPamoqqXevY1nMDYDSn/4EgPe4HS88XiGEEEIIIV5VkjiZUEpcHJOWp1LxWu76p6amcn3huxji7lG86zT0papk2de3dGH0FtostwshhBBCCCFyTxInE0q+/9AoadIXS2SOYseJe1b0nvk6Frp/E5/Y2Ac4OxZR399aPYZHiUlZjq230KrPdRJCCCGEEEI8GykOYUJK6r/3MLm2/5PSTf7mVJyB0mUKYW9ribWlOdaW5qQkxBklTQCKYlC3Z/aSpEkIIYQQz5tGoyE4ONjUYWQpKCiIZs2amTqMXOvYsSOzZ882dRgilyRxKiA05goaDXQdX4f2w2uoiU9mJcelep4QQgghnkVgYCAajSbDq3nz5qYO7aklJiYybtw4PvvsM6P2DRs24O3tjU6nw9vbm02bNuU41o4dO6hTpw52dnY4Ojry1ltvER0dneF4Y8aMoXTp0uh0OsqUKcOSJUvU7Y0bN870M27VqpXaZ9y4cUydOpXY2NhnPHuRHyRxKmAsLM0kaRJCCCHEC9e8eXNu3Lhh9Fq9erWpw3pqGzZswNbWlgYNGqhthw8fpnPnzvTo0YOTJ0/So0cPOnXqxG+//ZblOJcuXaJt27a88cYbhIeHs2PHDm7fvk2HDh2M+nXq1Indu3cTFBREZGQkq1evpmLFiur2jRs3Gn22Z86cQavV8vbbb6t9qlSpgru7OytXrnyOn4R4USRxKsB69+5t9F6SJiGEEKJgUxSFuOQ4k7zy+j1Bp9Ph5ORk9CpcuLC6/cKFCzRs2BArKyu8vb0JCQnJMMa1a9fo3LkzhQsXpmjRorRt25bLly+r2wMDA2nXrh3Tpk2jRIkSFCpUiIkTJ5KSksKIESMoUqQIrq6uRjM1AJ9++inly5fH2toaT09PPvvsM5KTk8nOmjVraNOmjVHbnDlzaNq0KaNGjaJixYqMGjWKJk2aMGfOnCzHOX78OKmpqUyZMoUyZcpQo0YNhg8fzsmTJ9UYtm/fzr59+9i6dSv+/v64u7tTq1Yt6tWrp45TpEgRo882JCQEa2tro8QJoE2bNi91wvoqkeIQBdj69evx9vYmIiJCkiYhhBDiJRCfEk/tVbVNcuzfuv2GtYX1cxnLYDDQoUMHihUrxq+//kpsbCyDBw826hMXF4efnx8NGjRg//79mJubM2XKFJo3b86pU6ewtLQEYM+ePbi6urJ//34OHjxInz59OHz4MA0bNuS3335j7dq19O/fn6ZNm+Lmlva4FTs7O5YtW4aLiwunT5+mX79+2NnZ8cknn2QZc2hoKN27dzdqO3z4MEOGDDFqCwgIyDZx8vX1RavVsnTpUgIDA3n48CHLly+nWbNmWFhYALB582Z8fX2ZMWMGy5cvx8bGhjZt2jB58mT0en2m4wYFBdGlSxdsbGyM2mvVqsX06dNJTExEp9NlGZcwPZlxKmBu3LiOtfW//+idO3dOkiYhhBBCPHdbtmzB1tbW6DV58mQAdu3aRUREBMuXL6datWo0bNiQadOmGe2/Zs0azMzM+Pbbb/Hx8cHLy4ulS5cSExPD3r171X5FihRh3rx5VKhQgd69e1OhQgXi4uIYPXo05cqVY9SoUVhaWnLw4EF1n7Fjx1KvXj3c3d1p3bo1w4YNY926dVmey71797h37x4uLi5G7Tdv3qREiRJGbSVKlODmzZtZjuXu7s7OnTsZPXo0Op2OQoUKcfXqVdasWaP2uXTpEgcOHODMmTNs2rSJOXPmsH79ej788MNMxwwLC+PMmTP07ds3w7aSJUuSmJiYbUyiYJAZpwIkxWCgUuWqKKRVrZGESQghhHi56M31/NYt6/tnXvSx88LPz49FixYZtRUpklbFNyIiglKlSuHq6qpuq1u3rlHfY8eOcfHiRezs7IzaExISiIqKUt9XqlQJM7N/f1dfokQJKleurL7XarUULVqUW7duqW3r169nzpw5XLx4kYcPH5KSkoK9vX2W5xIfHw+AlZVVhm1PVhpWFCXb6sM3b96kb9++vPvuu3Tt2pUHDx4wbtw4OnbsSEhICBqNBoPBgEajYeXKler96LNnz6Zjx44sWLAgw6xTUFAQlStXplatWhmOl943Li4uy5hEwSCJUwGRYjDg8784JFUSQgghXl4ajea5LZd70WxsbChbtmym2zL75e2TyYbBYKBmzZqZFjZwdHRUf05f3vb4OJm1GQwGAH799Ve6dOnCxIkTCQgIwMHBgTVr1jBr1qwsz6Vo0aJoNBru3r1r1O7k5JRhJufWrVsZZqEet2DBAuzt7ZkxY4batmLFCtzc3Pjtt9+oU6cOzs7OlCxZ0qiIl5eXF4qicPXqVcqVK6e2x8XFsWbNGiZNmpTp8e7cuQMYf2aiYDL5Ur2FCxfi4eGBlZUVNWvWJDQ0NNv++/bto2bNmlhZWeHp6cnixYvzKdIXq+H/HvH7bYP6XmabhBBCCGEq3t7exMTEcP36dbXt8OHDRn1q1KjBhQsXKF68OGXLljV6PVkVOC8OHjxI6dKlGTNmDL6+vpQrV44rV65ku4+lpSXe3t6cO3fOqL1u3boZilrs3LnTqIjDk+Li4tBqtUZt6e/Tk7v69etz/fp1Hj58qPY5f/48ZmZmRrN0AOvWrSMxMZF33nkn0+OdOXMGV1dXihUrlu05CtMzaeK0du1aBg8ezJgxYzhx4gQNGjSgRYsWxMTEZNo/Ojqali1b0qBBA06cOMHo0aMZOHAgGzZsyOfIn7+Lf6f9RTTXyhI9IYQQQrx46ffVPP66ffs2AP7+/lSoUIGePXty8uRJQkNDGTNmjNH+3bt3p1ixYrRt25bQ0FCio6PZt28fgwYN4urVq08dV9myZYmJiWHNmjVERUUxb968XD17KSAggAMHDhi1DRo0iJ07d/LFF1/w+++/88UXX7Br1y6jQhdff/01TZo0Ud+3atWKI0eOMGnSJC5cuMDx48fp1asXpUuXpnr16gB069aNokWL0qtXL86dO8f+/fsZMWIEvXv3znSZXrt27ShatGimcYeGhr5UD+19lZk0cZo9ezZ9+vShb9++eHl5MWfOHNzc3DKst023ePFiSpUqxZw5c/Dy8qJv37707t2bL7/8Mp8jfz4e/y0OwIDXLPjrsfW9QgghhBAvyvbt23F2djZ6vf766wCYmZmxadMmEhMTqVWrFn379mXq1KlG+1tbW7N//35KlSpFhw4d8PLyonfv3sTHx2d7P1JO2rZty5AhQ/joo4+oVq0ahw4dyvBQ28z069ePrVu3cv/+fbWtXr16rFmzhqVLl1KlShWWLVvG2rVrqV3738qHt2/fNron64033mDVqlUEBwdTvXp1mjdvjk6nY/v27WpSZGtrS0hICPfu3cPX15fu3bvTunVr5s2bZxTT+fPnOXDgAH369Mk05oSEBDZt2kS/fv3y9BkJ09AoJpreSEpKwtramh9++IH27dur7YMGDSI8PJx9+/Zl2Kdhw4ZUr16duXPnqm2bNm2iU6dOxMXFZVgvC2m/TUlMTFTfx8bG4ubmxv3795/pL/Xz8OPabyk/Pm297qJC0cxrruPewCgKFZGpWiGEEKKgS0hIIDo6Wr3lQJhep06dqF69OqNGjTJ1KLmyYMECfvzxR3bu3GnqUP7Tsvu7Ghsbi4ODQ65yA5PNON2+fZvU1NQ8lYjMqqRkSkqKOrX8pOnTp+Pg4KC+0p8PUBAUL15c/XlaUz2nKIe9Q+Fs9hBCCCGEEFmZOXMmtra2pg4j1ywsLJg/f76pwxC5ZPKqenktEZlZ/8za040aNYqhQ4eq79NnnAoCn5qNOb3oCwAKlatGZeeSmD1xM6IQQgghhMid0qVL8/HHH5s6jFx77733TB2CyAOTJU7FihVDq9XmqURkViUlzc3Ns7zhTqfTFdinMNva21PXr42pwxBCCCGEEELkwGRL9SwtLalZs2aGEpEhISFZlojMqqSkr69vpvc3CSGEEEIIIcTzYNKqekOHDuXbb79lyZIlREREMGTIEGJiYujfvz+QtsyuZ8+eav/+/ftz5coVhg4dSkREBEuWLCEoKIjhw4eb6hSEEEIIIYQQrwCT3uPUuXNn/v77byZNmsSNGzeoXLkyW7dupXTp0gDcuHHD6JlOHh4ebN26lSFDhrBgwQJcXFyYN28eb731lqlOQQghhBBCCPEKMFk5clPJS8lBIYQQQoisSDlyIV4OL305ciGEEEIIIYR4WUjiJIQQQgghhBA5kMRJCCGEEEIUSJcvX0aj0RAeHg7A3r170Wg03Lt3L8t9li1bRqFChZ752M9rnNyIjIzEycmJBw8e5MvxntXXX39Nmzav3iN1JHESQgghhHgF3bx5k48//hhPT090Oh1ubm60bt2a3bt3mzq0LNWrV48bN27g4ODwXMd1d3dnzpw5Rm2dO3fm/Pnzz/U4WRkzZgwffvghdnZ2atvp06dp1KgRer2ekiVLMmnSJLIrTZCeVGb2OnLkSIb+f//9N66urhkS0QkTJmQ6ho2NjdqnX79+HDlyhAMHDjyfD+AlYdKqekIIIYQQIv9dvnyZ+vXrU6hQIWbMmEGVKlVITk5mx44dfPjhh/z++++mDjFTlpaWODk55cux9Ho9er3+hR/n6tWrbN682Shxi42NpWnTpvj5+XHkyBHOnz9PYGAgNjY2DBs2LNNx0pPKx3322Wfs2rULX1/fDP379OlDlSpVuHbtmlH78OHD1UcDpWvSpAmvvfaa+l6n09GtWzfmz5/P66+/ntdTfmnJjJMQQgghxHOiKAqGuDiTvPJSKHnAgAFoNBrCwsLo2LEj5cuXp1KlSgwdOpRff/1V7RcTE0Pbtm2xtbXF3t6eTp068eeff6rbJ0yYQLVq1Vi+fDnu7u44ODjQpUsXoyVn69evx8fHB71eT9GiRfH39+fRo0cAGAwGJk2ahKurKzqdjmrVqrF9+/Ys485sqd6yZcsoVaoU1tbWtG/fnr///tton6ioKNq2bUuJEiWwtbXltddeY9euXer2xo0bc+XKFYYMGaLOrqSP++RSvUWLFlGmTBksLS2pUKECy5cvN9qu0Wj49ttvad++PdbW1pQrV47Nmzdn+2exbt06qlatiqurq9q2cuVKEhISWLZsGZUrV6ZDhw6MHj2a2bNnZ/nnnJ5Upr+KFi3K5s2b6d27t3pOj5/HvXv3Mn0Wqq2trdE4f/75J+fOnaNPnz5G/dq0aUNwcDDx8fHZnt9/icw4CSGEEEI8J0p8PJE1aprk2BWOH0NjbZ1jvzt37rB9+3amTp1qtPwqXXqyoCgK7dq1w8bGhn379pGSksKAAQPo3Lkze/fuVftHRUURHBzMli1buHv3Lp06deLzzz9n6tSp3Lhxg65duzJjxgzat2/PgwcPCA0NVb/8z507l1mzZvHNN99QvXp1lixZQps2bTh79izlypXL8Vx+++03evfuzbRp0+jQoQPbt29n/PjxRn0ePnxIy5YtmTJlClZWVnz33Xe0bt2ayMhISpUqxcaNG6latSrvvfce/fr1y/JYmzZtYtCgQcyZMwd/f3+2bNlCr169cHV1xc/PT+03ceJEZsyYwcyZM5k/fz7du3fnypUrFClSJNNx9+/fn2FG6PDhwzRq1AidTqe2BQQEMGrUKC5fvoyHh0eOn83mzZu5ffs2gYGBRu3nzp1j0qRJ/Pbbb1y6dCnHcb799lvKly9PgwYNjNp9fX1JTk4mLCyMRo0a5TjOf4HMOAkhhBBCvEIuXryIoihUrFgx2367du3i1KlTrFq1ipo1a1K7dm2WL1/Ovn37jO6ZMRgM6sxIgwYN6NGjh3qf1I0bN0hJSaFDhw64u7vj4+PDgAEDsLW1BeDLL7/k008/pUuXLlSoUIEvvviCatWqZbjfKCtz584lICCAkSNHUr58eQYOHEhAQIBRn6pVq/L+++/j4+NDuXLlmDJlCp6enupMUJEiRdBqtdjZ2amzLJn58ssvCQwMZMCAAZQvX56hQ4fSoUMHvvzyS6N+gYGBdO3albJlyzJt2jQePXpEWFhYludw+fJlXFxcjNpu3rxJiRIljNrS39+8eTNXn01QUBABAQG4ubmpbYmJiXTt2pWZM2dSqlSpHMdITExk5cqVGWabAGxsbChUqBCXL1/OVTz/BTLjJIQQQgjxnGj0eiocP2ayY+dG+mzPk8u3nhQREYGbm5vRF29vb28KFSpERESEes+Lu7u7UVEDZ2dnbt26BaQlLU2aNMHHx4eAgACaNWtGx44dKVy4MLGxsVy/fp369esbHbd+/fqcPHkyV+cSERFB+/btjdrq1q1rtNzv0aNHTJw4kS1btnD9+nVSUlKIj48nJiYmV8d4/Fjvvfdehljnzp1r1FalShX1ZxsbG+zs7NTPIzPx8fGZPkD5yT+f3P65Qdp9Uzt27GDdunVG7aNGjcLLy4t33nknxzEANm7cyIMHD+jZs2em2/V6PXFxcbka679AZpyEEEIIIZ4TjUaDmbW1SV65+UINUK5cOTQaDREREdn2UxQl0zGfbLewsMjwGRgMBgC0Wi0hISFs27YNb29v5s+fT4UKFYiOjjbqn5vjZhVjTkaMGMGGDRuYOnUqoaGhhIeH4+PjQ1JSUq6O8bjcxJrd55GZYsWKcffuXaM2JyenDDNL6cnXkzNRmVm6dClFixbNUDJ8z549/PDDD5ibm2Nubk6TJk3UGJ5c4ghpy/TefPPNLGfh7ty5g6OjY47x/FdI4iSEEEII8QopUqQIAQEBLFiwQC3S8Lj0wgve3t7ExMTwxx9/qNvOnTvH/fv38fLyyvXxNBoN9evXZ+LEiZw4cQJLS0s2bdqEvb09Li4uGUpaHzp0KNfje3t7GxWzADK8Dw0NJTAwkPbt2+Pj44OTk1OG5WWWlpakpqZmeywvL69nijUr1atX59y5c0ZtdevWZf/+/UbJ3c6dO3FxccHd3T3b8RRFYenSpfTs2TNDErdhwwZOnjxJeHg44eHhfPvtt0DaZ/Thhx8a9Y2OjuaXX37JdJkepN3blpCQQPXq1XN7qi89SZyEEEIIIV4xCxcuJDU1lVq1arFhwwYuXLhAREQE8+bNo27dugD4+/tTpUoVunfvzvHjxwkLC6Nnz540atQo0/LWmfntt9+YNm0aR48eJSYmho0bN/LXX3+pycaIESP44osvWLt2LZGRkYwcOZLw8HAGDRqUq/EHDhzI9u3bmTFjBufPn+frr7/OUJWvbNmybNy4kfDwcE6ePEm3bt0yzAC5u7uzf/9+rl27xu3btzM91ogRI1i2bBmLFy/mwoULzJ49m40bN2ZamS4vAgICOHz4sFHi1q1bN3Q6HYGBgZw5c4ZNmzYxbdo0hg4dqs5whYWFUbFixQzlxPfs2UN0dHSmCU+ZMmWoXLmy+kovMuHl5UXx4sWN+i5ZsgRnZ2datGiRadyhoaF4enpSpkyZZzr/l4kkTkIIIYQQrxgPDw+OHz+On58fw4YNo3LlyjRt2pTdu3ezaNEiIG2mKDg4mMKFC9OwYUP8/f3x9PRk7dq1uT6Ovb09+/fvp2XLlpQvX56xY8cya9Ys9cv4wIEDGTZsGMOGDcPHx4ft27ezefPmXFXUA6hTpw7ffvst8+fPp1q1auzcuZOxY8ca9fnqq68oXLgw9erVo3Xr1gQEBFCjRg2jPpMmTeLy5cuUKVMmy6Vn7dq1Y+7cucycOZNKlSrxzTffsHTpUho3bpzrzyMzLVu2xMLCwqhEuoODAyEhIVy9ehVfX18GDBjA0KFDGTp0qNonLi6OyMhIkpOTjcYLCgqiXr16zzQTll7wIzAwEK1Wm2mf1atXZ1uF8L9Io+Sl6P9/QGxsLA4ODty/fx97e3tThyOEEEKIl1RCQgLR0dF4eHhkenO/ELm1cOFCfvzxR3bs2GHqUHLlzJkzNGnShPPnz+Pg4GDqcHKU3d/VvOQGUlVPCCGEEEIIE3rvvfe4e/cuDx48MKpQWFBdv36d77///qVImp4nSZyEEEIIIYQwIXNzc8aMGWPqMHKtWbNmpg7BJOQeJyGEEEIIIYTIgSROQgghhBBCCJEDSZyEEEIIIZ7BK1ZnS4iXzvP6OyqJkxBCCCHEU0h/uGhcXJyJIxFCZCf9QcJZlVbPLSkOIYQQQgjxFLRaLYUKFeLWrVsAWFtbqw8nFUIUDAaDgb/++gtra2vMzZ8t9ZHESQghhBDiKTk5OQGoyZMQouAxMzOjVKlSz/yLDUmchBBCCCGekkajwdnZmeLFi5OcnGzqcIQQmbC0tMTM7NnvUJLESQghhBDiGWm12me+f0IIUbBJcQghhBBCCCGEyIEkTkIIIYQQQgiRA0mchBBCCCGEECIHr9w9TukPwIqNjTVxJEIIIYQQQghTSs8JcvOQ3FcucXrw4AEAbm5uJo5ECCGEEEIIURA8ePAABweHbPtolNykV/8hBoOB69evY2dnVyAeUhcbG4ubmxt//PEH9vb2pg5HvATkmhF5IdeLyCu5ZkReyTUj8qogXTOKovDgwQNcXFxyLFn+ys04mZmZ4erqauowMrC3tzf5hSNeLnLNiLyQ60XklVwzIq/kmhF5VVCumZxmmtJJcQghhBBCCCGEyIEkTkIIIYQQQgiRA0mcTEyn0zF+/Hh0Op2pQxEvCblmRF7I9SLySq4ZkVdyzYi8elmvmVeuOIQQQgghhBBC5JXMOAkhhBBCCCFEDiRxEkIIIYQQQogcSOIkhBBCCCGEEDmQxEkIIYQQQgghciCJ0wu2cOFCPDw8sLKyombNmoSGhmbbf9++fdSsWRMrKys8PT1ZvHhxPkUqCoq8XDMbN26kadOmODo6Ym9vT926ddmxY0c+RisKgrz+O5Pu4MGDmJubU61atRcboChw8nrNJCYmMmbMGEqXLo1Op6NMmTIsWbIkn6IVBUFer5mVK1dStWpVrK2tcXZ2plevXvz999/5FK0wtf3799O6dWtcXFzQaDQEBwfnuM/L8B1YEqcXaO3atQwePJgxY8Zw4sQJGjRoQIsWLYiJicm0f3R0NC1btqRBgwacOHGC0aNHM3DgQDZs2JDPkQtTyes1s3//fpo2bcrWrVs5duwYfn5+tG7dmhMnTuRz5MJU8nrNpLt//z49e/akSZMm+RSpKCie5prp1KkTu3fvJigoiMjISFavXk3FihXzMWphSnm9Zg4cOEDPnj3p06cPZ8+e5YcffuDIkSP07ds3nyMXpvLo0SOqVq3K119/nav+L813YEW8MLVq1VL69+9v1FaxYkVl5MiRmfb/5JNPlIoVKxq1vf/++0qdOnVeWIyiYMnrNZMZb29vZeLEic87NFFAPe0107lzZ2Xs2LHK+PHjlapVq77ACEVBk9drZtu2bYqDg4Py999/50d4ogDK6zUzc+ZMxdPT06ht3rx5iqur6wuLURRcgLJp06Zs+7ws34FlxukFSUpK4tixYzRr1syovVmzZhw6dCjTfQ4fPpyhf0BAAEePHiU5OfmFxSoKhqe5Zp5kMBh48OABRYoUeREhigLmaa+ZpUuXEhUVxfjx4190iKKAeZprZvPmzfj6+jJjxgxKlixJ+fLlGT58OPHx8fkRsjCxp7lm6tWrx9WrV9m6dSuKovDnn3+yfv16WrVqlR8hi5fQy/Id2NzUAfxX3b59m9TUVEqUKGHUXqJECW7evJnpPjdv3sy0f0pKCrdv38bZ2fmFxStM72mumSfNmjWLR48e0alTpxcRoihgnuaauXDhAiNHjiQ0NBRzc/lfwKvmaa6ZS5cuceDAAaysrNi0aRO3b99mwIAB3LlzR+5zegU8zTVTr149Vq5cSefOnUlISCAlJYU2bdowf/78/AhZvIRelu/AMuP0gmk0GqP3iqJkaMupf2bt4r8rr9dMutWrVzNhwgTWrl1L8eLFX1R4ogDK7TWTmppKt27dmDhxIuXLl8+v8EQBlJd/ZwwGAxqNhpUrV1KrVi1atmzJ7NmzWbZsmcw6vULycs2cO3eOgQMHMm7cOI4dO8b27duJjo6mf//++RGqeEm9DN+B5deNL0ixYsXQarUZfhtz69atDBl1Oicnp0z7m5ubU7Ro0RcWqygYnuaaSbd27Vr69OnDDz/8gL+//4sMUxQgeb1mHjx4wNGjRzlx4gQfffQRkPalWFEUzM3N2blzJ2+88Ua+xC5M42n+nXF2dqZkyZI4ODiobV5eXiiKwtWrVylXrtwLjVmY1tNcM9OnT6d+/fqMGDECgCpVqmBjY0ODBg2YMmVKgZk9EAXHy/IdWGacXhBLS0tq1qxJSEiIUXtISAj16tXLdJ+6detm6L9z5058fX2xsLB4YbGKguFprhlIm2kKDAxk1apVsn78FZPXa8be3p7Tp08THh6uvvr370+FChUIDw+ndu3a+RW6MJGn+Xemfv36XL9+nYcPH6pt58+fx8zMDFdX1xcarzC9p7lm4uLiMDMz/oqp1WqBf2cRhHjcS/Md2ERFKV4Ja9asUSwsLJSgoCDl3LlzyuDBgxUbGxvl8uXLiqIoysiRI5UePXqo/S9duqRYW1srQ4YMUc6dO6cEBQUpFhYWyvr16011CiKf5fWaWbVqlWJubq4sWLBAuXHjhvq6d++eqU5B5LO8XjNPkqp6r568XjMPHjxQXF1dlY4dOypnz55V9u3bp5QrV07p27evqU5B5LO8XjNLly5VzM3NlYULFypRUVHKgQMHFF9fX6VWrVqmOgWRzx48eKCcOHFCOXHihAIos2fPVk6cOKFcuXJFUZSX9zuwJE4v2IIFC5TSpUsrlpaWSo0aNZR9+/ap2959912lUaNGRv337t2rVK9eXbG0tFTc3d2VRYsW5XPEwtTycs00atRIATK83n333fwPXJhMXv+deZwkTq+mvF4zERERir+/v6LX6xVXV1dl6NChSlxcXD5HLUwpr9fMvHnzFG9vb0Wv1yvOzs5K9+7dlatXr+Zz1MJUfvnll2y/n7ys34E1iiJzpkIIIYQQQgiRHbnHSQghhBBCCCFyIImTEEIIIYQQQuRAEichhBBCCCGEyIEkTkIIIYQQQgiRA0mchBBCCCGEECIHkjgJIYQQQgghRA4kcRJCCCGEEEKIHEjiJIQQQgghhBA5kMRJCCHEM1m2bBmFChUydRjPRKPREBwcnG2fwMBA2rVrly/xCCGEKHgkcRJCCEFgYCAajSbD6+LFi6YOLV/cuHGDFi1aAHD58mU0Gg3h4eFGfebOncuyZcvyP7hc2Lt3LxqNhnv37pk6FCGE+M8yN3UAQgghCobmzZuzdOlSozZHR0cTRZO/nJyccuzj4OCQD5EYS0pKwtLSMt+PK4QQIiOZcRJCCAGATqfDycnJ6KXVapk9ezY+Pj7Y2Njg5ubGgAEDePjwYZbjnDx5Ej8/P+zs7LC3t6dmzZocPXpU3X7o0CEaNmyIXq/Hzc2NgQMH8ujRoyzHmzBhAtWqVeObb77Bzc0Na2tr3n77baPZFYPBwKRJk3B1dUWn01GtWjW2b9+ubk9KSuKjjz7C2dkZKysr3N3dmT59urr98aV6Hh4eAFSvXh2NRkPjxo0B46V633zzDSVLlsRgMBjF2qZNG9599131/U8//UTNmjWxsrLC09OTiRMnkpKSkuW5ph9j+vTpuLi4UL58eQBWrFiBr68vdnZ2ODk50a1bN27dugWkzZD5+fkBULhwYTQaDYGBgQAoisKMGTPw9PREr9dTtWpV1q9fn+XxhRBCZE0SJyGEENkyMzNj3rx5nDlzhu+++449e/bwySefZNm/e/fuuLq6cuTIEY4dO8bIkSOxsLAA4PTp0wQEBNChQwdOnTrF2rVrOXDgAB999FG2MVy8eJF169bx008/sX37dsLDw/nwww/V7XPnzmXWrFl8+eWXnDp1ioCAANq0acOFCxcAmDdvHps3b2bdunVERkayYsUK3N3dMz1WWFgYALt27eLGjRts3LgxQ5+3336b27dv88svv6htd+/eZceOHXTv3h2AHTt28M477zBw4EDOnTvHN998w7Jly5g6dWq257p7924iIiIICQlhy5YtQFriN3nyZE6ePElwcDDR0dFqcuTm5saGDRsAiIyM5MaNG8ydOxeAsWPHsnTpUhYtWsTZs2cZMmQI77zzDvv27cs2BiGEEJlQhBBCvPLeffddRavVKjY2NuqrY8eOmfZdt26dUrRoUfX90qVLFQcHB/W9nZ2dsmzZskz37dGjh/Lee+8ZtYWGhipmZmZKfHx8pvuMHz9e0Wq1yh9//KG2bdu2TTEzM1Nu3LihKIqiuLi4KFOnTjXa77XXXlMGDBigKIqifPzxx8obb7yhGAyGTI8BKJs2bVIURVGio6MVQDlx4oRRn3fffVdp27at+r5NmzZK79691ffffPON4uTkpKSkpCiKoigNGjRQpk2bZjTG8uXLFWdn50xjSD9GiRIllMTExCz7KIqihIWFKYDy4MEDRVEU5ZdfflEA5e7du2qfhw8fKlZWVsqhQ4eM9u3Tp4/StWvXbMcXQgiRkdzjJIQQAgA/Pz8WLVqkvrexsQHgl19+Ydq0aZw7d47Y2FhSUlJISEjg0aNHap/HDR06lL59+7J8+XL8/f15++23KVOmDADHjh3j4sWLrFy5Uu2vKAoGg4Ho6Gi8vLwyja1UqVK4urqq7+vWrYvBYCAyMhJra2uuX79O/fr1jfapX78+J0+eBNKWwDVt2pQKFSrQvHlz3nzzTZo1a/aUn1Sa7t27895777Fw4UJ0Oh0rV66kS5cuaLVa9VyPHDliNMOUmppKQkICcXFxWFtbZzquj49PhvuaTpw4wYQJEwgPD+fOnTvqEsGYmBi8vb0zHefcuXMkJCTQtGlTo/akpCSqV6/+1OcthBCvKkmchBBCAGmJUtmyZY3arly5QsuWLenfvz+TJ0+mSJEiHDhwgD59+pCcnJzpOBMmTKBbt278/PPPbNu2jfHjx7NmzRrat2+PwWDg/fffZ+DAgRn2K1WqVK5j1Wg0Rv998mdIS8jS22rUqEF0dDTbtm1j165ddOrUCX9//2e636d169YYDAZ+/vlnXnvtNUJDQ5k9e7a63WAwMHHiRDp06JBhXysrqyzHfTIZffToEc2aNaNZs2asWLECR0dHYmJiCAgIICkpKctx0pOrn3/+mZIlSxpt0+l0uTpHIYQQ/5LESQghRJaOHj1KSkoKs2bNwsws7bbYdevW5bhf+fLlKV++PEOGDKFr164sXbqU9u3bU6NGDc6ePZshQctJTEwM169fx8XFBYDDhw9jZmZG+fLlsbe3x8XFhQMHDtCwYUN1n0OHDlGrVi31vb29PZ07d6Zz58507NiR5s2bc+fOHYoUKWJ0rPTZntTU1Gxj0uv1dOjQgZUrV3Lx4kXKly9PzZo11e01atQgMjIyz+f6pN9//53bt2/z+eef4+bmBmBUbCOrmL29vdHpdMTExNCoUaNnikEIIYQkTkIIIbJRpkwZUlJSmD9/Pq1bt+bgwYMsXrw4y/7x8fGMGDGCjh074uHhwdWrVzly5AhvvfUWAJ9++il16tThww8/pF+/ftjY2KiFEObPn5/luFZWVrz77rt8+eWXxMbGMnDgQDp16qSWER8xYgTjx4+nTJkyVKtWjaVLlxIeHq4uCfzqq69wdnamWrVqmJmZ8cMPP+Dk5JTpg3uLFy+OXq9n+/btuLq6YmVllWUp8u7du9O6dWvOnj3LO++8Y7Rt3LhxvPnmm7i5ufH2229jZmbGqVOnOH36NFOmTMn2c39cqVKlsLS0ZP78+fTv358zZ84wefJkoz6lS5dGo9GwZcsWWrZsiV6vx87OjuHDhzNkyBAMBgOvv/46sbGxHDp0CFtbW6Pqf0IIIXLB1DdZCSGEML0nCx88bvbs2Yqzs7Oi1+uVgIAA5fvvvzcqRPB4cYjExESlS5cuipubm2Jpaam4uLgoH330kVHhh7CwMKVp06aKra2tYmNjo1SpUiVDYYfHjR8/XqlataqycOFCxcXFRbGyslI6dOig3LlzR+2TmpqqTJw4USlZsqRiYWGhVK1aVdm2bZu6/X//+59SrVo1xcbGRrG3t1eaNGmiHD9+XN3OY8UhFEVR/u///k9xc3NTzMzMlEaNGmX5GaWkpCjOzs4KoERFRWWIffv27Uq9evUUvV6v2NvbK7Vq1VL+97//ZXmuWf05rFq1SnF3d1d0Op1St25dZfPmzRkKWEyaNElxcnJSNBqN8u677yqKoigGg0GZO3euUqFCBcXCwkJxdHRUAgIClH379mUZgxBCiMxpFEVRTJu6CSGEEFmbMGECwcHBhIeHmzoUIYQQrzB5jpMQQgghhBBC5EASJyGEEEIIIYTIgSzVE0IIIYQQQogcyIyTEEIIIYQQQuRAEichhBBCCCGEyIEkTkIIIYQQQgiRA0mchBBCCCGEECIHkjgJIYQQQgghRA4kcRJCCCGEEEKIHEjiJIQQQgghhBA5kMRJCCGEEEIIIXLw/2f/5xQL1c/tAAAAAElFTkSuQmCC", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" } ], "source": [ "predicted_vals = model.predict(test_generator)\n", "auc_rocs = util.get_roc_curve(labels, predicted_vals, test_generator)" ] }, { "cell_type": "markdown", "metadata": { "colab_type": "text", "id": "GZUoShw2n5yy" }, "source": [ "For reference, here's the AUC figure from the ChexNeXt paper which includes AUC values for their model as well as radiologists on this dataset:\n", "\n", "\n" ] }, { "cell_type": "code", "execution_count": 102, "metadata": { "colab": {}, "colab_type": "code", "id": "6kahoZbJn5yz", "outputId": "ade0a4e2-4591-4ba5-ec19-1a3487e3f972", "scrolled": true }, "outputs": [], "source": [ "df = pd.read_csv(\"train-small.csv\")\n", "IMAGE_DIR = \"Images/\"\n", "\n", "#only show the lables with top 4 AUC\n", "labels_to_show = np.take(labels, np.argsort(auc_rocs)[::-1])[:4]" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [], "source": [ "from keras.preprocessing import image" ] }, { "cell_type": "code", "execution_count": 16, "metadata": { "scrolled": true }, "outputs": [ { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYUAAAGFCAYAAAASI+9IAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9WYykWXbfd2LJLSIyI9eq6qrqdYY94jLjISiSpjkCRVE2OF4oQhBNvQiCbYCwlgfBNvQmQJDgB9l+8Ktg2Q+CZUugLUCQLQ5FkRwSHFIkRxQ5muFYnOme7uml1twjcouMCD+kfzd+36kvq7K7apojuS6QyMyIb7n33LP8z3LvbUyn02k8b8/b8/a8PW/PW0Q0/7A78Lw9b8/b8/a8ffu050bheXvenrfn7Xkr7blReN6et+fteXveSntuFJ635+15e96et9KeG4Xn7Xl73p63562050bheXvenrfn7Xkr7blReN6et+fteXveSntuFJ635+15e96et9LaV72w0Wg8enO7Hc3m09mVurVz0+k0Go1GrKysxAsvvBA7OzvRaDRie3s7zs/PH9unJ/X7srV6i4uL8eqrr8bJyUmcn5/H3t5eDIfDGI/H0Wg0Yn5+Pnq9XiwuLsbu7m4cHx/HZDIp98/NzcXGxkbMzc3FvXv3YjQaPbYfV+3vH1Z70prG6XQarVYrXnrppWi1WvGNb3yj0OrDPj9/5v8bjUYsLCzEwsJCtFqtmJubi7m5uWi1WtFqtWJ+fj5WVlai3W7H0tJSmZvhcBiTySSazWY0Go1oNBrRarUiIqLVakWz2az8+Jq5ublYXFyM+fn52NzcjGazGaPRKCaTSTQajdKHTqcTJycnMRgMYjwex2g0itFoVPoWccEfzWYzFhYWot1ux2g0iul0Gufn53F0dBSnp6cxnU6j0+lEr9cr74+IOD8/L3QdjUalj+fn52Wc8OP8/HwsLy9Ht9uNk5OTOD4+LuOZTqdxenoap6encXZ2FicnJzEajSoybJ5mDs7OzmI0GpX3TafTGI/H5VroSH9932QyiZOTk2i1WvGVr3wlBoNBmU/Pbd3vf5vaVfXQt7qdnp4+8ZpvW08Bpmq327G4uBhzc3MxPz//LXvXaDSK3d3dmJubi9PT0+j3+7G0tBTNZjMmk0mcnp7G4eFhHB0dxebmZnS73SLwERfCenBwEAsLC9Hr9R4xlldlgn+TFpgj8P1+P9rtC3zxYfvv+6bT6SPPQRH6f343m81yz/z8fMzPzxclPz8/H41G45FnYgC4rtVqlXfw7MlkEqPRKM7OzuL09DQajUa02+3Ci8w/ynI8HkfEBVjqdrvFgLXb7Zifn492u10AD4AK5Y6RmJubKzzfbrdLvyaTSVHC0+m0GKalpaVynX+32+0ybviXexivDWGmi8cDfekDhoEfroVWZ2dncX5+XowC/bG85Pm+jBf+bWmmV8S3t+G7sqfwh9FGo1EcHh7G/Px8HB0dxeLiYpycnDyCZp5FwztYXV2N6XQaw+Ew1tbWYjKZFBQGk5+fn8fq6mq0Wq0YDofFKzg5OYnt7e1YX1+P09PTODo6+lB9QXF8u7fpdBrHx8dFkYFC6vr/OEF/khJAUWfFbkEDRPT7/ZibmyuKq9PpFFSLMkTR+n8+o2HkUILj8bjiSdAv5v78/DzG43FRgJ1OJyIizs7OSt9559nZWfFuJpNJzM3NFc9jZWUlut1u8RZOT09jZ2eneMgocjyLyWQSi4uL0Wg0Cr/xOcbKfRiPx4VeABfT155Ankuu4xobKYwb1zIffIexqOMN35ON/7+NzYbh29EAflsaBTPwwcFBXL9+PabTaUFPZ2dn35L3np2dxd7eXnS73bh37140Go1iGE5OTopHgZJYW1uLubm5ODg4KAZjMBjE8vJy9Pv9gpg+TPs3xTAg6A4duF0lDPW4hiKtQ7NZqaHw5ubmiiHgb8IuDulkxMxnfq8VKKjXKJr5Zb7G43HxJAin2ZjYePCe1dXV8j/hJYxYs9mMpaWlGI/HZXxW4Ofn59HpdKLVasXZ2VllLPQPD8FK32P35xGzEBLj9TvtTbVarXIt9OYzvKyIKMaN//PzMq//m8L7T9u+HQ1CxLdB+Ohxkw8ShdmIKxtZPMs2Ho9jb2+vuO+Hh4cxHo9jZWWloDmuOz4+jocPH0ar1Yr19fVYWFgoMeft7e3o9XqxtLT0CLP/m9A+SD9RuA4N8IwPM96cR6hD5/w0m80ShuFnPB6XEBLfdbvdEsJZWFio/CYcxI/DSXhAPMcGAMWXcxJ4AFb67jvfYyDOz88LT0+n0zg5OSkxf8Ix3ONQErQHqKBwoUnETLnzGUYEBc7/OfxlI4yCtjdF+IvPPH7P43g8rjz/cXmky34/bx99+0M3Ck9qo9EoBoNBzM/PF1QE01+lXYW5rLhPT09jd3c31tfXo9lsxs7OTkneWfERp93Z2Ymzs7PY2NiIxcXFaDabcXJyEoeHhyXx+UH782GufVbtg76TMEE2Cle570mJ5Rzjz3FZu+Eo5IgLZEqCmL8XFhZKYhqFlo2Kcwz8Pzc3Vwx+9hwiomKAeCehtPF4XDESPNMhnMXFxTg/P4/j4+OiQPnecXlo4L6B4p0wpl+Echh7DvugsJ1ncA6D51iZZ1QPPfI8eT7Jl+TwnOe5jjcu45GnaTncmH+et4v2bW8UCCERJwbxfRBv4YNM+GQyicPDw5hMJrG8vBzj8Th2dnai2+2WxLOfS4J5MBjE6upqLC0tRUTE7u5uzM/PP+ItfND+POv2pLj8VZ/hv0GYV3X5r5pDsJeQPQUrIxQa1Unn5+cVxR8RZR5QTnzH31m5+X1ZWebkMdfiWRwdHcXJyUlERPFeUK4ofsJZKHa8FCvS0WhUjEvuH0lsED+J8FarVeZjYWGh5Cfm5+fLXOFBWJYYo0NJNgaOf0PTurAPz3dOgjE/zgA8iV+eVmY+yHv+/24ovi1zChHVJAxldHNzc3F2dhadTidOT08/ULz+KoqIa0ajUezs7MTm5mYcHh7GyclJ7O3txdraWpyfn5f8As8djUalfJXKo7Ozs9jf34+VlZU4OTl5JA9igXtSv7Mr/2FbVuZPcz//o0T8/9MYwTpjYAXNb0IXdZU3Vnooo06nUyvo9hDq+j2dTh+pmnF4CG8A/jk+Pi55BQyPlXqr1Yrz8/MKr/EM+gpvO2SDwiWsBdLnuYS/UPQGL86r+Dl4PCStrdR5NiGyiCh0yEbDtMlJ6Jy4flx7Eq9nT/KjaP9/yW+4fdsaBbfxeByHh4fR7/fj+Pg4lpaWYm5u7kMncZ/UqDg6Pz+Pfr8f9+/fj6Ojo2i1WrG2thYPHz4sAkYjBDAej0uo6ezsLLrdbiwuLlbq292uynTPQol/mHbV8JsrwrJwX/U9lxmEjEadJDXqxygQ/0cZ8oz5+fkyD/l9oHTGgyImPGSUjOLlHdTog+6d+8J4oIQNJshBsQYAo+CcAJ4EfckeU8SFfBBWJV/CNfx2SbeNOQrbRstGnrUVDj+B/u39IDPD4bCEwPiJiEL3q/JB/rvuOtpV5Meg74O2y+77t9VYfFsbBSZyMpnEcDgscX68hbOzswpDP6v3RURB+rdu3Yq9vb04PT2NwWAQrVYr+v1+7O3tPbJAbTwel3pwktOUrx4dHVWUkduT+p9juvz9uO+ftj3pOVkocyLxg/bD8fzLDIKfm70Hx8QxyChR+kdFUDYsPMfPdKiS9zpvQW4AJM1Ct4h4JL7fbrfLeyOi9IN7nW84OjqKs7Ozsv4AcIJRIGzkNRgnJydxcnJSwFLEBf8eHx9XxrOwsFDxAvgOgwUdp9NpJRfm0Ba0QC69/oD832AwiN3d3djf36+sa7isPa3yv6rXXSczT9P+MDyXj6J9WxsFN0I0VAURJyWU86zdvOn0Yq3CwcFB3LhxI9555504Pz8vHkuv14vDw8NHvBXqwgkdLS4uRq/Xi/39/djf338kVuv3XSWUVPf34z77oO2qsVcaijIbyA/Scoy/zhj43Tm2zd8oSr4nt2DEi0J05QzG1HMAukahEg4ifk/YB+/PuQ3KVwkBuU9zc3NlrQ2VUiSmARROSMNfjIN3UxUVMQuv0n/CZiD4uoQyfeAzh8FcwsozM+Cwl4WHRlJ+fX09bty4EQ8ePIh33303dnd3H/Gsn2QIrpJ/uGqY8lkbg7r2rQCmf1jt28IoPI4Q9hYODw/j+vXrcXh4GKenp9HtdovrHfHs43+sW9jY2Ijl5eWyHuHg4CBWVlai0+mUXILbdHqRZ9jf3492ux2bm5vx0ksvxVe/+tXHKs+rIp5vRfuwjIgy/jD5HSupq1Sn1CklFNLi4mIsLS3F4uJipfSy1+sVhUQIibAPRsHhEo+Lz+iDV/Q6B4HSHA6HMZ1OC5qvC0s5bg8iH4/Hsbu7W9YksIL/9PS0GK+5ubnKc7wYjwomPOqlpaXKegyXnzrUdpmBZcwYB69toGHUnEOwHAOc+v1+7O/vxze+8Y14+PDhY3nig/L9k4zEZdflz64Srvqo2pNyKR9F+7YwChFPtpCgpJOTk5ifn4/j4+Po9/uxsLBQcc0/bLuMcQgZra2txWg0KvvUYBhYs5DjpRiG7e3tWF5eju/6ru+KnZ2deP/99x9ZCfqH0Z5VfHVhYaFSJ3+VhhIlOfq4cNplIbOIqnfgrSe8riVvRYG3YCNkA8BvJ7IjolJhhTfgRWb0+ejoqNzvsMt0Oi3hTgwS76LsdG5uruSgMr1Qwu6zt8bAKBGytBdgA+ZwDp+7CILPs+G7zIgwbr5z+JX9wFjk+dZbb8Xx8fGlvJfzCXVz/rj2QUJNl31W9/0ftqH4KDwdt28bo/C4BtMRs+z3+zEcDuPo6KjkFvJqyau2JxGZJHe73Y719fXKXjisRfCK59xGo1G8//77cfPmzfi+7/u+GA6Hsbe394Fc3WfBlN8KZmo0LvbeeVy+JDcnap1QrUPpfg/XRczm2KGLhYWFUjKMwvWqZr87o24anxnlO5zl2L9DRI3GxUI0ykcxSih8h2FsJCgfxYPpdDqxvr4ei4uLMRwOH1nkRggJw1cX1nE+wGsx8JwwTL4+ewW5n9A+V2j5XhtZEsyTyaRsFjgajaLb7VbWYVymoJ+kBK8iD8+S3y/zKi777Gnl9YOMua4/T9v+jTAKtOn0YqHOyspK8RZYnOP66ycppw9KwNFoFHt7e3Hjxo3o9Xqxt7cX4/E4Tk5OyopZBK6uHR0dxe///u/Hj/zIj8R3fMd3xJe//OWSBKzrWx1K/sNoT3p3q9WKhYWFODg4qN0rh1a3Shilypw9Lo/Ac62oXHbKwjTCNkb1bKroDeKoFLJStZKqM1D2PLw+YDqdPrIvEQqcZ3ndRM6dnJ+fl0T1+vp6rK6uxtzcXCwtLZXSVJA/74PPKGMFEGFovXuxF6nxt/doIpfgubP3k2mRF9I9DvXzPPYE8862Hs9lBuJxvOD2rJD84/rwQZTvRxUG/lbph3+jjELEhVs6HA5jeXk5jo+PS9KZDbdoT0OsyxD/9vZ2bG5uxvHxcQkZsTXx0tJS8Wbqnre3txdf/epX46WXXopbt27FO++8c+k2ttkw+PeT+nlZ+6D3X+U7hy2M3vkxqrZCjJjtGWRjUIdCL0NNKBQMDeGj/F4UeaPReGRNQF2JsIUfg2KlSX8IA6FgvZ7Az3H/QO02RmzYd3x8HK1WKw4ODqLT6ZTtv+kjHtHp6WnxGLwrK++dn5+PxcXFYjhHo1HZDp7neWsSK38reytsG057E/6bDQNzBdl0Oq2E9xzSykbBRrnOQD+JH+vm8arNz7h9+3Z87GMfi7feeivefvvt8v2Hfea3ytP/VgHGbyuj8DjLx3ck0yj5PD09La6366I/bLvs/ZPJJI6OjmJ/fz+Wl5dLHH08HsfR0VEsLy+XxHNd0vX8/DzefffdWFpaioWFhVheXi5CWzfWJ/XLyvSDMsfj0N1VGkpqfX29rODO20W4fy7PtGdQp0DcD/+uyzvYKOAtUA/ventyCHl9Ql2pJMoWQ0BsHCNgw08YjPcQz0cBOy+BYWDs/s09x8fHlWqoiCiFFHXGCyXrcVlB5zCVkT6hLyqPmBsbUoyIw2bZY3Nfnffw9QsLC7G4uBidTqfyvpy4zmGw/Nse4tO0xynrTqcTf+fv/J34wR/8wfgn/+SfxJ//83/+iUUUHyYy8Yedp3hc+7YxCh9EsZFb6PV6cXJyEkdHRyWk5K21n1VuwUx/eHhYtrPwxmLD4TB6vV6pBa8zTsPhMO7evVtZZVtnRK7CZB8UuXxYpHGZx9Lr9eKVV16J+/fvl3i70XJdOMgGwF5DHpf7VhdfRjkQlgGJRkSlCobfp6enxXjBG3gLlxkHGoY7o2XuJ9mMASDZnRfTcb8TtvAPiWae7fMV2PnUgMcGD8NKmIrneEEc5bh5jYaNgw2Jn2s+cGjJoS+HbXmGjU/EhbLFKGQvxDmMOmCYjcXjvIqn8TB4Pxtcvvzyy5VQ45Oe5WueBOw+CAD7qNu3jVH4IG08HsdgMIjNzc2y9cXx8XF0Op3KysnHIYIPi7JZq7C+vl7QHQI5GAzKAqKMarhmd3c3lpaWYjgcluTo0dFRpYLqqrHCJ13zYdxLo/vLQlfNZjM2NzdjZWUlvva1rxVFkZ/B31ZCNgx8f9UwlhUC9+N5ER/PeQIUNvdnxeZQiK+xUW80GiX844ZStCLNu626zyhgr14mzo+iJxFMHzEGGF6Pjb5lQ8y7nPjOSBsD1Ww2K2HMuufnued+51tsWE2T0WgUi4uLsba2Fjs7O4UX3Ce/5zJZ9bPNF9kg1P18kHZ2dhYPHz6M6XRaqhs/zLkoz8qzv+zab6Wx+LYwCh9GuZ2enpYtLzAKrCq9DKk/7plXVcQRF8qAenDOTEDpHx8fxyc+8Yn45Cc/GZ///Ofjzp07FQRESS07YHY6ncoivKvQ41k1C2IO+eTf7tPS0lLcvn07tre34+jo6JH7cmioLqSUDccH8Vp4npPMRuD+wRg5VEJIJI/Pio5mL9F7IMFjRsb+3kaH6yOiVK8RouI+J4YbjUZZFc0BOZSpOs9gj2s6nZYqI/pjA8Dn9jYcJstGMYeIPF9OROf1CTlEZ9pQZGA61/H84zy33J/Lwoq5Pxmk1T034kK27969G5PJpGwmuLu7+0gf3R6n7Ou++7CA9GnbVQ3Jt4VRuKw9jjEmk0kpTyUBNxgMYmVlpbK/zVWf+biWJ3E8HsdwOCw7p3IOMIriP/qP/qP4qZ/6qfiJn/iJ+F//1/81fumXfql4FFQpUWd+dHRUvAvCCPm9T9vqFP3jDMBlz0DJbm5uRq/Xi7feeqsSc87K/zKD4Od9kP+NQFGCTm4SMnHSk3fmiiDQf174yG9vXOcdRHmeFaMRM9fkQ3aYd/JQKH6ehZGj4SFgzPAmrGShKR4EPA8f4j3ZUJh+dSEivssKNCfl6+TLYVt4nbGbf/CSbDx4L/2yQbOHl3nUz8ljiJh5Fq52elK48O7duzGdXmxr3u/345vf/Gbl2bn5/XXffZDrr9rqnnGZsfmg7/pDNQqPU9BX8R6oOFpcXCwCx9oFXPGrPOuD9MGIgnfl0+DG43H81b/6V+MnfuIn4i/8hb8QP/ADPxC/8iu/Er/1W78Vg8GgJC9BsOxbw5ieBkHUoXb+9m9fn/9+XOhgdXU1PvGJT8Te3l4Mh8NKiWWuY3+cMTBTX/a/FTSKwlUz7EvEb4Q9J2u9XsFK3dc47GKlxHfOHWSa5MoqPFaKEVzxw//cxzu9IM5JXvpKQYWRvceAgQL9W9nn50FjaAEgYTymj+fRvJHpZsXtezEA2QOr449s9OtQP+2q4MnGyJ4L78iGcjqdlgWmHI9qmtU9P9PjKq3Oc/ig7ap64oPqk4/cKFylg1c1Fq78QTGfnJxEq9V65AjDiCcvAHnc++r6BIr7vu/7vvjGN74R9+/fj4WFhXj48GH8yq/8SvyLf/Ev4od+6IfiM5/5TPylv/SX4rOf/Wz803/6T+P3fu/3yv73PIdk6HQ6LUlGo9e6/l6m/C8L0VzW6gxF3XO63W68/vrrsby8HF/72tcqK4PrcgV1v/13RnhZCeQSVm9+iFGwcjWdTDtCJjnnQLiF99eh06xwuZa++Qejwalu3ANidsMwgPJ9DKcNX7vdLh6Qx5sTszY0DklNp9Oi9L1zKYryMmVvPsihOY+B5/C/v3M1EuGjOn7znNFsIPjOnz1OlrOiz83jsXzR352dnTKutbW1JxoD9+WDKODLkP1V7qlrl+mLD9o+UqPwNAbhss/xENi+YDKZFAQ/Pz9fkm1udUo0I9qIy+OR9OWVV16J/+w/+8/ih3/4h2N7ezs+//nPF6N0fn4e+/v78Uu/9Evx67/+6/Hxj388fuAHfiD+k//kP4k//af/dHz961+P/+v/+r/ia1/7WkGRjUaj1KfnRGf+/UG8gbrP6hB93fuMJl9++eV49dVX42tf+1rs7e1FRPVM48uMyZP6kAU5lyra9c8KkPuhn9FgHdLMCLrRqJZw1nlHOe7uSiuj/Nx/nuftMFDYLhF13uPo6KiADTZ9dAIabyd7UzzP24VjlDAuNggYGu73jxWqjY4/z15hVtb0zetC2u12bGxsxMOHDysVd5eBBPfHfcleJdfXGRLPv/kngxGPa39/v/DHJz/5yfjlX/7l6HQ6ce3atXjhhRdiNBrFr//6r1eq0ur4+0ntcfrwW+09PK59JEbhW2EM+G4yuVhA1uv1KkcakoS2C240a4SXGdnC7c9AX51OJ773e783/uSf/JPxqU99KjqdThweHsZP/uRPxmuvvRZ/82/+zfI8wkNf/vKX4/d+7/diZWUlPvnJT8ZP/uRPxn/73/638Xf+zt+Jz33ucwUhzs3NxdraWhwcHFRQLO0y5P04Q/A4tF6nyK04EcDr16/Hxz72sbh371688847lSMWLzMGT2JsG4PLlEqObfMen5/sWHFWmNljIMnvcMpl/c0JaSP7/LfzCc1msywY4zP6SH/JMUynF4u7BoNBWW/BuQ9sqsgzqBKCBs51OPnONXyezzZoNBolFMUW49CEVlchlGnj9/he79EUESV3cnZ2Fmtra9Fut+Phw4dlZ9c8t7nZYHsuPb/Icl2BifmjLi8RUU1g7+zslJzMX/7Lfzk++9nPxurqamxubkan04n9/f34D/6D/yD+4A/+oNL3Z9kuiw48K6/ice1bbhSeNIgPYwz8vVGP98unuoddMkFaOSFqZomIEh+OmDHT8vJyfN/3fV/8wA/8QPyRP/JH4qWXXoqVlZV45513yhL+v/bX/lrcuHEj/vpf/+uVqg6UB4vrhsNh/Nqv/Vr8q3/1r+JHfuRHylYZtMnkYtO2ra2t2i2Hn4To6z5zu0yJ11Xd8N61tbV46aWXYjQaxZtvvhnD4fARg/okw1TXjD65Lsd9Uaj8jaJjexPWhXBvTibWhQlc6ZNXImda2xMCifMbo+QQGg3vj8/gA9YgeAU+irzX65UzQ0gu4zlMp9NYWlqqJL+XlpYKkEDR0w9vm+2tvhkzayjgU4o1Mh2cX8mKKaNyz7XnwQs05+fn44UXXoh+vx9vv/12KcDI99eBFnsDGADuy8Yxo3/zmYGDx8E7Dw4O4vT0NBYXF2N1dTW+7/u+r2J8+v1+XLt2Ld54443H0qXOs/H1+W/Tkt91tPazHydflxmWJ7VvmVH4sMbgsu8ed/1kcrEhXa/Xq4RiIi6Y8NatW7G9vV1B35ngoCwn2iIuBPUnfuIn4pOf/GT82I/9WNy8ebNMyPLycrz77rvxz//5P4933nkn7t69W7avwI2PiOItsK/NwcFBHB0dxRe/+MWyvQF9oNx1Y2MjVldXy2E+RjIRj0f6/tyf5et9zWXM1+/34+WXX46tra34yle+Evv7+xUB9TseJ9iex+wZ+CeHiermnUSuzyn2u+wx+Dsbm6z06gTQipNtGojr4604Tl5HE97HXlmDwaCENF2F1G63o9vtRr/fL8CA0/7gWSqJPBYvlnPFkkMbjIG8DP3k2mz86ua0zjh7br2gjmsJeyGfJG/n5uZia2srms1mvPvuu48crVtnmDOAMZDDiHJfLiJwPx1CrPMoG41GDAaDOD4+juXl5QqtyVl+85vfjDt37jwSWqzj7Uwn/52VtK/P4CZ7zI8zFpe1q3oZz9woXOXFV/UOHvesrPw4t2BlZSXu3btXmP309DTOzs7i9u3bcefOndjf368oWZ4B+ouousaf/vSn4/bt2/Huu+/Gb/zGb8SNGzdid3c3PvWpT8XW1lasr6/He++9VyZvcXEx9vb2Sj6DhOPp6Wns7e3F6upqCXWxsIczGegPO7Bev349IiJ2d3fLeLLQXuXvOnrV0TgzVK/Xi5dffjleeumlsh8+3taT3pf/vmwuLaBeaOX7jPRBxJyfQLIbpZTjyrldFq6wsvFvKz0fugMK99nQuXIIYW42m+WQKG93DRhYWVkpW0yjuBcXF6Pb7cZ0Oi33kVyfm5urKFyDD8bHNaadjS2hsUajUQnF1ClkbzaZ6ZiReJ4v+okcRkQsLi5Gq9WKF154IXq9Xjx48CC2t7crZ0U/Dk3zvhyys2KvAwSZp/x8939vby9+4Rd+IW7fvh3vvPNO2QPpm9/8ZunrwcFBeXZdfiX35bKx5JblKM/ZZUApz8vjnv2k9kyNwof1Dq5iDLLw5jAQiOvGjRsxHA7j8PAwIi4U7Pb2dkREbG1txXQ6jcPDw8KgntjMWM1mM27evBknJydxdnYWb731VvzyL/9yfPGLX4wf+qEfij/35/5cUdbEghuNRrz55pvFTf6pn/qpePXVV+P//D//z/ja175WqqUIJ7BGAQZG6ZyensZwOIybN2+WpDX9rUP6jzMOlzFD3ed81u124+WXX47XXnst3nvvvXj33Xfj5OSkFrn53vzMOiHP12ZUlPnA9zabFwfRdLvdEp/ncxQ193rnVj/T6A6PLr/bISGMgVca0+8MMOgL7/F2164ewnjMz8+XozePjo4KbwJyMB4YHbYH517G6621+R960L+MkiMuPGmXU3NNvs4GxtVWVrCO6edKJGg6nU7LJpKEZzhDYmdnp3L86OOUa66c8jX52vwc5r7OO4y40Bn/zX/z38R0Oi1hNzfLlQ1/nVz6/X6vn3VZ/3yvw6r++SDtD81T+KDtSQYBYrsUz0wbMatQGQ6HERFx7dq1gkym02lZddtsNuPGjRvRaDRif3//kYSYG5+Px+NYWlqKV199NV566aW4efNmzM/Px8svvxxvvPFG7O7uRrvdjpWVlWi322VjvJ2dnfiZn/mZ+Omf/uno9/vxmc98Jn7nd34nvvSlL8VwOIwHDx7Ev/7X/7psPU3clfeORqM4ODiIbrcbm5ubxXW9TCk/yRhkpvO9mUl7vV7cvn07XnvttXj//ffj7bffjsFgUJmPy97D86woM3rPQpWfd5khmU4vNldbWVkpGwo67FFXisjn/G0FWYekcwzdQlyXpGw0qmFHjIffx30GAN7TaGdnpyhG9sKC38fjcaV82Xkxciqsqren4DJYxopHgIFB6QFsXKqZaXYZPU1rX5OVXw4twcsYzOvXr8fS0lLs7u6WY24xwqa5DYz5wu/1df7bnmSe98zLOV9hWuR3ma8uA0umUeYh67Iss/mzXF3neX1cq3vvZe2ZGYUP6tI8zhgYjeCS1ymjPKFnZ2dxeHgYGxsbsb29XYlTHh0dxcOHD6PRaMStW7difn6+HOtZFw5BKPf398sZCt/zPd8Tf/yP//H43u/93mi329Hr9eLOnTtl91MWdv21v/bX4r/77/67ckYz71xZWYm7d+/GcDiMH/uxH4t33303vvCFL8TZ2Vl8/etfr4SIIi6qNXZ2duLatWuxvr4eOzs7lXMAHmcY3C4zBhlZUQZ58+bNePXVV+Pu3bvx9ttvV/IIde/OiiO/MyM6/s4/WZG4j/y9tLQUa2trJZnqEs06YaszCt4LyeEXmg+pAaXXITfvh+R9kKzQUcIYD+L48ObJyUlEREH13tSO3AA5B3s/jIn8ihU8BiErzozufb3PhIionjTH547V1/HT45Brph+GYTQalXMg8IIWFhZKXD+HTPz+7Bnl7x1SpP82NHXPRPbzezPvXiZPdTLpOcgG1jSnGZjUyQh9hOa5UqzuHp51lfbURuFpjYE/Y7COz2bGrrPQJtDu7m6srq7GxsZGidtz79HRUTns45VXXol79+7F3t5eZWtihBFU+tZbb8XXv/712Nraii984QvxIz/yI7G1tRWNxkXo4dVXX42XX345IiJeeumlsgvqn//zfz5WV1dL4vsb3/hG/ON//I/jc5/7XLz22mslgftTP/VT8fbbb8fP/dzPxVe+8pVYWVmJs7Oz2N7ejkajUTbRI/RFuRwNml0FCTzu+1arFf1+P27evBkvvvhiMQgHBweV99QJQB2iyfPruTPyvixW7fnluXhkrFiPqK7ArUOq2SBwnZF0NhwoEYORrCx8j0Mt3GdE3mxe7GF0dHQUJycnJbHKs+BxV0NlWuUKmjyWOkDDfYSmvIjPoTV7TH5vXa4h0zMnqKGLgYLpZH7l+dCA7xYWFsr1GEWud6jG8wHNMx9mEOO+57H5+0xnjzMbisz3de/k2kwvQAdjzcDQyr7O6JoWeVw2LE/KRbh9S8JHl738ss9tDCj1M5qjWSkZWZqJj4+PY3d3N9bX1yveAoLOLqds/Xzv3r04PDwssUzHfDkQ/Qtf+EJ8+tOfjuvXr8cXvvCF+GN/7I/FtWvXIuICzf/BH/xBnJ2dxa1bt+Jzn/tc/Mqv/Er8D//D/xDn5+dx586d+IM/+IP43//3/z1+93d/N7a3t+PLX/5yfOlLX4rv/u7vjk9/+tPx7/67/2584hOfiC984QslpPCzP/uzBaFzNOPW1lYJKzEm0zD/XfdZ3Xy02+1YW1uL27dvx/r6enzzm9+M999/v+RlrCjr7q9D+HVzzD1ZEC8Trtw6nU45/tTKwYoT+mXvxXySDY9XAWel5sofFI8XvZk+JIFZhcznrEnIR7bSf5/ZvLCwUEGQrLVBAdcJ/mUJZdOVPnFP3g8pG1KfTU2fGW+dgjQ9oaH7R7MRxDi4Wgrvy+dUeE4yIPL46nI+Li+3UjYv2kDa26uju/MmdcYm98tbtPBdu92uHIQUEeV8bnJK5oHMx7mZPjnX4jn+SIxCHTr9MAbBZ/bmuvGcwLnsmSgCkPXGxkbcvHkzHjx4UNxvL+w5OjqKxcXFeO211+Lg4CDu3LlTvAZcWXZcPTs7i9/8zd+Mra2tuHnzZty5cye++7u/Oz75yU9Go9GI1157LT7zmc/E93//98dv/MZvxMOHD+Ob3/xmvPzyy8UgvPvuu/GJT3wi7t69G3t7e7G9vR2/+qu/Gl/72tfi3r17ZT3FJz7xiWg0GrG2tlZyJCxiWl5ejq2trVLiylj4fZlSfdznCwsLsbm5Gbdv346FhYV4++234+7duyUZaJR8lZYZMrfLEFpGZ7nP7XY7+v1+2cQOAYh41P2u8zby9znP4WszunXyOhtH+grfEt+PiAqCpVLI6M3hD3selJmiBClgsPFwKa6NpN/hd1E9RbjUIQfGaQ8qGyCaFXzmvUzTHIJxTD9XankMGCIXYNRtRwIdmA/utaHzHLl//p0Vr5WsvfDMo6aDZSSH7pg7quaoSJxOq4nsubm5UpnoNSPZO3HjOXV60h7sVQ1CxEdUfXTZ51RkwOz2BOrcUv73Mxkwz8Dirq6uxnd+53fGG2+8Ee+//365dzqdlqqNg4ODWFpaiq2trVhYWIg7d+7Ezs5Oqf6AyRYWFuL09LQkXX/913892u12/Pv//r8fn/3sZ+OP/tE/Gj/4gz8Yc3Nz8Xf/7t+NiIhf+IVfiNdeey1+7dd+Ld55552SHP3Upz4Vx8fH8cYbb8TOzk70er2ImB0z+vnPfz7eeeedePfdd8v4iL9ub2/H7du3Y3V1teIFXWY0aZlm0Hd5ebkYTxamsdI051ke52L7t+fE12bPwAx/mbD5+06nE91utxhpkKQVdaMx23nUfXJoIf92+CELN/fbc8Ddd2w/V8tERKV8FYTuBVY+ljOXQuOV+PAdPvf8uSQTA2IPAcXkze7oU0640ngm1zi0lel62f+eY2jnSjHGl8MheQzNZrOUr7KdjY2g38X48md1YzRPmw7mCctUncdiQ0Nkgf+tx4g49Pv9sjDx8PAwhsNh5bhX+IDt4B8+fFhr9D22/HfdnJiHr9qeiVH4MN4BlvNx2y6bsH5mdul6vV7cuHGjnK7FKtD5+fm4du1a7O7uloMyjCaOj4/jzp07cXR0FJubm/Hyyy/H4uJi3L9/PyKq2xww8axGPTo6in/0j/5R/NZv/Va8+OKL8R3f8R0xGAzizTffjPF4HL/8y78cv/VbvxWtVit6vV6pq7927VocHh6WRWnkDzY2NmI4HJb3raysxGAwqLj5g8EgdnZ2YmNjI05OTiphpMuMQh0aX1hYKKsyNzY2Ymdnp+RX8ilTML8Fq84QeG58H/fWKYA6j4Dx+P52ux2rq6tFaVhRuiLNwsz8XeZJuV+8w8jY4/b8G93TV97lnAC8Y+WaP8sIludyrrJDPkbVRtv2CrwldUb03EMJal2M2YaP7zESOXTkOfbcQwee536b/oRqs+eVvSnGC93pY962g+vzbgT+3nNmL858kJV+nZfk4gP6Rmmx19AsLS3F8vJyLC4ulrVHbFXCfcyZF0YSrfBYWbnO/6ZRnpc8757bq7RvSaL5cS/36lB7B9lLMGrLJWE2CIuLi/H666/HyspKHB8fx+HhYbRarTg9PY39/f1YX1+Pzc3NeO+990pyz95JRJSVzp1OJzY3NwsyIQbMxBELxJ09OzuLd955J95555347d/+7Yh49DAVb8PQaDTi3Xffjfn5+fiO7/iOuHnzZuzs7MTi4mL0er3iMn7mM5+Jhw8fxrvvvht37tyJBw8exMnJSYzH41Kmura2Vspun+Qp0KiY2tjYiPX19Zibm4t33nkntre3YzAYPJFpPogxuOw7t8sY2XNMAnxxcbGSK+Ba559yEjQDDPpilL6wsFCSfFaoNg7wICFIh69c4ZINlEGF5yAj3YiZojk8PIzDw8MYj8dl918bOX6gBcqk0WhU+AEjgJfAXj7uWz7XIBt+xs8Y7RFZoWfFVIemsyG1ga+L82fk7nBeHR/ZEOawiemX+dF9z1Vo/p45YjdbPO1OpxO9Xq/MFZ4BoefhcBjb29uxt7cXx8fHlZP1zBMuSoDm/tvng7sSrQ7E2Bj4u6uGgD/SFc1YVBSyFb//9g975Uc8egD83NxcvPbaa7G1tVWW0eNmRkSp/15ZWSmnhEXMLCjxPUpZ2SeGNQdM4v7+fqVWHEF3Mi27vVh8J8g4o3lxcTFWVlbixo0bRSnBEBiiT3ziE3H9+vV4++2344033iilg+PxODqdTvT7/ZhOp3H//v1K9VSdcWg2myVJu7GxEcvLy7G/vx/vvPNO7O7uPrLRWjYyRmJWype56NlLqPNW6Ffmm+yWe2Uvq5e5l7xPjvvXeZN+JwJn788xZOe1rEgQTBsjhNYrm12wACiwYvKZGfDheDyO3d3dkpOAF3q9XqWU1c/CMLjaCVpwrUtjvaVFs9ms5Gcch7fnUpd3yDyRwxp5zrNS5302HjzDnmCd95EBgWUw9ymHmC7j49znbCzm5+dL+LLb7cbGxkZsbGyUA744x+Xg4CCOj4/j6OgoptNpDAaDolfyIjh7JdZrS0tLsb+/X9ageL8q9omybNpj8tYpvOMyOXhc+0hyCkwgBsGdtqeAkCK0XtJvVAaTf+ITn4gbN27E6elpQRwctE0MfmVlJTY3N2N/f7+C+I2YWq1WWVVKbfTa2lpcv349zs/Po9frxcOHD8tCNSYGgbsMpcOU5+fnsbCwEMfHx/HgwYOy2db29nbcvHmzbEZ2eHgY9+7di4ODgzg5OYkbN27Exz/+8VheXi6H8xBW2NjYiFu3bsXXv/71uHfvXhwfH8fx8XHFpWYjvpWVlVhfXy/lru+++27s7e2V8FRW/nWex1XQf1b+Rm9+bn6HrzE/zM/Px/LycrRa1X17KATo9Xplqwu8N787Gxo+I3mbk4Hug407n/E3FTI8F7ef7436SO4a5ec+Hh0dxdHRUSVJzTuPjo4qYVbCotAOjzXLjmnNe3K5o/tmo2XZNKqtU6R1XozDXKYLxsrx9/xONyv87D3AN1b+Rso5BOUwm2niv5kv5yZv3LgRa2trxVtlAeKDBw/i/v37MRgMYjQalU0Hfd41QNWoPvM4URN2RIiIODw8jG63W3iJBoitA33OcdkT9IaaT4ok0J5J9VGdMcgWHca+zCMw0uI3KMtxWqzhxsZGvPDCC6VCBwEBnSEsDx48iF6vF/1+vySReSahIIR8cXGxWHzec/369cIQbGZ3cHBQQVZ1ZWBMFgzAOcxUFiCMo9EoXnvttWi1WiWR+t5778XBwUFsb2/HCy+8UOhA+KfVasXy8nKsra2V3Vp3d3djOBwWtIJB6Pf7sbq6Gufn5/HgwYPY3d0tm7Ix9ixweQ79d51ByMajzpjUMbIVq++lX91ut2xDYWPHqmbKNY1mrUSsHBwP5pput1sQXJ0RMa9aaK2kjLq518YG4bRS8JhPTk4qO6Fyf6PRKKueeU72qHlWBibcjzFljqG77wHpmj45pOs8BvRyf/K80l/mET7PY4GOfo7BVqZ1nlt0j+fUvGZkbm/WxhxETnEKQANvACB6enoaBwcHcf/+/djb24vd3d1Sxh4xOwQqz3sd/3uekFMW7t2/f7/MCxtrAlhZ3c5cOvTmtV02wqenp3FyclLCz1dpzzynkNFiXULZ8eJsDLDUlG05Xmxkf/v27XIfC4JAlxgIUNje3l6sra3F9vZ27OzsFIbCJbdbvLKyUtYygLy3trai3+/H/Px8bG9vx+LiYhwcHFRcQ8Zr99sGjyNDI2aJLraOWFpaihs3bpQDSE5OTmI4HJY8yI0bN6LT6cRoNCqeTKPRiNXV1XjllVdibW0t7ty5U2hAXyIuUMd7770X29vblQ3ZmA8jeq+mfZwRcLOQZW+irplGXJ/j0giKa7nH43E5HrHf70en0ylzyPs8diPxrOBRbrwvu9sGOn4WO3zmKh/4MyIqm8w1m82CIB3iipitwAUwNZvNopydNzBSZAFav9+vjCUrXSezXQXF5ygrzsRgrDnxaqNAP/DEAVc2VIwbpebcB/JuWfZ73C7TKXUeg4GFedlAAaBIMhgDsLKyUrYXgZ/oDxWHe3t7MR5fnPDIFhyElbO81BmmzH/mM97DbqxHR0exv79fjABzCY3b7XYlhwjf8G6uxWPsdDqF14gMXKV9y8JHDIIyK6OP7BnkRItRlxkfZbi2tlbibVbeMCvEhtk4De3atWtlH3snzszEjUYj+v1+jEajGAwG8d577xUj1Wq1YmVlJVZWVmJ/f7/CJI5LM35+UHJYfgxRxAUj3Lt3L+7cuROvvfZarK6ulmopEo6j0ah4LBiT/f39giI2NzdjeXm5MEqj0Yjj4+OyESCVTF574JyO0Tmb/1mo3OoQz2Xf+/86wcA41tGKRB39aLVasbq6Guvr67G0tFSpaslhBRuZHCIyEj05Oalsv22hNqKOiILUuN+xen5bQCNmZyr4OVzL9g6EBNhOm1WteR8j+NTGBb40zUG1Offg+eQ7wNp0OltH4XUK3jTSRpAFdl4M5+ugH+/O886PDYI9hjx39Lduzg3svIUFeYC1tbVSWLG8vBwLCwvR6XQqCWP6eXx8HIPBIE5OTmJ/f7/kBEDbGAPGx/ktvN/rU8xn9rRsANF17Xa7vGsymUSv1ytKnqiHQ0HoR4NgvGnmw/PUbl/syeaNDx/XvmUb4hn1WxjrwkSu881IyyGjyWRS9nrBvbbAERbJRoGM/0svvRRnZ2cFjWcGhdHW1tZifn4+7t69G/fv34/JZFIUNILZ6XTi9u3bJRdAfB43jckBpVBdZGTKmE9PT+POnTuxtbUVa2trJezFs+7fvx+j0aicscA2D9PpxbbKVEF4LxuqFPBwbty4EYeHh7G9vR0PHz4sG69ZCTYaFztXkluxYspKnc+MhDLi47l+vr0DaMD/IDm2OYiYIW8QlUOJOW5slI8hIYQCrxEXPjo6Klub0wdXIBnFoowAF3gw+VorwOl0WqqBnOD1MZj0kZJllIy9Ot5LstFxeX7n/Z/yti3+jYxZGTo5ifJyKbQ9MAwGIU0roRw3dxkrNKQvXOukPv23zrCxNR9mdD6ZXFQVrq6uxo0bN+LatWvR7/eLEfBaKFfvcEIe23sfHR3FcDgs4IjCFfTR4uJi0SmMmz4A+OrCXJYX51TgpVarFScnJ6VyKe9JZTqQE8s5GXudnuuIKLJ1lfYtWaeQDULELCzA5zYIDifB1BFRG5PrdDoFTZsxCav4Pu45OTkpxqTX65X/YWQY34jj+vXr0Wg04uHDhzEajcoxfFQwMYEsfmNnVhSB94/vdruxvLwcOzs7FZfeyHJvby8ePHhQkqi3b9+ubKVMhcP6+nq8+OKLpb9nZ2exu7sbc3Nzsbu7W/Idc3NzpUYaRt7a2opbt26VMjlyDIQlYE5QFmEshz0snMy1lYWF1cYih2lsLEDM5G0yz2TDVRfLtudnr5J3U0OewQcIfWFhoXIwkj0XwipGbPZ+QXsgbowMxplQFUqIe5aWlspeTng/w+GwKDEUAygV9EgojXE7NOSQFgoEcJKVqw1AvifTge+yl8S80AyysmKEXijYjJx9v7834jZ/8X42cXzxxRdjbW0ter1eLCwsVIwMRpvkL4aWqkB4HJkFlfPT6XQKbbiGUxOdlzGvWk5snOkTnhq8c3p6GmtraxVlTh8Bts4ZoEusw1whR6EO/6O7ntSeeU7BoSF7CN7TKBsDGwQzo8MLEVHCNxxYgrVmsI6fmjkjIvb392N7eztWV1djOBzGYDAo76SigGeweOT69evxzW9+M46Pj4vwkuxxwthHQ4Jmp9NpnJyclIlh++tutxunp6eFUVFkHNIOmlxdXY1bt26V9RagVBQPSdL9/f24f/9+Cadtb28XJMFWHiBkFB87ur744otlIR2L16ieaLfbJfG2v79fqWxifqx0jfjMF1xjfkAQXHXBdd551IKfvcrMg/y42gKlQsIawc0xWIQb79LHZMKDGBuU7/HxceHfs7OzQleHFPAS+H86nZb4NSAF3hsOhxWlb2/C/GnaeYxZGTmEwf8RUUGejMsK1x5hNhbML7Ft84KviXh0n6S5ubkSDzevOHTHM7LByV4GyndhYSFu3boVr776aly7dq0ka43eUYZO6Dtvg9GG3vw24p6bmytGwaWlOYzG5+i2PC4Ut3+YD0rRndvwmO1ZQxOMidfqWH6gA/1aXV2Nq7RnGj6ywGe053I5u69GkXatbCDMbOwfj2WFKBGzGKvj+453siqw3++XElWSedlATacXsTtWDxtxeU98Tk0jdHR6elrq55eXl8tWzxsbG8WAuVSNxurriIv1FSiQtbW1sq3FgwcP4v333487d+5Ep9MpCaqIiOPj46I8YP7z8/OymR7uI0YL9Ly8vBybm5tx69at2N/fj7t375bQFS759evXSxLM8WrPcUbvdd/ZKzBqv8yjsPeSF/fYdXe4Dn7hPp7nuc7K0msLMmAxD/KbcAt86fAmRtiKhXt4JkUUGMGTk5PKgjUMjXMV8Mjc3FzFkOaKlyyPVvxWaFa8vj8jfM8lf6PM6gCAjbiVpMPBl/EK/ef9nit7q43GRV7xO77jO+Kll14qC8ccboY2GANkmH5Ttk6y3UDWORUKZYy4nRdi7q2MaU7c5xXc0IT3W+9grLwuB560jBAR8L5x5mmeAdDM831Ze2Yb4jEoK1dbtCzYETMUkEMCru4wI0RcJGZRfqBau7QgvogoFRl4ECwsYR+ig4ODCvKDYQnXNJsXqxZRYCScEHhPFJUpViYwcr/fryxu8X1GlcfHx9HtduPo6Cjef//92N3dLWWn0ItYPzHPtbW1ivexvr5ekuR4PHgXCAixVgxfp9Mp6LPf78eLL75Y6rBB0Wtra4VmeSdHK3b6WccDXslutFgXXkAxwCvZy7TCQxG4+b35lD3H+B1qxGigjGx46EfdQkHGcH5+HsfHx2VvLaNwjwfeIp7MGhSKJOAjeA1hRx6sgKxIPA5ogjdqOcohJvjQMlcXBoE2xOHdHPJxuMpzlJPdzA9KHCBjbyePbWFhIba2tuKVV16Ja9euFa8LWruyCn5nq3J7A3j50CDnWdAFLkV2OIuSaSICNjIYCs8D8wQd0VeEhjAABg8OoTGvyJANBM05LcZM6Hg6vQixX6U9M0/BRoHGpENIf58ViVG9XXyjiOn0IrHKgiUIiEuYjY1Xk6JI2TabhK5jgbbSw+GwJBW73W7xQBxeAbXhqTC5MBwTvr6+XrwEL25xiCHiwohdu3YtDg4OYmdnJ/b392Nvby/W19eLx9BsXmyoRXkqjLuyslJCWBFRYqUoS5cjcjY0qNaHmzSbzZK3uXHjRjx48CB2dnZKKIwEHsYhK5PscYG+MZpZkRoM8HkOPZnevt5hI4TPgosHYFSO0acfbEpmL6TValX2gMo86OS4+0y/zSdO/tvrmZ+fLzti4tmRe+h2uwVFIhcYd/jLfM41KAWq8OizvWUrGM9dHquNoZPZXtdRd49p5Ryhw8DuO38zRkJF+YfQyosvvhjXrl2LXq9XjAEnK7r6yPk9h/DMJ0bXKG2H5kw35PXo6Kg8A/1CnpQQE56N59b6Kv8wF6YDPG8jmg2EPUNHMNxvIgjebudJ7ZkYBSuArBSyS2ZjYMYzgzoMYCaDwVCKjpviltt6GsFB+IODg1heXo7l5eWyH0k2VDYQ5+cXq5GXlpbihRdeiHa7HTs7O5X4pN1mMx2WGoO1vb39SGycd4HuV1dXK/HH4XBYxsSZvZxM5UVw0+m0oPmtra0Yj8fx3nvvVQwfbibMDTph11G7ocS+2Y7j4cOHcf/+/bKf09bWVqyursbBwUHZN8nzahCQFXlEPMIPOWTBfMAfGAU+g8YWDpR6ozHbedTzaj5ibo2kQVVGXPAuIUsrEbvrzoXV8R1gw4g7IoqXgHuPkUJBWWmbntDSlUMR1UVUKIhMez/PBi0rVoAVaN7rcVAydRVqeEP2DDw3oHkMB/T094yF+WfTy62treLZGhFHzCID0BqDYH5BtpgD+B9gRO4phwZ9Ap7BSg4DG+ywLQbgA7Dg/A6ehsEFuTbTKWJWRelFjeZrj9FGNyIqOZIntWdiFIxYyoNTjM6CyWCyQoiYbTVrxFOnMEC1WEfHa6047OYSZzs8PCx7mYB2+Z5nZSRkt4+jPVEUdUYvYqaABoNBWYwWESXn0O12S6UEpXMsrGGlNkw7GAxKPmRtba0kJxE+wlIo7BdeeCEmk0lZtAJjRkRllSl0ttfjVZSUSy4vL0e/3y/nQUyn0zKGk5OTSpLa9DDSdIyYHyskM3SuqDA/cZ1ddaMolGn2SHgffczgw2jM85+LH2hZGdjbcCglo2cnCa3EjawtJ85z8BsDxd9WeDlc47Eir77OCtDjQnGi0FAsGCI8dqNxz30uz8w043+Hh9wf6LG6uho3b94sxR6ZfhEzrzt7GjRCeg4R8gyMjOcN/ppMJiV3SS4ozydjygl7l3zz7MXFxVJJiJfBHKPY+/1+AYR4kDwHj8Kr1G30mEeDbvqRaX9ZeyqjYGRQ5xo6NobV8nUQn6qdfr9flCQKZHd3N+7duxf7+/sxmUzKAiYQL8/hfUaIxOAPDg6KAp9Op3F4eFi8heFwWDlhLJ/4BHNQtrmwsBA3b94sJaBUjdiA2DhQZYJHMh6Py143e3t7BZET9plOp7G6ulqqmyJmC5JQxv1+vxw4w3Xj8cXim/v370er1Yqtra2IiGJwBoNBUaARs/UBJONgLNxnKpxQSAhjp9OJvb29uH//ftn4C+NGCau3ezYiAx1b4FEE5iGUFrSs8xKMwHleRFSEhedZWWcB5H1G3bkfdX3y//4eXndSl+d7zyRXwbjSiOo3o+gMNvLf3Ou8isfL35Y5+osSde7D80MIEiRtD40YN/Qk50Y/MurmXfBdndGkj8hOr9eLa9eulfPOUcLIhkNmzgkwRhqxeOseKvIwYA7zIPeAUp5r2rq/2ThmensnAQyGjTv9YYGdvR57y/a8nGtyOb1zYvTT54w8qT21p1AXFsrJZDqZPYV2u11q/O0SogTa7YvFV7dv3y4bvnU6nbLy0HE6CE7FAMSiBvz4+LiUdnIeAiWX3oog7xwJwiYOPT8/X3ZRZbuL4XBY0EQW4GazWRCWq7JgFvYlabVaZXxLS0slp4GxOD09LQr39PS0GNDFxcWijFl4s7+/Xyp82L9laWmpLLLzvHn+YDgYeDAYlJASxoUcRL/fj+3t7djd3S0VFCsrK8U4eEdHhz2sGIxm+N9AgjkltEUizsLoWL3RLs/GS4mo5gSyMfJ80R8Eje8cEsteA/0xTc3r+VCgyWRSzs+gXDOHTwy63HeUcJ2HYyMWMVOaNhLQkVaH5AkBRczCal7chyK2YQHg+ZQ5Ky/65+og8x6/ARLs27W8vFzm0Mli6IMRBXTwTOsG5oAf08K5QHufzAFKmv9dkm4k73UsyDf3OJ8KrZaWlmI6na0m39zcjM3NzVLF6IWPDjv7ucy/dSxzYlBl2XhSe2pPwULjwZuhsyfB51tbW3H9+vUyMcfHx5XVm17Q1Gq1YmNjIyJmK5chDoIAMbifKiVi5tevXy9L2KlM6PV6cX5+Hjs7O0Xh2AuxtYUhiHGC8geDQQwGgzg6Onqk9IuxGmV4QnkHcf69vb2yX1FElL3au91udDqdaDYv9tNhnQXbbgyHw2KcGo2LkBVjg4Z4LVQUGbnYWNntBA1OJrNyS4xEt9uNfr8fDx8+LEaA97D4DUVi9OnfKDobCujEXIAQ6Q+KpS6x7NCH99xyXT3XYDAYoz0O3pUNAc0K2IJqg4DXQmjOfYuIEhv2fl0oGCs435e9b5QlfTXf2qNx/+rowPstU77fSpLveIZj2cyn5Q7+p48814bIHkO73S47k7q6yBVv3MePvVBog2cAjSkthYcODw9jZ2enHFZFPxibZRlPABnDi0BeDHCgkcNXmUbMf6fTKRtXrq+vR6PRKHKDQfB9Bp7mfXQIY+12u5Xzvg1In9SeSfjIf2emdZjA1nl1dTX6/X4RVkIgTH6r1Sro2K5fs9msbCWREdH5+XkRFLuuKDPi5RghlLvRTkQ18cVY7IphGJwLQDHjWUTEI1t9ZBohMEZUoGI8A5A/YZrl5eWScKKSaH19PVZXVwtKdzgFV5vVnizjd8wTg2qU6kQqdEHR4sm12+2y2hvD2mg0Knv6OCGfvUoYPRsDlAeek9EwtPLeLg4N0H9vdeK9lOzK85v5t9Jjvu2+G+35b8sB44BezWaz9JVQXcRsIRlKFB5z6IDv7fXQ1zpBt9J3EtrGOIdWUOx1HhwIGWXP3zzDIMIhLObDeQrrC8bK99CCtUFra2sFSZMbdLkqz2GMTsrDHyhIV9qdn1/sFnz37t3Y39+vVGmhiOFx9ioDhA2Hw4qHZhkxSud/h+MyL9kgkkdEpg0OkBd7ijaiGEMWpnK+CFETl+h+ZJ5Cdr2z0jMCZUJZURsRhQBUwjAIkIW3wYYorK51XI/+ZCYcjUZlCwETd2lpqSB/NmCDMXlvrmwB6WC4IqJsJUE9M/kDytEQYhK3Fk67d6YZJWTeMmE0GpVtuxuN2SHuCwsLsb6+Hi+88EJsbm4W5IFSxMCw6pvvYXS25DCzI1xZOcJkjBOPAWZcXl4u22bAtN6nKieE7SXYGDvcgGIgtIcQ2J3PngYoEUXhODl9pugAXjJ6ZdzOL+E5GYXigdQZ/IhqrT9hv7zimrGg8CeTSfEccpUJfTOPOzcB7zoBCvp3/5yv4F6ea8VrObJyypEAFLC9FNbIOL+SowVOzELv9fX1WF9fr6wW9nXuk8FDHhuRBieRB4NB7O3tFe/AesR5kPH44sAjACaA1V5g9ljcL6IVXAtfZUM6Pz9fNrNkrryewnyFfsyGh3F2u90yftPWoM/l8I9rT20U+G0mqUODdmOow4YRTk9PS9kbyTgSuzAdRsKLMRyTNOFQGChEykot1KPRKLrdbhGOfr9fVvFCfNYm5DE42TUej8veRpyZQGyfOLwFBybJDIN3g8JZWFgopWoWUuc5JpPZuc3vvPNOrK2txebmZhEq9mVaWloqhpcqEvpLVZO3H69TAk5+4q2hXBF+jMVgMIjt7e04OTkpY8Lo2n3OIQ3mgkb4j3nkXpcqYqyhCz8Y8ByWyoKZjVJOfEKLrJAx5sT36T+K3aE56OVYO2NAgdkoRsz24MlhR/MRAIrP8R7oN30xcON79wGUbJSfq3uQAVoOtfjZnlsjeAyDQyH0i7UxrD/AQDFHzJsNng2CcycGKxSScCQmPA3QtGzjyTns6bxE9gqgT53Hm40wc8jfnNeOMvfqY9PU77ZhIfm/srJSCa95fkxzJ7+f1J460WwvwSjJysxKhv1hvOUv1S4ZzTN5DDKiug+93bOMwFH8xNS9dxAK+OzsLDY3N8ukgp7pM5l8hMuejK05pWMsIiOujkLrdruxv79fjJsZKLvy9N2L4mz4LHQ5Zskis729vVIfff/+/bhx40ZEzPZXYc8dchIYZZAZzaiwTjFa0SAweBDz8/Px8OHDsh1wNm42DFbQ0GRubq4YLiugrLRNA9PSXqPHAq1yzsDrXqxE6Sc8YMVG/oYQGjziBZHkyzJygw/qvEfXsxOGcZkt8gEIsnGBX6w087Yv+SQ4e0b8tgK0YXI4xB4f3zvsSuOZLq3kHnQC4aKcP3AYFPnPc2OAgNyNRqPY2dmJBw8exIMHD2Jvb6+yF1ndOhbmiT7boJnHrdxNVwMe60L6CK8sLy/H6upq8aKzh5G9X/M+hoM1SfCk6QqIwyt16Okq7ZmuaLby98T5cxBsPlgE195usxMoVqLE+yJmdbtWXnweEWWDMoSI2DKH3gyHw9jY2Ih2u105X9WTZLTgdRE0ykFJrFGhExHlYG8O8yD8khUwNIyootBsPLIQ2gijqEB+xPXv378f7Xa75GLYB4lcCB4NVVqMJRsix96hjUMG9ANvEOS8s7NTvsshRaMXaMputoTweL7nwWicZznx6mfbiNgjMPJCkdB4nnnKpa28G/70vHgVsxPiPI9wEWPGk+B7kvYgQt6DwnSoz2O1wTGSjZgdhWljRXjMSsiGcTqdlvxbBjBZBqxw7GVayTF2+tFsNouXTZgnl+NmT8c0cJ/QF9Bvd3c37t+/X/bxQhdwjUNwKFwrX0KVHjNzz3jNAzm8nMEeuoNjcXmPQ2N13gW/AQBUFLqiju0rsudkrxidd5X2TMJH7gyfe8IgFDFuJt9Ggc7zHFtyGNtK0YJqQc/xTlxqPifWiQcQcYGgV1ZWygpdKpsykqMf7FmD0NlFOzo6Ks8m1t7pdMqeRI7ZEmryVhcWIK7z+EzfOss/Ho8fKZFrt9tla2/OmWaPpZOTk1IbzXYe8/PzpRLMyJk+ZYNInyw8hIxYU7Kzs1MZY+YflCb5GRtkexNWeDlMCR/6O/OMlZ5RJsZ8cXGxAgLyuI22rIioOuN+xpTj/TZEeEBHR0clts28w9dcYyVjPnafrNSgLV5BDtt5bYGbUa9RLv3JPOnr+cxjcGk31yBzeAgcdcv7czI0j93vMM0AB6enp7G9vV32DkPB2xPjWnsFTqgzfwZA9lbNO9DAPGN5QIfgDXnDQ5ppat6FJo6ybGxslNAyvGr9Rt8Ix8Mn2Tt6XHsm4aPscl+mQCjN4zovUYd4xF0hKBO3sLBQmAdhy2sKeDf3siydCbchYMtrBKzRaMSNGzdiMBjE/fv3y3sIt9DH6XRaUB1eiOuAHZqgnNKHfTixdX5+XqqFOBmNnAqoHCVo1G4EYAMcUd22F/o2m82y0nk6nca9e/eKEiNU0e12S4KbbbzxpozQrSxtGKG748C8d3V1NVqtVjG4GGoLHbRyWJCfHBYCNGRjkBW5vVQ3eA1lUOcxZITq5zmXwDzzXIdIPF9W2NPptHJORvYGGYcrYyjxzGtdsixGzJSMS0xtID13NBuVjHChr5WPcxeZp+Ep84y9KWSZiEFE9dAav9tGgvc6jGulzeFUd+7cicPDw8JX9iKsH+z1uCjBtKzTbb4ug4U8z4RBNzc3S9GEQ2CmveUrh+wAlixYtYEzXxKmQ0dFzHJE2dBf1p7J4rVsGEx8iAg6wWX1Dx2PiOJFeO+U5eXl6PV6lSoGu1UeMJNSl/TKqJaDcpjYTqcTL730UtkQD0JzPa4rY3J1iF1AEsXOMRA2YqxM/Pn5eTlYhT1YKJF9nIKzkvRceLx8d3h4GHfv3i3luFtbW2UBzsHBQam55v14dJ1Op6BVvByHLfwuQlbZlUaBsuAP42fUipLgGTaAOSwYEY/QBgOBguC9pomVPEaOz7xaGhSfQ5bwpg0x9zvM5QSpQ002ED6+1YrYfXAoCKUKCMn0sFLiO++8adqYV/3DXNhg0vDcHIqwx8tz8fQIp7rsmbERU2fnX55Fy7Kdw1UOAdLniIvdk8kfAPiM6rMs1cmKecLfudlLgL88tzaWACI8ccAiNHeeyXPs3MZkMqlsq2+aoEcMSihrtS6Ch666qvmZlqTyWf7t0MBkMqnsUWKmR8kiuCRCOTMZokbMEs0OC0CYjGzsZoIqQGinp6eF6bvdbknKvv/++yWBDNKwkIPcqJiy5caQNBqzagbHSq20QPNs403N8uHhYezv7z+imKBpNgpZWdmNn0wm5bS1jY2NQst+v18EGCV1dnZWUBzIHaWFccvhCN7pnyxk0BdXmppvFifl/ITHlcMGPJufuuM7c9I1IirKn1Jc+MDrHKheyfFeN/rjEAJ8hWHjWVybaWdFbiPgPBkKw3tH2Vi6mT95Br9dTWQvsy4kibcKTfDuUGjcZ95AxugzOUO84YgoQAMPHX4z75qns8zaE8KYR8xAz+7ubsmZQSt7XzaGPMvGHDk3H5n/7HHU7eVlI0skARrmY3otI/agTAveh0Ggrw63OZxoYJYjDPD6VdozX7yWBdYCyRYVeANOxBHqYZCtVqusAXB83ItcIuIRhYHA243LMXoTbzKZlLMOTk5O4tatW9Hv9+P4+DgWFhYqNfweJzF4b6VNY2zNZrMkexkTfXQdM9UrLFZrNpvlYJt79+6VPmfDkL0ImlEen5+fn5dVzo1Go+QylpaWyspnEHwWbhLTKG7CHhYoxsd9fG6UDd1Q5NDfORw3V3x4/mxYUWIOxyFMGAHfh/DAd9CVcAf9J8xpRUvjXvOfPRrAjX/gCWhKSAiBdsgKJRtRrVqhQWfPLw3esnLKXpZRLnICPTEI9M07B2RZNz2s7JxXAa3a0GI84ROHYuwtZVCREXmz2Swysr29XVHWBkX2EOvCkY5O0G9Ap/N2LBy1d4t3ZV5HZogCsG+bwR3A0pVDhIutO332iQ2Z+2/ehJcBqw7Pmw8e157phng2CEYhrsZx3b8nCYJMp9WNqohP5pI+exUIu5U/qAj3CWEAmedqi9PT03j77bfj+Pg4bt26VSoYIKiT3RgeSk5JPHtyJ5NJLC0txfr6erRaswU8uHcgCX6zopEE0Xg8Lqe1seV2jkXaE8gIwwgHBmeFeK/Xi2azWY7ZXFpaqlSEuUIKg0zZKl5VRr5ZAI2gzR94B9CESieH9vjtvAq0z8iM+Cnvy6jYvMbzoA1Hmjq2jyLyFtbZ+NoI2Fi74MJVdTYqeJIeF4rYsW2viKeMkvtQVEbBGBIrTa7JDeWAMfc7PF6+t3H2nDJPVu5WfhgbeIb7MsCjv/b+3TfoBj0Z78nJSTx48KAsEjU4xKhZVmxs7S2Zb01fJ7EpROH9JG55JmPAoGDsWaDG9hgAUubXHmMOQc3NzZVFvjbw5mUnrCOq+VZkwvr1Ku2ZegoWCgsQCMRnE7vDju+ZAafTadn336ghKx3ezT30B+aiWfCxtq5/nkwuFoPt7u6W8BAWncakQmgzPIxopILygylZGANaNupYW1sr/SW8sba2VgkvZdTKO3KYo87lpjqq1+tFr9crlS+cy8CWEig1EI8VDkzPgjjm1AuhLHBWnvYE6RNggcVz3ONtH1ACFjaHaBgvdDcicjWWBYh1Gqw0ZwMy+sVcZ4BjFGf+g2ZsjQBN/Cwr2bxi3SG/0WhU0CG5KXgFOXAoxP9HzEJWBlGWjSzD9gQxpnWhM4dPmCdoAHhgvjBiXsxn7ydXAPEOe0bWLcyxQdnDhw+LXGTw4H6aF+3JXuZle85brVZsbm7G6upqKYTxIk/o7RPa4GX4NBsKe6wONTu01263S+kpVYA5nIY34IWODoM5GuLtVZ7UnllOwcTMk2wESsforN0zBN/3gygYqNFFtn65giBitlFYRFSUjNGMBZIdVFdWVmJ+fj729vYK8a38O51O2VbCfbISgrHYZZHcAtehiMbjcUlGNZsXsVyW4S8sLMTa2lq5Nru+vNdupBVXpjfbdi8vL5dzlyOiPNtuMELIoiKewXxYGDGUrAo3gmVucNPtdWXjiMBZKTD3Dvu5jtwIzzTx9inMs2OuVDyhhMy/deEsKxOu8TipJLNhs4E00jWIiojKnlzOn7VaszJdkpUZJFkeoBfP4X+HZOAVeJrrMQRe9GR5ZkGlx0A/KPiwHnCy34bGss4cIqtW5Fmf2Avb29uLo6OjiqHI8m9vybJhWTFd7GnA/5ubm7GxsVH4yWFG3m0dxjMsK9CG8RNZ8PGYBjLn5+dlrQ7AIIMpVznmcUBL6xon85/UnmlJav6MAbCthRG+mYN7+B+BJ56ZUT+fOUOfJ5r/88EgRhH2Kox2sPILCwulBr3f75fVyd1utxJzJc5uN7LOY0ApWpiYMBgcr2F5ebmULVLFcP/+/Qq98hjs+vt7MwuGgTMZcGnNdNCAJPTi4mLZFjujK48TGrviBAHy1tEONzDfKJ3FxcXKXjPQD4Ei1GE65BAKRsrhI8ftafzvrc15j70BKx6HouxBACjodw47Oc9i5Y0X2u12y/dGvFaw7Xa7AjhyDgfeR74Yh/kle195m2fnA7Kyg2Z4adCGEGjmyQzaeL+VmeP3zFNds0EA2NgbMJ3N71m+fS1zYfqZXt1ut4RwvZ8XoVY8BJfhkstaW1srZ63wPQYDDxWvw/qIMfR6vUI/yxfz5u38PR9ZBjy3H8k6hTovwZbY7q/dxKw8sWherGPE4vuYdB9Kk914I3qQIs1/R9QncAmnkFQ6Pj4uCR8UiLf4tpvtU6oQFBQrDJSZl0m1gGAIOBwHQ0ToiQYTMDbTywrLhprxscUFZ9ySOMvIDqPV7XZjfX29rFbGqEF/jDn5E9CoUZMrWDwHKGUW+9k4O75sdOv5jph5lYTorOgoPuD9KGRQGIbLRRCmZ12f3RBwI2YrYPiZaxkPBQvQGCDEmJkvL6zLc59Dsg4x2YhjrLg3r6mAhxza8Rw7SW/j0+l0SlGIE+JWxka35l+PhZ98DUqRUvGDg4MKfc3v9M3hUwNCmhWxeZLnsa5nMplUNk0k/2YA4dAZ80OlnddCYfCQcR9j6yqsubm56Ha7j3hL5AkATdaJ7jsGATBBeMn8+7j2TDwFC2hENXbpE5uMAnyPJ5Tn2YhY8Vuhvvbaa/G93/u9cf369XLtm2++GV/60pdie3u7ovCzoLjv9iSYWA68WV9fj/fff78INQlu4t8R1YU/VBRABxgRoccYOn6LtQcVOOxBMjQiYmVlpbJlhAUuu5bZa8DYMj4Szv1+PyKisuKRcBkNBkNR9/v92NjYqChRzx8VY6AbwmaeUysBe3D8RtE7l2FjwHO4hqT1YDAoJZAoEzw5Aw5oDk+iRMg1OD5uHmJebTSgp70BrvMKXhcbQCvG5RJkDCn3AZYcfrESr5tfhzXqPEqvA/I88Az41V4ffGyv2JsVsggSMISht7KEjlb8pq/LhhkfMjEYDMrZB1mHIIf2WC0ntOy50E9kGNqtra1Fo9EoG3P6PAZfD9In6cszmBfLBQUW0JeScHIL0BrD43EyZw4L0XfAInQ2b12mlx/XnskhO3WWn8F0Op3SGTO03W/H9HmWD7g24RqNRty8eTN++qd/Ol577bX42te+Fr/3e78XBwcHsbm5GZ/61KfiT/7JPxm//uu/Hj//8z9fOU4PFJMFyeOJiBLvOz4+jhs3bhSF403qUFCORebQgZUKP8PhsKB+G0kL6mRykRSlvJLQAS6pFZyVJO+1MvB3/IAwzs/PY3V19ZHTsmxwMkI+PT2NnZ2dGA6Hsbm5WXZ5BOFgpFy91Gg0imGImG2zYBBgwTaiWl5eLl5ZDgkQYuSHk+CYj5zwBcHbOEAbEuze/RUa5TyX8xfT6bTkEmygmc9ms1lZ/MUW5tCF8WZwxHgt3K4zZzwYa8tXVvBZGTh8a6CFB0xNO9uwONzn+WG/IvJdgCbWnhBWyqg+64xs7EDS0OTs7CwODw/LgtI6HrdHxpw6zGb58LM9F/xQcME4CWsynojZLrZWxHVjtBIn9IZHxaaV+YCsXq/3yBkieJDmMQwzz2Us8/Pzhc+gs8HNk9pTG4W6uB6t2WyWTeBQ6tk1tuX2xDJYL/aZTqfx4osvxl/6S38p/uAP/iD+1t/6WyXmz7P++T//53H79u346Z/+6bhx40b8vb/39ypVHjBdVki5YgPFvLa2FisrK3FwcFBJbLnaJa/CJYnM+JeWliqexXA4LEoI1MCkeRGKN06LiFLienh4WDmUyAJmg+TvjJxcFkkoaG9vrzbcZAHme1xhqqMIs2UG5H6ULGFEo0+/EyQEr4CCVlZWastfj46Oyol3BwcHsb+/X4STMJJp4qQtip55Zk6ZPy8QsrKluXTUyJn5sncVEeW9OfxnGiwtLZVQnj0/n03MfGQUaLobyfI391gBWx4JuRGv99nfpk1ElJi4PRhkCnCBx0VpL0AARMx4HOawofamkcwx9M0gwkaQeaZP9pBMK+aJUB50ovwUWnpXVRtx6y3Ll/uHsTD4g+/pm8OX6BQKWNAHPnEOAO3wKiCRfjhv5bnOIc/L2jOrPjITR8yqjjgvoS50gCDReRRL9hK4Z3l5OX7mZ34mvvCFL8RgMIh/79/798pgx+NxPHz4ME5OTuLrX/96/O2//bfjz/7ZPxt/5s/8mfgH/+AflPe4qgWGovkamP38/DyWlpbKQjUYxCtgYXDuM9OenJyUrSPMKCSvuZd3OwRwcnJSKXMFgeOiI7hGR8yBjYERp0tgmQMUlj0d3+/wAc9HCA8ODirVEq1Wq5z8Rp9RCqwZsUFDERgFG1zQf69zYXsOlBf/g7hR9AiQjZUNNseb4sVQV47QE8O1IXIJIc8z/bMnwuJGNt1DuTKn8Hyj0agc9AQN6L/DAg73ZODE+x1rZi64133AK+aMb04j8/x4CxqMPGFSaGM+AUUzPhSXD2eKmG1RYwXriAFhXBS8w4g5jMb15lt78PYGoJ2NJs0L0uzlZCNW54E78W9U7yILe2YGTfPz86WYBS/l9PS0nMORNzbMniRjhpYuanF04yrtqYyClV9dA+EQV4WB2+12MRYWfu+db8VA7Ponf/In4xvf+Eb84i/+YvyNv/E34mMf+1gp6zLzf+lLX4r/6X/6n+Jnf/Zn4y/+xb8Yn/rUp+J3f/d3HyGavRsLVMQMQVK/7wPp7do1Go2S9Eag2b/E5Wgchbm9vV0+Y0sJjFrEbNfOLOgIBJ/BvF4UY+F0iAOUDlLD0IDscJetYCw4tByjhjlHo1HMzc0VlAuSBK1yHTxj+sH8Ztg6l9/KHU8JZUYeAWXhxFoOS6Bc8CL6/X7ZV8vX0TBkHrf75ZBEBgQO60AnkCbz7BCAz6KeTmfnXaNYs1w4H+Lkr8eNUabZ25hOpyVxu7u7W0CG56Fu8RzvRnFinJgfAA1FA/BtPqKWcKP7S/+ceHdewcAHRWwDkD0He0rQ6jKdBVAw3Qwk3D9onfUV3i07mXIPfABd8cp4l2X38PCwnGAI75m/vPYDelrGTA/k1GHQJ7VntnjNiIEGgRkMncJygnyYNKOc0sH/b2JeeOGF+K7v+q74W3/rbxUB/p3f+Z34X/6X/6UYmbm5ufjMZz4Tn/3sZ+MHf/AH4xd/8Rfjc5/7XPzoj/5ofPnLX34k3FIXXqFPRra48CjywWBQ3DuUK4orC32j0Sjhom63G1tbW7G9vV1BfgsLC3F4eFhQO4rS6AuX0PHdVqtVDqIZDoflefQFY2rUbvd2Op0Wb4SzFIy2HVqzAc3zzbydnJyU9xldo9CYT68xcKtDXKYrsWtc/IgoCJc59AI0Cy88whxjPDiQiCoRjxcPhvusZDD4GallA25ZsSBjnHgWhtXzl0OzBj7wAGOtQ+woXqNxFxBw7jAr2wnfQQMj+yybNvLNZrMS6mSceAemDZ8z//CpjRqJe284if5Abswzblb+VprZaNrL47O5ubkCtuB15/mM/s2ffj76DUXMO1yMYaCE8W80GmUOvF8a3xOmhvbcD49YB1mP2bu86lqFZ3Kegv82c1pxQkBCSvmoSb7zhHNi2mQyiX/n3/l34rd+67die3u7CMXp6Wk8ePCgJPImk0n8w3/4D+NTn/pUvP766/HzP//z8a//9b+OP/7H/3i8+uqr8dZbb1Uspy0p/afvrqxBMXS73eI9oACtMB1/jpghOO5ZXFyM1dXV6Ha7ZQ0ClQ0LCwtl4VMOIUTMErDcY7TuhU8Rs5Ou3D/+Bo2ayRFezm52DJN+WPFk1M9nDo9c5mYbPfM8V+gwLid3J5NJ8Qpcvtvr9UpMn1CSUZvDG7jpXE+f6Eer1SpnW7tunvmzYuQ3nhX0BtUSKkQJoNCyZ8F4AQGEKxy7572MORtnz1E21LzXSJnrjo6OYnt7OwaDQUXxRUQFZJmWjMWGw+iXZ/g58FKWbcaDh4HxgMc9jzY20DEnp5lPe2qmB7yXkT6KFdlg3N7Wn3fTf4OBHNqDn70/WKYfAMDjojQcwAwocBECIV7T3+GrTAf4xduYX6U9s+M48+QQsrBFM0p1p4nfsnumlRZuz3d/93fHP/gH/6AQ0QzAPkRMLozUbrfj8PAw/tW/+lfxnd/5nfHmm29WkAf9NcFQniBeiAqKp/xrMBgU4ScufFnIxZaaPYRWVlbi7OysxMSXl5cr3hSJZmLcKAs+N2Ph9lpB2xCAxpgD5shMizLjfXlu/T8CAbpmLvmuznOAFhGz1Zbmgaw0mQ+UMrFVr1ugH6urq4V3UHKMkR/Glvc4QthPTk5ifX09er3eIztKQnevLB2NRhXQAG0mk0k5JjEjMxst5tbzMB6PK9tfYNjpp+PV0M4hA4dSvPeNPRSU2M7OTuzv7z9SsOAdRh2Ky6EJ6OB4vcEC/6PUCHvABzzbFVQ2ul6zBE/kPJErC20ITa9sgJknjxmPivUHzJ35jH7wLnt+ji70+/1oNpsxGAwe0QP2LpAL+Ict5Snh513MsT+zjrHHY9Dgyjvr2au0Z3ocZ+XB/5/lhcEhCOjBMWIPjjicE13U7T548KAiGCimiFm1wg//8A/HrVu34nd+53fKZL799tvxJ/7EnyjvgcAOLeCamkkQXhiQBC0C7KSp93rJghMxi//iqhs9Ej9dXV2N6XS2YyeKPGLmDhuFQ3dWWYNCvBUE4+UHJkQZ8kyjJa7JY4AZMfhW6BHVYyHrhM9CS8tCbebFI8P1nkwmlRCQ++8QH6tLrURIgkP3HO4EyCwvL5f5sSIAoGAYrGwNKCjL5B54IXuRjiNPp9PKzqm8A/p6Tmlc4/fw41CG6c9Y9/b24uDgoChth0gJhXifqBzawci6rNp0hObeLiPLHd6D+ZK5Jppg2mMk88pgF1pk0AJ/WRkbcMC7AIa8HsR9hd+yp8I8LS0tlXOXDw4OKl6iaWIAZPB0cHDwSGg3vy+DIRsDewoYX+iEkcs6+rL2TMJHfhkM6BJEGCQzOJMFYwyHw1Kb72fPzc3F/v5+JeTUaDTi05/+dPz3//1/X5ng1dXVeOutt+LXfu3XilLc2dmJXq9X+mellRWVhZGx0GcEBxTpKhv6UGfREZxms1nihTl0Qvz05s2bBfHCFDkxjyvZ6/VKrThIzIlrLxBCUWYXH8bnUPNOp1OJLXO/mZx32hW3wMGsZk7fb4/B17syjP66Bj4iijIimd9oNMqJVvakFhYWYjgclpAcyBkgkRE28XMS1g53ZeSLMnQ4wsgdHraRtFyY5z13LgawXFnJ59g21zFXNgJca6N9eHgY29vbJX4dEYVvULLQyTHx7HFAG/rkPlhh0RxuRfk5aY0XaC8MA+X8jfN83i/LITDrI4ferKCN1vnc+RLLh0GYeR26djqdUsbKoVXQwHzG554PAKENNwDV3gLKH3pZ1wAq6DuG0/KbIxiPa8987yO7LxZyE4G/UbRmQitoMxmlaRAp4iLJ+M1vfjNWV1fjhRdeiG63G5/73Ofin/7TfxoPHz4sh9FDyIjqbpS4VrwPl4vvLQhWQCBphxhcJUEzmkU4UQJ87zUUJHrZ+4iKB++UiWF0QhcGcJhoMpkUI+tytsvmEHe+0+mUbRdgPt4B4gZRmdHsEaHw8KBclmiB5NlG0yhVX+dQIjXZbLl9enpa3H6QPGPBgDebzZIPsmFCKbfbF7u+djqduH//fiWfZBrDq654Qzl7PBhUaEP/oZEBCHSNiIKcc2jC78+Gl/+Z85yE5Vq83d3d3UoFoEMhXuHt8AtK0fFuVyMZiSM/pht9ACAyloioyJFpBO8B7HIuDePcbDZLyXfuP+OG1q7W8nYuDiPymVF51huWIww5553bWMMjrVbrkfUQjBeZR3a93gcgghx4s0XrlAxiPP/ZQ71Ke6aJZhPROyqaObIisUIjdMR3Djng/rvK4atf/Wr8j//j/xjz8/Nx+/bt+K/+q/8qXn/99fi5n/u5opRYYIXCtzvI5KKIQZNWhGaK8/PzEqrBusPoEfGI8NIHoygSyjQjFzwJmJb4slETe6LY08k5kIhZDBi0bUY23X096JwSTbyViKgYhDo+YJwoBPfH24NgBFEm9jTOz8/LegO7xoSqYHiMAQlmlz+iuFD05IKWl5djMBhUaO6wBB7WcDiMiCg7VDKH0HoymRTDzGc8DzpZqI2scxyYz/kfhQSN3M86OXMYwfyU5QoePzs7e0SBZmONcbHHYq/QKBmezXkDh0G43zLHvMMXzIOT+Rip6XRaPBmfXsb92eOyl+5SXmjk4guuQ77rdA8gB1r4/YTwAKwAXYCMFbiNJ3qC53m+6ItRPn2Ct803NsDIGIlynmNQdpX2zDwF/x8Rj5SyWQFnFGgE5Gcw6LOzs1heXi6nk/md0+lFDP6tt96Kv//3/3785b/8l+M//o//4/jf/rf/rTBDr9cr97llJgJB5b7wPy6ut0QAgRvterJ4BoxFQtShICYfhestNYwcUFgwLHQ2umS/Gp6NYnQdPs/I80bt9OLiYskHHR0dlVi7k5cRsx0/UWiNxuxkNQSAJDHVNaygtrEBlVOXnT0bBI2ad57faDTKfkdUFc3NXWxrTpFDRMTq6mqlwsngBCFdXFwsqM3ut/ksYoZAzbdG7bmhEIzYARiTycVmchg/GxwbS54DouQZNqrms5yzsWcxmVxsxMb7AWIYBGTSVU8UH2TE6bAYPEVf7V2adoCd8/Pzsl8UPA7gs2FF2WIY8CyywbT3Y8WMLLoAhb54/k1v+uOYvmkOX1iuLA8Gify2seM5DivbkJqX6n4bpBwfH1dWXAO8eIaNEP16UnvmJan8Jotu4rhMEabLLqVjcAgL2xjcunUrvvGNb1SQk921f/Ev/kX8/u//fvzwD/9w/NIv/VLcuXMnGo1GfOxjH4v33nvvUuvszeBscSOqWwdQAYO3gEGipNOKxN6CEVNEVI4YRRiZNLvyjUajlEmyMMy17ChpqpoyOsDjWF5erqz4zULg95+fn5dqKASs1+tVDEJGOoyNkALzyOpjxoLgR0QJc8HkLJwif2BhY4wYZBKDDi2xfgQQgWHDe3CFSLPZrLw/4mIR2/7+filcMI3gA6NilBXPgK4InvnG6M5eFTwArRwqcJjR4MHxaAMuyx8xaVeXwSMcw8p3OXGbQ5JORHvMKDfmwejeSs7X8hlJZdPB3lH2SsxjeI2s47EB8hwbVEyns437mD8Up+XTRsDf26hbn/FZnme8T8sW48a4OspgnZG9SOZ0Op0W8GTaEM6mr/aA0Y/O+VylPZPqo4zw6awVDx22IJroEAyi2nWKuAgVff/3f398/etfr1T4eMBnZ2fxuc99Lv7KX/kr8dnPfjb+7t/9u9FsNuM7v/M74x/+w394afgChJ6JZ0ajoTBXVlZiPB6XRWMOiSEoEVFRhDA1LrMTWM1ms+wng7KImJ1tQAzVWy8Qf6cPVkSub261WtHv90sSzIJgBqMRRup2u8XTgB72FBzeMbJE2cDAoHajZCNeFA8JQyPqiCgVXlSucejP3Nxc2c0SJXN8fFzWLMCDeCkRMzTn/BEJ9uFwWEoKfWSolbqRJX2ir9AD2liZQmsn11G65l/43/Q2GmY+ucYgit8ZaULjXNZrfgeJE/tm7PTXcfecCGf82cO2kaCfAAUjWUcKuMd6wPX4yBHGn3GYL+l/DoPxLBdR5KStvRkbXdPU7zJApYDB9DE65//sdXlfJctxfr49cIMCxmR5zkDhMk+2rj0To2DmiJjFn1EQJIqt6GEyK3gPwij7/Pw8fvM3fzP+6//6v47r16/Hzs7OIwiOn//n//l/4l/+y38ZP/RDPxSf//znY2NjI46OjuK99957JJ5o19cCkpEKlhfmRKk5ieqKCBS76UKibX7+4jzmRqNRWbXJnifeJ8VnNpCEtIJwviDHGh1H5fmrq6tl0ziYKdM7IkoeY3V1tYSUENTMzCAwxsh4bODpl9EQSsoIB4DAe/AAXBCAYoNeVvCNRqMc0kM5K/sikTPqdrsVJdloNKLf7xdlZOOWY9woEJSS99mnpJF+Y8jtWeHZQBf6QAjJiiHn4mgOixjRc79DEhifXIZs79oyB/2p7GJsTgSbx+AbI18Un8fi8A98a2NK6MdG1N4yQMty5TwD/JKRMkUm2aNgLmyI/AP9vH0EBobvbbgYn/+3rjM4ZrxcY+/Fc8H19oahZZ1ytzG2fuP51hFPas/MKJgIrVarhEg8ACtJMzrGIyNSK5GdnZ347d/+7fhP/9P/NP7n//l/jp/92Z+N4+Pjci2K6ezsLH72Z382vvjFL0an04kf//Efj7//9/9+BQE5iQlzUmOemdpC6TinE6A0EAbjRECNyti3hLg3iiWfj8wBHNPpbFtnFrvh2tpAeWl9ndKImB0csre3V2HE7CmA7nl2u92ulNFaASPErlf3dVaC9s6Yb/6nfy6pJYfCc+xxMVd4S63WxYpk6EoSExqfnp6W+fLW2CgyNtgjDAYfuoLFG+cxLmgUMVMUc3MXO7sOBoPKgShGp8wNXlmdPHjuDHzoW0Q8ouD5nPttGIyQUWSMg7Bar9er7JAKPVwEMhqNihfm+bWnily5Go1dhjGq9Ml0zN4ufO75BCw4aY73be84RyVsMHh/zm8ZpNpDsXJ2eMaI3YbSc4JM20Czi4GLMJzTsSEz3xhUwScOKVrxZ/n+SHIKvDiHejAKZspsEOriXHWEdhLzF37hF+JnfuZn4k//6T8d/8f/8X+URV5WOI1GI+7fvx8nJyfxX/wX/0X8zu/8TtneAqTO3/Q/IirW1MyU0RuTNR6PC1ohuUuDAWwUeYbjqBFRcgaUo7FGgXcYjfq5RjA2Wt6nh8a4SMRtbm7G3t5eJaFq5mfDOso9Hc6jr4zL4R7Ql+eVOUHpGP2jVED/lN3Sd3YxRZioNMq04TNyDoyTcyuookLpg0wx4EtLS3H//v1KTgaecqjMSoFryLsAOlzBhgygoF227LAZpYbeeC4iKgbJBiHLnxUS8+0QkXfZNBK2B8wP/TLq5jvzmT0OPEbnRSwrhHqm02mZ01w+ym+DCpQetLAMQVsMvHUK/XXylfscauLzvM0KdDDKxgvLfbIhqPO8XQE1Go2K90/fnBy3vNqLsbG3foyYbdhoI+owLrSwfnpSe2Yb4jnUghX0AR12Nfnt/T+yVWPC+J+SzL/39/5e/Of/+X8e/+V/+V/GP/pH/yjefffdwtgRFyjy4x//ePypP/Wn4vd///fj537u5yqoOjN+xKN14zZidqthcBSmmY/PSIAZOTOROR4N41lhOqbID8oPxZ4VgA3VdDot209k5kKo5ufnY2Njo2xzAA2azWY5IMXxYCp//A6UO/SxVxcxQ542iiSD2cAORQmixkOxoCNYKG8SwVQ1GWnbELXb7XKEKkgNI4giZrtieMs8R3M4KzcbwWazWcJRlAS670bq3Iey5G9yJVT7WNEwJoexMkK1FwZ9MVgZTHD9/Px8rKysFNpYWfv5Xrvid2ZEbu/bXtTR0VHhoZxnoD/8zh6uvSTuj5iVvbMeyeOysuYZhJ9s8DBW5HOQE4ARDVl15ZP1g0uwbRANAHm2lbyVep3BNrhkTHWhbkcleAb/0z++e1J75ucpNBqNoljMvDl55uqKrOCyZbRFHwwG8bf/9t+OH/uxH4u/+Bf/Ymxvb8e7774bZ2dn0ev14pVXXolWqxU///M/H7/927/9iJATN3YsPGIWw3YiytUSRj0gnclkUhiSKhsvyOO5bk4YO+lHbLnVapWzGzJChqFZfWovDYaBwUGd2btBQbXb7djY2KiceUuVkV125s57vHtFOoqLsAzMDfOisE9PTys7moKOqIbhuexBgzdi5dBut8u5DXgE5EicQLaHStkjlUhGVPZ2HPI0n9pAM2bGiIE0ja2YbfRd1mmFbE+PeXUi2XIFP1npIfBZViJma0/8DuYLg8V8MybH8Zl7/oenCD1BN/pj4GTjh4dGmbq9dJRZNlb22FD8rGb3ym//bfADEDCIMT/hkWGoSLLD855fG6Rc/eWwj3/D/36/c4+eP8uvdU3Wra42NI/a+GTeg+euGjqKeIZGgTadTovAXmY0zHRmAjMuxHKMjUEfHx/HP/7H/zh+4zd+I77ru74rXn311VheXo79/f34v//v/zvefPPNsqOmJzDHC22MbLQyAW3cIqqrIxcWFqLT6RTFBBPwLMeGQYbeo2c8HpcwDe4l74PBjcBRdK7McMjLcVkYEMXkBB6CzaJAPCcrQM+rk2wRsxgysXwUAkjWhoUT0ohLs/0J+REQKD/Hx8fR7XaLIrD7Dd1RUP1+P0ajUdkGxUqD3XgxTIy10+kUxLu0tFTWOZC7MS/zO3u8pgPXeK+piCgKGaPAZ+Zx5o1+M8fwGX1wzs2ehpF1RDXM5XCRFbbDUMwRifNGY7YbJ83hFaNe3oH3jFElKdxozNby9Pv9WF1dLfciF/CuZdQ8x2f8baMLAALkGBDYiDvsh7zZ4MBL7JI6mUwq+sNGp84TgabeP4nv8NQMpOz9Zdk+Pz+vbDeew+w5/GUj2Gw2i+fD93gbzj08qT3TXVJpy8vLZZBG6hYy35ez8RHVjH3ONUCMg4OD+NKXvhRf/OIXH1Hwnhgr2bq8Bf/7fZ4wCM948RSm0+pxfefnsxOmcgyadzmMcH5+XlA62zBQ6eM664jZFhygbisJ6MVvMy5jIw5relNl1O/3IyJq92VC6Th0BWOzEphnOnHIZ2x57bJae0esTbAhmUwmsbu7W/iIRh+8jmFhYSFWV1djPB7HwcFBDIfDaDabZddZj5VSSEABYc7t7e0yTh+TauSZk+IWWMey+Q5EjJFEsQEEMj9zH4rBssVnlpGsKHy9+x0xU670JVeG8Q4rEoMmh4NsfFwa7NP8GD/hNLYQ8doQo26PATmx4WD88I3HB/0AEK7Sy2FgG2J4HZBJWTI8D586uWu9kr0554ocfXDeyfzhEBGALSJKEtqef9Zt2fvjXeYJjIE9n263G1dpz8wouDO9Xq9Yc34ccskK2a5iNhxWSChVVwxFzOqkQSxmXpCPiWfUhAV1OMTIy32xoYBhRqNRWWnJegEYyWsSzEjZILqenhi50eJ4PNsjifAJQpzpibDZjYVJvUYjewOEjzhPmvEbmfF+b69M34zEECiqWBiXw1sYUN5D2MgeAfTt9XrFvQfRcR2xe4429caJ9B9+gf+YMzwklDa0QTG4HyhSJwjtxhu5R8yqf1zBYnRpj9JJ3ozEeZaVCLS3sTKKt0w6Lm1PL3sdIG17BU5UItvQE2VnJWjEayPikCvzbu+bvtsAYPgty7mggd8YJ4CFvQbAmyvpCBshn4xhNBrF4eFh4Y1Op1PJi1onWL5ML0c0DEzNJ/ztUJ31TtZBeY6tP2yAmCN7D/AAa6uu0p7ZcZy2/hgFBJDGNR6EGYrB2FWDOLi4EReKlPi1d1W1IbIQRczQsuNujv1xjSeRUjyjGq+MxBVFmPIY7A4zSTZsEbPEHLRyIsuCHzE75pD7QJ9mLBrP9TYZRk4odocSIqrhMGhGonthYaHU+ZMHyIktxsI5EYQP7AVilNrtdinHM+pFGUALxmFjx7PY3qLRaJStODAe9hpp9Pfk5KRsf3J4eBjt9sW6DJ6N8qEyysLo5F9G54yfd2ekSgyf/ntMlis/k7+5vu6d9Ms8TPjMvE0zuiWHQ599wI5DN9DbiVFCgPauz8/P4/DwMPb29mIymRTlCt3gDReSAKKQF4eIkBlCdC4Y8byiELmffsMfPAd+ZK0LfcaTHA6HhS6dTqcUNFh24C941rxlhM819vS4JwMzaEHI0bxmfYX+MT/6Mz+73W5Ht9stZ45cpT2VUbBl43/cSBCBQzj5Xk9iJmjEzFD4HRZaM0VGRyg0hzPsTdjN5DO7nTzfe/Lb1eO5GAW2VbCitBfCJBHP7Ha7RXB5ZvakcvgJmjgBBkPQEEzG4Qoiu7sYLJjIytjoj3CHQ0mmLUqbOTYTI/Sc9UBeIaNC5uD8/LyElOjfdDotJbpWXiAzvAWQ4PLyctlfKWIWdjNfMZ5Wq1W2kV5cXIzBYFD4ImJ2Ahn3OfnP3KJYbXCN8rMHCn86JGFgYA+3LnTg+crhq8wffhbj5pnIKYqPpO3i4mLlzHHCLBhfdt7Fk6KMl0Ty3NzFWd2EDOEL/uZ/87YVPwAAtA5dbZjgr0Zjtg2Mt1JpNBoljIuMwS8OO0XMzqUwqOTawWBQ5JrP/H7rFcuGDZbDWO4f36FbuAY6sDra+g8esA60ruKZ1rHdbjfW1tZiaWkp9vf34yrtmSSaHQrqdrtlRWRe9Vfnapo5GEiOCeZQhpWblZT7kRWrFSl9AiHY7bPwERqxEiU8ZYHkqE3OPIAprVws4MTyrdwcu3YzEnf8OdPMgsJ1NqSM3d6Dx2ua45lhUCjr9D5PDkORQGd+YVAvEuMsYISAvkGHVqtVlJJXadPHo6OjaDZnZznwTqNf8gk3btyI+fn5GAwGJbRgPiVu2263y86pgBje7cqgubm5UrlEKbJRXvbU4FEbCoAHc+65hB72quHv7MkhMzYgfqa9I9fY856IWaiu2+1Gr9eLbrdbDPtoNIrt7e2i1Em40g8f1wrf5tAu24zQF4AF7zAgwcgaSPh6g7EMkPDQ4VvkyvIbUUX2VqwRUQwcc05YkL4cHR2Vc0u8zsCA1CEtV/uYRgCR7FmbLvx4/RDX+nvzTp535nk8vthRud/vR6fTiYODg4/GKNS1lZWVsqDLRsCMnJEb3xvlMvkgq+ySWSCsXK3YHGP1faPRqFI+yTVWkEywlY4TRREz1w5BAfE5tukKKCMGGDhitnMsrrkNY51iME2tfDxON8ckx+NxQSFs4U3VREQUw3dyclI5+5qSW56DUvHiNRQpY8boZo8OryCiWmtuQTo8PCw72zrBjsA0m81Sm24+A4wsLy+XZ3kLAsICPmeDOXe/oBs0IQ7tBGr2CBqNRvGSEVCP3fNnAYbGDh/Am55T54iMsJ23oN/ZU6AogIQvHgHKkgOJ9vb2Yn9/vwJgLEPQhL4Y/RNOtdfvPAX0thw5oWvDyjw6DOoyZRLLlgdk28/2O6lkgy54OuZ7Qkp4zVnRswYlRzYsr9ZBlj/rKkczIqICNJznMtC1UYBXs47hZ2lpKVZWVqLX65WDlSgHf1J7pkah2WyWfIIViEMSZlYa7qH/t2HIypp32a10fW92p5lQexpGT3WxQNZEoNwt5A53RMzqwevivVmA7fpzPgGM4PBR9sD8XJo9JMZqxJDvhQ7E8u3tEGdl3nq9Xkwms624CVNZAKGLK5agHcYBT2FxcTE2Nzcr2xREPLoAjNyFT0KLiLKGged6nug3bjvKi7UVNIcOWDTEmcw2vg73EJrCW7JQZm8BtGyvjmfk0JBDWNDTPOvf/rwODGUZNH/g6RHe4XkYooODgzg4OCg08NYxHpfpxrWeD3gXVOwwEM9AeTm8Sv9R4EbTGHxOBZxMJiWv5S1WrICtaK18DS5dQMC9Dg1j3DFy5BmoUIqIyp5LvIPn5D45LOs+us8od3tkPgSJMThU5XCXeYKKvF6vF4PBIA4ODirFF09qz+w8BZQnCA0iGAHgKlox23A4LORBmkntARilWegQSJi2zs03cvaEcm1GL44TIpxWQvQvL1l3n/NKTiw6tfxc41i/FUkWeBjDnoOvyd5VRJTFOowNpWy3mu9dHUECMoewXGppWrsun3n1QiOvZTGadpWP6UBi0kl+mo02SoP3khOwEIE6Hz58WMkFYTA9vogZWvYqbSM8Gwlox/ucT8qGk7BDDi25WcnmuTcv8rn7QyjXYVJXYrFZIHsSEWprNmfJ2Qx+snIiQcv3zBEhKuYUBe/5ho6mPdVv8J6NPFuj4+HwHPSM6etqvWx4HXrkpD6MFiXJKGVyJNPptGxfj2FwAjvnDRg3/GA9QZ+dI0IXEJ4in2NDxX3IEPTOuSIbhL29vTI/daHIuvZMcgowKSdcNZvNUo5oBjaCN/EcOuI7CxIDsvIyYocgjqnTsmV1iILPeKev9ZGQ9C0nfTwemIgzY1G6zldEVM9/PT8/L8duInjOB1iRWeHbk7CA8Z29BWgQESV04GoRlAThNHssRocgOebDRgXUTTKSv0EoWUhY7IZCpB/8eF7qFK7Lds1bRugOT9k7470IPiGDbrdbFBrP81xTmYJBYRdWjDjGESVu2WB+nByMmIWzPG+Z961IXWAB7T1+rifng3IBpBAmPDw8jMPDw9J/vxcjYAVnQ+eQDHkYwMzx8XEl4eyyU5fvmkcpWUZRM+fOJ3Jtr9eL5eXlsiAsF0/wfMCAQzSWGWjBs6EdOQRXc+HtQGMMHHyVQ8yeBxS2iymyPrBBRzbtLVjuDGrJ1fi7+fn5kiPy9jHwykdiFGgMjHpyrJyVmdFazhHYIJiwRuQwCn+bmBGPuto8J6NtK3I+87OMquiXN4CLiEfGxXswDAgr/WWc5BvMNDZSdnfNBI5XZkVjoxtRLVk0PebmLnbuBGmYDvSZKhMUnZWs58cICKNAqMc/PnbUnqET9qY1SIfxgAo5N5p+08eTk5Oy2M9G3HMScXHgE/OBN+RSWYS8rhwSGiHc9ppc+eS1Dng4LrigL/Avz+XvjCThRyNzhxccnqK/8Op0On1kBTlK9/79+2XLdoMqKzevHMercBUbhgaPgnwTvIfCtFfEfCOX2UOFr/AGUMiMc2VlpbLIErp4fQn0de4Bo4eXalBK2BdZRMmSc4SP2HOL/INXOtvrz3NmL4s5tO6yzqEPbIeCQWF3X/jHwIDnIledTid6vV6cn5/H/v5+ycnlcOST2jPNKayurpZB2eqjaBGA/JMVG4ONmNXju+QMpZxree1S8jmTkz9zqCNfR0IGBnN4JKJaEme3jsn0NtY83zkNCzPvzcYpez1WJDao/I+i8joKCzJbPDgE1mjMFv5wWI8FDUM2Ho+LK+txED5wX3ivx8x9hAhh3OwNOpYMiqeqi9JDwk4ocooaUC4sgIOnRqNR2ZacLbYXFhZK1RG0AGHbICDEDj9wXKnLVdmcz6FRr5PIz4E2Dp9lkOMQlFGwDSjy4TBExKxCCNQ+nV4kkqkqyvLGWHkeY4K/mU/mG7kZDAZxeHhYMQA+btVK3YlU6IxxYLz2yPl7YWEhNjY2ypnZ3qLChgbFzefIKLJp74ox2UghR6YhfIaHRGiL+zqdTlmIh6wxr5YzRzYMVhgnck5lH4BjMrnIpzgxb0Pqv/ESIqLstJxB6UcWPoLB2u122XGSDtXFECEUipHrrLiz8WBimFAjdbvWDrlY4Rv1G7EyQSYc6ApGRrg9FrvbXGsFZ7SbUaAVqN1qh4acrOL9NgCmEaELFJXROMk5wjKE81zNYcRr+tCy8XS4KCJKPoT+sLo7G2MUFArGISKfCEZFEYZ5bm6uxEXJF9Bvb2tgtx4kBzCJmB2Byri9aA7+8XxakJkTQiWgbIwd4SQLvr3i7IEQ9qjb9A8esHdYN+8ZYOStD1AQGPTd3d3KWgHmDtnI1TD2TnLJKM+0YQcAuPrKz4APvRtpxAz5YmDxpNrti0VXbHXiU/nqeLjRaJTcCHRwFRxyxJoZeyfOJRq1Mxe8k4onh2263W4cHByU/6E5NMwA1PNI3s3voaiB/p+fn5eyWD/D4JfwZ7PZjP39/ZL7MA+ZN57Unln4aH5+vkwgFQyZ4R0CiZihaw/SOQJ/bhRhpOOJsCLOHgh/I3AwhhOGhCL4zoi/DrWhZBzXRIHkWnb31d5BPoKxDgl4PNyLMXBy1K6ln4eg4sXgHUTMVgRHVDc+y32mZSPGqmWYfHl5ueI2W5jH43GpeyfEwveUDHIojpU0fIKgcC2xaxt1u+HkSfCeyHehqKDxZSjKAMIKxmWPoDjo7fBfVnw8yx6oq1LsCWfgwn05hwZtGA884a3Fva0E6Jd35q1P6AdzZ+XoxXsOMdI/b+QGb5uP4EHzPzIIfaANIa/t7e0i336281GcPY03a/62N4CMULnEu234c+g6Ylb5RhUUEQk2suz1erG/v1+psnSIB94wKID/HV6Cf913eJUFllwH/VyNRdEA7zBwdVXXk9pTGwWI2O12K1l5vsvI2iGMXDFAY9BG1ljQXBVjAYGx+DsrZZo/dzWGE2Oga+9dBFFBpkbPjPXs7Kzsq+IkkyfIKNmrd41Y6Js9IlARfXOIh35bmURUcwwIjI2dFwplGtnzykxuhW7j22pdVL0cHh6WJKJDNRHVw2NQ4gALoxonn73y1AoHZQhvsHCK+CoGARSLcPMZ82kezOP2vDBevAZvA4En5hAbtDRN68Jw5l0rJ+bQ/GEUTL/ZrqHZvCjyGAwGBeCA0u1N2PsjH2LvnmIB+Ozo6CgODw8r46mrfoFH7EFk4Me8u//mBYoV7P3Bvxgi8kKME3ogb96GHF73CWckj23Usrdg/QbwGY/HZY2HFS5nfPs+xmav2XLFs5lXZJVQms+fAAx5RT+5vMXFxXI2eS4SgGdzNOZx7ZnlFFZWVkqHHeujwXBGfxAph1VgSk+Qa6JtTVHongCjNBsOo30rW5JMKEaYzyuyjXKs1BmbXXDHTbNCsHHAiIA+jFwYO89lB8c6ZGr0iHGCCXB38Ri8pQbCkj0D6OK5McKZm5ur5IwYC2iN3RhZxeyFffbOYFgbQQwAypOKKVA1feQ5VqQkuzFGx8fHZREPhndhYSH29vYqCtnzExEl1DaZTCpllfQJXjDKRrCtrM1/zkEZpGD8uNYgCl7MxpK5Yz7MxyT5nTj2HFqhe/0J44F3XMNPaSPKlmfxQ6OPgBlkAd5xVY/fbWWMrNkgGLBwrwGNvSBi84R77GFBH5Q0PBkxSx7bcHmueCf0BIw4MuA59fwzxpzPzB4l99jr8xYbDvEiG+Q5jo6OSniQPlg+zetPak9tFCDA6upqURYZQdolq+uYCZg9BitvWzzcr1arVYjopF4OR+UYrF1g4tc+ZCV7OTlvkN1to2lKyQiFICgR1fALLn7EbGM0KhxsQFCULivjd/aWbHhx5y0YTpjb87Gxyx5W9p78DgSk2WwWJAnyjJjFrS38eFM0GzbWI1Ba5+QsFUZUEzm0B8pyWO7o6KgoBjw3eMqhIRtU5gWFCE0tuEZ98FA+s9iG2YYeGho5AypyGMnv8VoBeN88Z4QdERUQ5fnzuhHCQfbcHTo9OzuL/f39MsbpdJZHQRE7/GEF7lyex0h/bRRyRAA6QX9yVg5LMse8x/zvewEYzkeSRLZ3Zb6w8YT+eAnONzDPeKF4FPac3fx51nPZG3f/8ULRrXgHhAKHw2EpIKBP5i+ATF2f6tpTb4g3Ho9LQsjxPaNMDz6jpozYuM4K2W6PtyxA0WCpQcE8P2feHeKYTqcFUTqhS2jI73eIyOOmOWYYUT0sg+15s3vabrfLDpOEhUDhmWYRs9gv97sZdVgJ8CwY1lti28BYiOzR5NAV40TZsEHaYDCIRqMRBwcHRRmypUK32y2lqRgP0A9KyKe6kQ/wwfEIpBUJws7YYXyH8iaTi+qNw8PD6Pf7hT64/gYq2egzn7zTCtOKDHrAQ51Op/Qd3nFo03Nq4OEwmr3GrIQcNjRiB4TxXOjNTz63Ah6kr+QEoC1hqGazWZKYGF+XNEPjhYWF2NzcrKxdAJTkfbEYl4ENSB15QWbMk4BNxs+40SFcC13pn/UMfSBvZaOB8c0Gmt82phhmPCnW3kA7eIZogEGkm4Ez7zSdkGN7mQ6rHh4eFvmyNw3/8TyKTq7SntooRFwcqsMB77gxFq6ImUXNrlVGo544I1feZyNiBWcXm+8xGl7AYy/h9PS0JEYzwkH4aQ55WHl4+wP31y5gLr/0uoesdI2A6uKuDtfY9TQjj8fjMh9c7zJF18o7tGDvwAoQBWLBJH4JXVEuo9HFnvQHBwfR6XRia2sr9vb2Yjgcluu9iy7xYhsC5pEFYrzfwkEIkdgyqIlrqSphnAj7YDAoQsI8e34RaBtxrmNu7XnUofGIWbjJPGEvz0aJ+SQ8xTu5xiFDezUYAgMh+gHtWCeBooVvMHb2qJnjubm5yn5ezgNiZDBe0GJjY6NSOu6cib2kiKqRYIyEShgPBtnhEBQt82UPJ+cPoBuhJBt/+IEt1p2b43574Dbi8AUG1h4E5dB8boPj8JR//Hzn1izbLruNiJIoZ3sSy0ydfkW/fCThI5Qye3WPx+NSjkrLHoCFms9y/Cu3Os+CEA7KK8c3z8/Py4paW82MtHHD8ph8jb2EiOrRhkZtNl5MpGPQTA7nFcCUKGkQrBEqSIF3MkYzlRV7xAXa8jGbGGnGBWpAyNxv6AxtHS4YDAblyEYWLDGXGdEdHh7G2dlZLC8vx8bGRrRarRKXpv8omxyb91zjkkN3+mV0zGcUCyCcjMMGfzgcloVw9gp5n+lkT5U+QWP6Am2hJUgxr1PgmTlEwPx5XDlU5VCS35XpjlIgRGJjQFgOOjguj0ImvIh3Ze+T6yxjHJkKQs4Gx56bDZqNJ39nHuYZBivQAcVrJZhpajqjC5aXl4uiZu6cs8lhHHQGc5CBGPQHyEEDe4eEkQkBe+Fgbsi+xwX9GTvnqLNjwHA4rFSBWUfhVaIfL9OvuT21UZibm6vkE4ip8X1E1fXy51ZCOdSEgDBAx4EtKDAy4ZrJZFIqXzIaMkK267uyslIEk37BHF6r4KRovpaxeIUlsVkUpb0ClvbzLGjJugGECQbyOMwAdsN538rKSjFGTiSzarfRaBRj6VAb4/XfERdewMHBQWX/IXIToC5oAZ1wq+/duxcvvPBCrK2tRbPZLDXURnSEIEHf2cNh7lEyjrFOpxfbZthIuSwR49lsNgtytgKsWyeSjQFhEHsWLqRg/umfgZC9LPO+jTrz70ViLjN2uMqhQr+bPk2ns0387I3kcFfELIltL4x+OLHOb3vRS0tLxQBGRPEE7Vnk0Jefb9k3MrY3AxpnnHjThF0tpxh45Bx5Rv7G43HJeeGR2CuwEbeeyvOEcjUiJ+xL+NCAzsUrfr63ALJcWxdaf0InZJ8tLMgzuE/cR/jVoPIq7akTzdTpRswWIdm19WAjqm41A+Z7hD9iZjAca+NZbH3MToYkNlFEOebIoR9uEJrkpWPgVPrwTPqCN8SEO6TE+Lydr1G5w00OJxgBGvmDADEG9MXIMKKaSOfAlIWFhUoFiq8BeXvxFmOwIeNdhINYX2CBd1+dUCa+fnR0FA8ePIhutxs3btyIra2tgkJt5BD20WhUwjsYMBSQDQOVTw752J0nbIfbjkFkxfZkMqmgU/gygwbzJjR3aAO6QVsaoSx7k0a7KIKs0LgGRW36GglDCxsjo3R7C+YDh9XgRQwnymMymcTe3l5FmUBrckEYSRC7vYO5ublHtiSxV2ckDAAhj2TQZfqgtAEN5nsDDNMX+rmwwkqRlfLMqRPR9tryPNtbhX7MF/0CkDns5PEuLS2V5LCT/fCWQRH9ZqEmXvrBwUHpq70snmUZpf8f2RnNKysrpRoEBnQ5W0Zg/tsKMYdhslWz+7S2tlaOXoQwHAiysrJSEZLxeBz9fj/Oz88f2QSMH29gB8IkJu/JMrphHHZrrYAzs3KdQzdGIjBNRgs0h1scKzeDeiMyI7RMS8bjGDcKgEQ+CJ39haCpmdCGxu4pXg/uNNshrKysRLfbLdUkhMvOz89LqSA8xD43xLcjoiCl0WhUcgIO/RkRMQckSdvtduzt7ZWkNkajLgTBPOW5gF9RHvaQUG4oTYMH6ML8GuGiuFB89It34InZIzQvmu6gepcb20uGXmxF42ucP0EJWX6Ze6+/oQEE4GfyRlT3OMRB/6ETYCJilhvgu8lkUlnHQ1taWirrVGxMLZueo1zGjYGEJtYj9hQcBoyYhZptKNF7/A/A8fomo3T0AJ4x4yAPZ7AIPQnvRUQJiQOAXFLr8bnxHFZeP6k99RnN7Hc0Ho+LC++wBEJnwlgo6lw2X2/kt7KyEmtra9Hr9cpipXa7XRRXxCz+DxM7Zs+Riyzu4X0wE14FSs6baBmFIAQZWZouEbPaZ6PDyWRSdpC1F4RbTWijLgwHPVzz3W7PdqVEyHO8NYfoEEIjH6+wRJjIe3gMDlcwZidmXWJLie94PC7n9W5ubsba2lqhIWsZUDgOpdBnynqJAbMPUkRUztgljtpszipn8ABNZ8aHkFvBZUNPA01nulrw+Y0gWwm62iuHpKCXw0xW0s61oHRdN+/rmUtvN4GCsmFxSJSYtRW7F0nlPAu5COTPh9dgsM1r8JkVdkQUIGfjYK8FOnncOd6PMc1eL/d4jpC30WhUFKSr2CKqq9gt74AE+k3oxqCRsCZrB3xmiPVYRBT+bLcvDm/q9/vx8OHDIifMFeAKnUDYyKAQuiCXNg58Bt9epT2VUVhcXKwcqsNKURKp2ZUxc5noXqno2BlEwUXr9XolbMQiHVeoOGSEAkPZR8xW9DIxlFAycUyW3TeYwoJtxeIQEgzrEk+HAxxn5W/ea9ffJYk5vGNDhNJzvJdnWbkZSWVkZQODoeI+XG+Py/sGQSNvNuekbg6/kPQkxMVz8NQINRDSsyHyXjuO7eY5oeQU75V9YQ4PDwutcPv5zZxHzJKHOaHMd/CKDaMBg5UQaDcnWbk2ewzQzaED86ZliPcg7NALYwwfIFcoMO51mbRpbSOXZRdDgFIy+OM+aDadTkslIn339zkMy9zb66ABGObn5wsA9PYw5jPGZ+NNc+iKPJm3Q3HICroBOMx/ruRChsyL/I1+cAiL97kgAR67fv16dLvdePDgQWWfKnQYO9/mMeV8gfnBRuGq7UMbhUajEf1+PzY2NgoSQxAPDw+LBc/oAMWBooeATC5EhtH43ls8wJhG/CBGK+mIWekabiJ92tjYiEZjdpgGRy0SQgJFGjFa6SIgMLYZ04qQybDizjF5fngmZzI48cjEggqMIKAHhsfVCl6VTd8dygLVUVUEE4EGrciYI4SDfoHmoBflvlZwrKw+PDwswIG+Hx0dxf7+flEK5HXwQJvNZlkHYxToShKXE7qihC0JKCjAwCOI0Ah+RUFZAZtuWeHAnzm8BD38DBsAK1IUkvNINqrmZ+bHxsWywrV4VHgtDqMY4dIMFFgzQ/LYvOy+uz/IDvTkc8ZhuczhWBt/xub1CHiJ9iT4HJoZBHqu6GPmYWg+HA4Lb3E/oWPKeUH98GdElFJ2RyIyQOCMDgwKXhnJ4bW1tRLCwmPiPOiDg4PiNaBTOYjL+TCUv3nP8ml+uapheCpP4ebNm/HSSy/F0tJS7O/vl8SvLedlcS4UG7ExJo9mxIqLSmiFsi5CPVZcRmZuvibiQknfuHEjhsNhQSLZ/aQfMCgCkqt6ID5jN+ICmYMMYBAbQZoVVnapI2YLl1qtVjFaMK3juRm5elzT6Wx7BNz+4+PjEk6hz05oey6YO4/b3ldEdWto5nk6nZaKp9FoVPjFynQ6nZY9i6h5Jx7N+OkXHkCj0SgboUF7PEKMQqMxW21rtMgcED/nf4c+bcCzsjfyRjgzgrfCyx4HNK3z8nwfPMDcOalqtM/cR0SZVyrZKIAwP/FMUDGAyRUzVjL0kaQ+QIQ+obAYJ3zGnOdQLLJqHq3LWYG0XYKMQgYI8Cyjd/OwjYJpD/IHeOJlYYTgBcYJn8GTzLXDT/SF8WKceR77FEVEbG1tRcRsu+vNzc1iGFZXV+PBgwfl/GzkKvOjvQLLnvks65rHtacyCr1er9TDQzhvB5sVkhv/U/Fgl5kBMTieOzc3VwkZISRWQBGPbnAGM9tziYjijmaBgiF5NxNv5QWzoERshGA+I0qUHOOrM0BMMM+gX2Z4hwc4A4FyXBu8iKrLTr/N4KB0Mxv9uMztxMMwaoPerGy2wYA3XJV2cHBQ1hP0er1YWVkpcVrmM4ctUO4oA3Z7xZ1mYQ8GgzlAcXAvhhAw4r46JGQ6mD/t/dloRsQjSp+5gP8cyvN8G3UbjOR38B3PydVxXiBlr6PZbJaQBdcRgnGI0GEuwsGgdJ9jMBqNKqvxbYhQ5OQ17L2giK0vcqgToIjXnMGVDTv3MPfwJPOKzGVjbWWKR0B0APBi7wJdYEMCuIOvXa1lA5sN8NLSUiwvL5c1Bvv7+6X/1leLi4vFs33nnXdifn4+NjY2ShjJEQTTkHdBd/PRVdtTGQWEgJJP165HVKskGLSFyxbdzJMRM7HgyWS2OplwENdm1y0bIRBBxGxzKwTWzAzz4G7bDTOayeEYWh0a4Z5cR839/EYBgkZ4hhkSVMtajDoPyPFRnsE7MKAgSfrWaDSKUrbL6Ti+yxeZN7wUXGIS9Ch2rjGa8TkHzebFqVoLCwulAgMjRQgEt5o59i6aEVE5eMdK3kqMeTH4gDZW9A7bGAVacdmg2AAYnJifvF6CdwImck7ACNoAIRsOxuYwgs9n4DNvm80pXp1Op+ysSeIyIkqeAd4AzeKV46FmJWR5Z67xYO0VYKwXFxdLVZhlhufCM9mY5nCTf5AZ0xRZi6gaansh9B9j5NxLxOzUuoiohH8sO4RCp9PZQjMbEs8j1XTdbreUph4cHBTZ9nOQM8q56eP9+/djf3+/0Mo8mhs5Gs/Tk9pTGQUUkCtemLRsAFAstmBcl5OnFiojC/ZVIrbGs/08Cx/PtGue3fGs8BE2I14+Q1G5pNVKs9GYbVfhZKiT6J44u7c2CqDdXGVEuGQwGFT6byNqRs+0JhRHnDPTKNd6ZzpCPyNj5h8XHM8DoXd1DQoJIUM5cQ4DZYwgWqpmMAqTyaSEugAEgAaPI4cM3Ff4oE5ZZAFzCMi8AD3tIcID3W63PAM+sEfgn5yAhtY80xVYGUSYb01jK2D4c3d3t/AVG6rZy6dow5tZ8g6/azQaFQOMUUF5NZuztSLZ6/IKXkIoGA36QnTAu30yFoM2G374yCDICN06CSMLT5jPUd4O0RBedWjMR8xSzEAfaMg9ANn6Ag+euRmNRtHr9Yo8umKNuRoMBrG7uxvXrl0rpbhOVOdQtvN+hN4MlK7SnrokFeRnLwHlY8Y18WEOfsMQDJJnMxhi3AcHB4XBs7tr9GUlm5N/mUFQkggwTAODOYHmOGHEbMFTpgkTY+OSywddZRMxqz6CKXBHyT9Q5eWKJ2jkvvF8IxS75oQOrLQiZijIisx9gqEQUBSfjQUrtUFeMC9eEuV3XNtoNEoogvesrq5Gu92urGbFSPBeQhPMt8N89nIcV2ZerCSKEKgEEuUI3bK3aI8CWls5gZazUWGO3ZgzDDJ87X7xXnidcbj6LeftXHDAISwk8vGynUBGNpeXlyubWcJfAB3zKobAZaU2yDzfMooixHMaj8cFRLBAERqg6A3obPQJndlQAMJ8SA9K3AvK7PH7f4og1tbWKkaVtU3wHoYxx/atfJkb+k+4ibHam3bCmr44fNpoNIrXRhUWwKjRaJRV1LzDcunf2Uu+rD21UYDR+N/o1N4AjGIlY+RpgTWjYu3Oz89jZ2enEiOsc6tzWAfBdv9QfF6gBPI0Oqpzt7InwrtQAFYWEbOcCcg8IkrllHctRdARHNBexGyVNInaiGpeIityI1rG4rUkKBknVnmnFR+NcTGHHltElJh/s9mMzc3NGI/HxdPxNgowPorCx1uenJwU1OjacYwiRovxU+6JEsDw2Pskf2Bjb3QPz3ndAyEUeDrnixi7eQoaI7DQM/Onk7x4QNCfRUyeMxsJVwrBw1SpZcPNbxQhJdysoAUU0Ge8NbYqn5+fL3wCnV2QYDDCe20QMv9BK3iLax2u5NTDRqNRThJz1ACaOIqA8s1G3voIHgAUMYcACeTI73ZynN/QwqWqyKoX+nneHNKkH6yTImcAfXPxQqt1sbno+++/X0Kox8fHce/evWg2myWn472n5ufnY29vr6JDrVc+Ek8Bd4+kCRPk73P8HWuLMeB6MzRE96pGL9pAKJh43uGse2YoKwIrU9cfO7TE+63Q7ALbCrs0lT2NEOJWq1VK2mDKvPDIIQ7oNplMyroMH61oWmaPhD4ZYTCOZrNZtpeAeXkX/UG4HS6yZ+ewAkKNIcELwR22omq1WqUaKOJifYvzChgKoz88I06zAiSAkLyQCYNimrjc1vNuT8exVvgsV7LkhnCBeFGqCK7RsT26uvyBTzbLSiGjvNwH6ICyyd4yjf4sLS2VOnfutZJgDn3EKSXmGBbyeDTWmthwwksoeyeI8Wroo8MrziGgPAnRoNBzRRwK1/wP37vaCaVtGkF3nj2ZTMr2HHgvjjrAn+gVr9cwuHVs3+FVZJBDpwaDQZyfn5fdZUH6jUajFJJQCLKzsxOnp6extbUV169fL8++e/duHBwclOo/xtpozAo74NerGoSIpzQK1J1jtRxLtXWH6Yy+jextHZkAHy4xGAzKCkTXBTuWzqRFVKtuYB4I5AToaDSKhw8flsmHsCAMnu+wVGZIJs+xVJR8XjXqfrq8NaKKOFESuNQY3Lp4KOjFCsz9sJsPGvVPRuBGgvQHJe9xMl+Etgi9oFxY5IaC5jnQFWVAvJn1BDA0CTyEzRt/2XiC7PEM6Df3MefQy99nz85VWFasnlsUSrfbLV6NQ4ief4MGC2XmI8IdhJDoTwZKVojuj9/tMBPyCI9hjFmsR7jGXiDz3+v1Kiv8mT9khLnPYS/Ai3mU8xYI9UVEWRdjg8B4+YzzvxcWFkoxAs8zPesSqTkExmfWIQYbfvbh4WHxIjAaAAznDDC2GHgbEuhlA07YaTgcljHs7e2VfBnzcXZ2Fqurq7G8vByf+MQn4uHDh/HgwYNoNpvx8ssvV477vXfvXglDOw/SbDaLcWMu6kBOXXtqo0AM1mEFK3wjHiNQJscKFGKilGFo0CLEiKgu3nFsz2EcW0gjNJ6LQYNRUVauVybMYcOAu8+7jPztATn8xaSDxuyRoOigEUqCftpoRlTL+1wv7d8OizlWm8NL5DaM7ngHc2wEbaUPvXgHZ8qCWExrK2bCYO6zFT1zRQ6CUAbJOIMJx9Q9Ns9DjrFyv3mE7xwSzOhqcXExlpeXy741DoNacXreDIQ8d/wNLxFqg1/y++uMCtea7+3xmTcxvPDh0dFRpcLNBoB55+/JZFI8IoMteIH3e1sYyixRTCD3iGrpqsNG2TtizslZ4o2Zl0wT30dzqNe6xToBxX5wcBDb29sxmUwqxQsGY34+cgXoAXzleXa/KEbAc4qIytbw8AEACi/UYS700Y0bN+L09DQePnxYSvUJ/7kIyADjKu2pjAKow2gjKx4IBLKAMHTeISYryLm5ubKc3O6XBRkBNpqPqK5itnKECXDVQCs8w+47v10rbWTv8JAZxvFW769uxUH+AnoYebMD7HQ6LYKL65xRvrfPyIoNozSdPnriGu/FBUYpQXtoSd6DDex8DoHdb57rMl/mx3F08we05n+8zdXV1Yp7bs8QZoeuCLjHDB0RIJrn1i6/eZTvnMhF2S0vL5dFdX4GzbFnlKRDeLzDoR7mDfmxx+NKHhSKPRuPKxseGybmhu8BPFQZsUGg1xz4AHq8Ue9I7DUM5hv6mo+LdL6KcRIXd+EEPJvDv/AwMXR2MWYxa/a2/TyHmc1L8ChK+PT0NLa3tys7A6Cbso4A9OAZuCCCuYP+5nfPHUob7wk64KFAT+YBucBYsVMqOsJFBwYHdfr4Se2pPQW73LaqEBTFlT/3GoM6pExoYG9vr7IXjpnPIZXMDEahZg7K74jpZfeSMRGqYFy8d25uroRLuCeXN8LcrVaruJV873FkBAnDR8z2YHKoJeLRMBN/e8zMAwla04DrYFIMI/NkYwlCQxnzm7FldM/nEVEx5swVQsT1Rp1HR0clmYaiJ3xAUs7vZr5ReOa9XIVlZZzRtz0rhNt82el0SjWK54u5xGh6tW0+r9lVZTnkYz5CYTLn7jchCvrJffa4+NtG2fJhL29xcbGcbcGzAA9sQIgBIJRJvoFQCrvnZs8HMAL9MAzwoEOHIGsUHs2hGPrebDZLeAodsba2VrZQgbcMNhwWtR6CT0iuk29BPzlElIED/GfFTY7JVUT2sgmJ2vswoMNAZE8X2bhz5050Op144YUXotG4CNXev3+/HAlAUQo8EhGVOf7IPIWIWdwcQhhpgXpoda4djGQmRmFxsAuWDzTj55mQ9IPfzidgvTkaMq9g9t+OVdNQGEb1Fm7ei5EkRmlEQkO5QidQDMlVXG7eC3pwohcGp08eg42YlYbR7Xg8LgxDiRuxXZQYigFlwHvJC4BQLBgIusNRJPRzaKLVapWQBFsBOHRkwZ5Op+WcZcZK/+kLz3TCuo7fzHMOO3ANypNQkT06eOPo6KjUtefwHpv+oRh4h9Ev/a4Lg9DsWWMgbCTsIXIvisSfwSPwGeeCOKeDEcaL5jNWM1M6PDc3V+LdAAc8Cyfa4Qd7KfaS7b0SXjSvGp2bx/mbfu7v71fCVg7LMJ+EbU0zPARCnmyqaUNCfz1XDrGab+g/fXZi2vLqqIbndm5urpTPMo/Wb3Nzc6WoZ2lpKbrdbnS73bKpJ6Xguf/wivn0Se2pq4/q4rYMfDKZVHYwtctMp/lt6w2j7e3tFeVstOH6bTOalSGMiRCfnZ2VTaXqwj2ZCS287isT0Ov1KujOz3M1iVFixAzNuZIBBdRqtSoxVtA1bikKGA/MxtR9hI6uDjK6RqgiLow6OYWImdGDGdlOwvX0LNqB3gi/x+t8A2Eeh9wyKne/aXyHccfzgEcy/fEiUMYokhzm4V3wUP6JuNjCBeRqYEEeitCS5xCjgcJi/NDcIRnzno2T5SpiFvoxguVvQIKVFAg7h1ktd8xHRJRcE/d4JbKf6YIA4vCAA+R1PB6X8MZ0OsvFOWTmsBzzDR0cZnLhiA0y18JDu7u7EREl8U9xgosnmJ8si8yP8y4ZHGZFan2QdZ8LPhxh6Ha7lTlifJ4b5ppKQ4BRu92O/f39iIiyiScHUTEXDp+1Wq3KttwZ7FylPZVRIMyS48ZMHv+7ptuCiOLx9zAg7pzDOxYCmIztj/ncC4dQ4MfHx6VGm2arTT8toAgt3/m9JycnBQky8TSHxbzFtA3PdDotJZO42Eymt8yFRmYQFIL7Zsbl8xxD572eA+jjFad8Dk2JDbNBH2EjK17KSw0S3F/KcZeWlkrIAWXuhL0RVMQMKbt65/z8vAg+iTj4yMbYioRnm0cZK7+tdKhV59rRaBR7e3uVkl4bMgs2DQVnQ5cRfc4TZa/G4TkUnIszcjweWjEPNiQ2PCiqlZWVirfj+YMmuVyZdxLeXFtbi7W1tUr+BVqiH7KXRX8dyiEs5jCjZRMg5RCoF8y6SsqGCWCDgmT+HPZyaTDvpa8sDCPBzZxbT1hXWE/YqzXPZZCSdRBREvh5d3e3zNHW1lb0+/3ikXNGjPUutLI8Wdc9qT0TT8HIhMEZSfq3icdnFpqTk5M4ODiI+/fvVw4Pz1bfNcwkKWFCEAr3Oq5eZwjy5JphGacZwajV7j8KgBgnFtyGw0gIN54xeDUnzd4CyffsItPoS3YXGRuuLwzlc43xrNw3C2Cz2aysqrZRbzQalXAbRgulDnCYm5srxh4X3iEUwhlskUHIAoRKf/v9fqFHDr+AXL3I0UbC6MxjYyxsucB3w+Gw1IkzV9zD355/CyJhERQQhtLgw3kE+mlvIGJmYECiDr8YANk7sGfiz+kHCoVn5lPwCCfCP1beDj2en19s9c6RvA77TacXx+N6TISVnQ+zp8d4HSoDhRvc5HwDfT88PIyzs7NSwsr3NgJ+twEFY0NOeXc2+PYoeI51n2lvg1B3vf/3fegW6Ed+YHd3N+bm5soCv1xi7JyO134wpqu0pzIKZkjcGEIbtnoWThgmJ9BQIIPBIN5///24f/9+URxGZY1Go1LDjCtltINHQf7hsgohC54nKCtmCO5G+VdGDTC891Hxs6EZgmQvJiMRGIckFmgFul6WaI6obvpnZUAojRI2I2wMQkSUWKtzGq6lN+qEPsSfGQPvRgGhIKn2oJqE59Mo94SGjNtKC+b37qk2vMxjnfHkGmgH3xIms0Lb29u7dMW+eSQ/133gf4ePTEN7Mva0mHtQOIbV4SN7B17jYH5FiTJfgBp7vqxqRjYw8iR0GQvzkFfAwx8co4phxgBxPrZBGcbVBtH8SK7Lipo5s1doz5lxUZ20uLhYCSVxPbQwvd0XG0HeaSDg/tsz4NpMexsH+NTGBZk2LRkL4SfuOzk5Kf1l+39WMtPwpO19XbU9lVHgcBQ6f3Z2Fv1+v+zqNxqN4u233447d+48kjhEubGBGOgXQUToHRtjAmkIjCfG4RoImY0Bk2CvoO4zv9PX2K3GCDAGKjNgmIhZXNjPxXCyhTH9ygjUoQmjmcywHr9j+9mwojwI21AtQXy4Lu7PvUaw9MOoEkXAM+EJC7vp5P7zbG/xDAKiTpv+oojwBjAi9gp4Js3Kl3daCRMm4/7hcFji1dkbgf5cWxceRLGYTwwerFD5zXPhDZ/wZYXhQ42snJmTnFSEVwxQKOtdWFgo214wX66mgkbcD10te8jzdHoRFu33+8ULmZubizt37hTeM1CEzxwugk9YzIi3mJPsWQFn5E1S3F6Gczs2yPbQMboABc9VDhEZuGVghpzQPwyTiyAskzwLcAL4pX/ciz45P7/YdoQtM/r9fglvNhqNciSoIzim0ePaUxkFTlhjsvr9frz++uuxuroarVYrbt68Ga+99lp84QtfiG9+85uVFbVORELM0WhU2c4C9OfQk+83g9gFtOCbUep+sldAs5LNiC6iunc7DOCti5k8v8cVDBZghyQiHnXziG9SCZM30uO3UZ6Z0v0nKWj02+12i1eVK5wiqiWaKAT6ZIXF80wzGN55gdFodrA743MIErpa+ULP7FXQ4CcLpRUac+b54Pter1eZOzxQKy8MhmnueTNwyElEe3YeC3TxgiQEn7UAru6KeLTUl1yPFyll5ArPEX40P4KmzXMsZONeK8fs+WejxudsDT0ajWJ9fb2UO3t+ScLbAEVECQ9DX/gPw2BjzufkDeAjQmwUhRAWJDJhHuFcZcu9Q5vWO6aT5aoOJGRPotGo7otkD9HVkIwLMHRwcFAAwvz8fBweHhZjjtdMyfD29nZZV0P5rmXkKu2pS1IhyuLiYnzP93xP3L59O+7fvx/r6+ulbOpHf/RH4ytf+Ur83u/9XsX1AfXgCh8fH5cj6DwhVvQOsZg5IWYdqreFtKLkGlqde1v3fAuI0RuK1VUO+ZnEwhEEmM/Cb0G0AvO4I+qNB++34XRIwzvawjwoBebEgoX7j9fAmB2SyPQ2IoI+riaxQbIrjdJ0OITwkxUcz3fIiPfDO9zvuYMGDiuRADd9XL3BmF0xY8/M47YhtqHI4SF7g7wDZMr7TPNsjDAMJFTZl58+uk/QDLBAyJC+zM1dnFkxHA4roY4MlNxX199nOSIsaY9xeXm5hHToIwpvb2+vFjEz584dOFmMMm+1ZlviIEN4oRQ4HB4exmRysaYBwwuNCZNyH+/F4NLvbBisQ7Jnbn2TQ14GRoyPviIn0A7DubGxUc6UHg6HZSNErrdXv7W1Vc4mIR/hfl6lPbVRgDjXr1+Pra2t6Ha78dJLLxUXDoTyyiuvxOHhYXzlK18p99qtOz4+LiWjETPlbXfPYRBPSraAJoQ/832Ps5pZ4LPVp41Go8KQDr+Yka0c8IxgepSuwxZZydVNqJW9PRUYimugFcxHiMfJwbxtSERUYtgIlOPt2TtwFRneA5Vj0MYGC+Hm0BeEkXFOJpOyuNB5DPIqXJNPrHJVE0YIeri/KDPOaTCNSGwzZ9lbcQjTc4IyYE7gE8fL3cwfGGDGBvKH7+Arez/QhDAN+2S5n+ZDh/iMTs1Dw+GwsvaDMVnh2dgT4mWc0+m0UjfPRm0oXK9rcU7EawGQKyfHs2K1B8b33gPLSprfJycnsbe3F0tLS5VqpBzisyeFTDsMZEPvebTeyL8tx9ZfFMcYBDWbF+uUWLVtrwGZpUTVhop1DtAKL9BFNlfNKzx1opkObG1txWAwiMFgEP1+vwjmzs5OmRQOqoYpmBi8hP39/UfCHlaqJjTEzeGfHD9jAo1C+D6HmupCAFm5WylY2RvF5P6BZlhbwDV4Fu4Hz80xSwupn+/rjETNBCARUJAX+2RPJmJ2sHuuoCLGD6pFoOwZcD3Gkn7ioTAWP5dxsAbCIQXGkI+DNO3oixcg8Tm0QfgslNAB2nnRoPvuRKXn3XyT/3aoiL8d9qDxP/TzOgHG4jJNrydhjuAtcgyeBwMC09T8gqLm7HMnYC0//A0t8liJ/TcajTIXhMCazYswJV5Do9GI/f39SlURwIJQCuOjv/ZM8QZQ5tAme2cYW/KV5+fn0e/3K+/BGPMOvFvrnjpDkD0ZPuMadJm9aesUDDlAxPSlH95WpdVqlZ2T9/f34+joqGyrYRlm89B+v1/Ci5PJJA4PD+Mq7ak9BcIQKysrMZlMygZOg8EghsNh9Pv9iqvLBLCqdzyerUtgRR+TkF1xNwu+kQP3On6cUVpENRTk/7OXkL0DGw0jORSdlQqMAcK1skOQYFrXXHO/Y5QRUVCMwzoep70NlKFDcxFRtpi2d2EkRhiCfqFgWEPhlc3MA2O2V+e4KcqW54LiETyUksMT0NYxZHiFZ9hgGjXSFydG3U/oQBkmtHVSznxmROkQgWmNLLigog4hGtzADw6hmkaNRvVwJvOF53wwGBSjgjLhO2hrw2LAlA0wf1sOkVkv9HJOjbnudDrF46M//JAvRD9gJCJmnhvGy3NP+eX5+ew88TpDAt9g/DD42XsnDLO8vFzmHKOSwysYDPg1y1kGmNl45tChkb0NKkCIviPjeBP2xujT1tZWnJycxPb2duEJPAM2kVxYWIj19fU4ODh4RH8+rj21p8AAOFqx1bqoE79//340Go0Ss3v48GHFojnDzvJtrD5MhjuZlTeMiFGAYLbSOXfg0IyNTHbxMtLwxLsP/M4WPisDDELEbD8X+oFiZswOM+S4JYjBtds5Rm2Xm3GCtlDQEVGqOvAWKFFlnKarx4aAeX96hzYcGqJPVFfxvQ2W0arfjSLjGQ5x0A8/xxsGGvmbF5h/lIAVC6AE4bMid1+d4Ha/zDu+vs6bsJLIgMLxbIdKMUbch4HNBsvPt8GEl2wUTN+5ubny7myo8Swx4tB/cXGxIq8oTlbR0+ANeGB/f7+ElgCKbBlC+MM5NnsNrJ2xh2PZx4gapHhemE8MFB40CXE8G+ifoxZZ7/l/82/WFVmH5N8GtyTBaYwd42D56nQ60el04s6dO2W7b/rLTr6MpdvtVg76elx7KqNg4Z+bm4vbt28XAqysrMT5+Xk5VOL+/fulwzAYcdHhcFjqmK3QTfCIeEQAfY1DSPSLZgGwoGfhyf/XeQg8w+6hcwLuI8Iznc4OpDGiRUE5VFHnovJ3Dm2Y2bOXY+WTGRjmmk4vYsAwi5fpw5xcj5tK/1BUzH1d0hnjHhGPKDOEF2SJUjf6RulmhZd5LyIqCNPenY2r13ow1mazWaqxUPQ830ol85Pfn/mLOcqAw2AEujFWh4zsZRkdQi+UiHnYYMBywDPZZgS6GsQAAOBj5yP4H7o5NwDoM88wryiv3KfhcFgWIbKHDwbGPOfQmxtGCflinC59johK5ZZlgrGNRqM4ODiIvb29ygFJ8Dbjygg7K3iMrec1exy+LwMOz5OBMPPp3Mh0Oi07Fdtz2dzcjOl0GoeHh8XQYlhPTk7izp07sbq6+ojBuaw9tVHA8rKFKwPFMo3H47hz5060Wq0YDoel3IxQAGsdQK5WeBmZm4B1xqHueitN/ofZI+IRA2RPIaN+I2gElf1xEDQrNrwh4qLcb6EzMrTrboTj/y9bl0Ef+G0kTd+NrM/OzorBtueBsjBtu91u+R5aensK0yOiulstyWDKaAmReC8khAHlCMM7xHXZWFHu9AM+Yj49jxhDK93RaFThPc9jVgqmYVb+5lv3j2sy2vTnzkNhvDwfGF17dp5j7nXZL+OHx52kd6mt+2ZvsNmcnetAfyKisp+WPTcMgqupjIDtpTQajYLIx+NxSfiTLGXdhPnCfAlveV0QSWKvn4AXqUKyrNPve/fuRb/fj+Xl5eKJHB0dFZpBt6zEbbgyf1h2MwDNnmIGt3XAziAqIirhPBd3rK+vl34QJuO7yWRSdlR9UnvqnAKx0DfffDM+/vGPx8bGRiwsLJQ6b7ajQAnhimKt8RLMzE7IGf1FVBV/nbGwIswCnREf77AgWDh4hpNFKHXQFyeMuR98h0EgbEbfHP7IMWT300JtBOdzBrywz9fmsTMmchG7u7slZOC9o5zrsGDixvu8aKpfECIUAIl19u13ySDjtaA6PISwuLyX/pm+CCvjyXMP/eg74+Re3ucjXs1DKB1oYITtufL6BfMPf0ML7q9DvvQN+pm38WCQGXuFWcHwDlcuMTYXA6DY4VMqjsxjPAdFhFGH/zj8xmd60G+PAz5ttVolAQovwEPwCHtOWVmyqjkbant7EVHK39khwIieSj/TiD6DpMmLrqyslO11rLjhvQwcTXt/ZvCSAV5+hvWXQULO+UE3g3FW/VNphzwYhJmXrtKe2lPg5913340vfOEL8Sf+xJ8oyMJHaN6/fz+Oj4/L7qJsVXFwcFARTIgGIRznzZ6BDYU/80TyPL7LAsX9RiM2CPkd3GcEkU9OIreC4aMPDlHl/tUxDu9FIUATwil4IvQ7YuYl2AgZ7YHETDO75EbM9GM8Hpf1Jc4BINinp6cFvTSbzUrZH0xLDNT7UuGm59iwhSwn+FBkfGd+4R4r30xrxlgHOGyQ+W0DmfkulxP7ffzvs0H43H2zoreXkfNP2RhFRKGtK2lsGE2bbMR49tzcXDmzxIrfyB5jzs6v5KBclQV/GvSw0nZ5ebmcJsh4Hbo6Ozur5CiWl5fLe+yVWBZdGut59EaVLsTwRnxsjcIz9/b24v79+8UweCPO7NGbj/x3neHIxoHmz/2Zx+HnGQTlpDkyQBiW3AzgDZrCg1dpT2UU7IZPJpN444034ujoKL7/+78/VldXo9G4KDsbDodlgypCFuyHwtJsqhes/GxJ6xRpFjAMi62zK058X3bZPKa6Cc7VLoTBEBijQtCNDYLHYubOBsv9jIiKELuKhudlpWSlAX0Yo+vQc0123RoQo3vvq2PFzXYCPA+FHTEzNqxX8SE99NdJQQuKFST14l4QhYLM5aIZuXlBU8RsP6xGY7bnEX3ximijPuY8AwmML/8zTzbyuPIOH2aECXKFDoAJ7nHY0u9eWloqIVp7kzbqWR6cJMbY7+/vlxg8Hpw9JWTSgMPFEgZU9jzz+c55DZLPPWbRIGccLC8vF56iSgg6eRcE+oQBgTdYg8MiO5C1j860/D148CCm02m89tprce3atWJwp9Np8YgsGxmEWk9lvWW+tp7iGhuEOi8i84xzD3gHS0tLRc6azdnuw1R+eiHnk9pTG4WcrHr48GH84i/+YqytrZXVhNeuXYtr167F6upqrKysxJtvvhknJyeV7awXFhbij/2xPxZ3796NL3/5y7VeAEQ1ysuKts6iZ4JjhCyU2QBY6VoRZCWKUMLkNgiOzdM3o6mImeJ0+RzXGnFkweTeuvCRET3fsX2IFQQ0g+lQQvRxNBpVlJHLQe1JmD54DV6hS5+4FqUEo3q9ipWXDQcG13OLwjXysnH13GbaOMnt/WjsKRGbvgwt2mjkXATfm28uQ/KgcZRlVrSWMejoOnpClH6O4/j0AZ4grDCZTErFj0NUBnqUBHsuQOp4KOYzh8tQyGxvgXJ3GBbPICLKOgLKp63YyRfYyzR9mDNXpy0vL0en0yn7sxEuwps3CDg9PY07d+7EyspK3Lp1q/ByRFQqkpiHyxRs5hf0SNZPppmNE3Nlo5LfZa8eOUKu4EV7po1Goxjkq7SnPk8BpnNcfDQalV1Ol5aWyvGVJycn0ev14uMf/3gcHBzEwcFBiZly1Ny1a9fiq1/9aiGEhbAuJmuCI3jZFcvo1laYccCoGQWgoHIsE8VHP12y5/LOHHLgc7wL3g8CchjIDGSGB1W64geGJV7OvZRb+uAU5osSQodJ6JcXriHo9ha8V4/HY4WMwsgo13S1x8dY8gpXaO9T90CZKDQbE3siRudeCAQShE9c6mcUatrTf68J4DPPl/nFoZvsnXJ9Bgs2flbilHKCNLNnDO3w7sxH2TPj+slkUsAMMpzBAX3IRsdGyXxoxc3854WaVuLD4bDiEeHFUS66urpawlvkwZxUt2fkVdqETlZXVwsAnUwm5aAtfjBa8/Pzcffu3djY2KiELU0LvyuDTesX86XnPN9nuXDzO6yXMhD2nJyfn5dzMnZ2dipeiU8+fFJ76nUKFuocG424OHDa8ebBYBBLS0vxnd/5nXHv3r2yLL7T6ZTTk65duxZ37959RHh4p5GfrWpGc1aOfJ+JbmbMoaOMSvmNAOElcDoZbj8IKBsfK3ijR7v9NnA0vAQrUp5tZFQ3dp+jy/euwHGYgv44fAHDsWUB1RwsECKsQ0KYvjiplUt2rTzsCtt4WGHbO8Q4eEtk081Ijf/t3TE+hMS8Aw/gIbjfGa1dBXzwLm/N4bnJYT/Pp0/W4znj8cW2I07I1vUrG2d7gQAXFG+dgrECsufDd96V1kaEOXC40TLLu5kHeIXQEQbXxQxcy2K0ZrNZnm3P0jJjPuYdHChEWIWdYF2VxFqR4XBYeJ4tWjyv5kd41QUTNhJZh1jWc/7S92U+sXHge8tLr9crXtZ4fLFB3s7OTulnXgT5uPZM1ilkheqwxMbGRiUEMx6PY3d3N5rNZvzAD/xAzM/Px9tvv10O4G632/H666/HnTt3KglQTwToI0+O/7fA+G9b+rxGICtHx3m5nuopI3c2lKPk1glQ6MTvbJjos5ELyiBfZ/RCXyNmySSPfzy+WNbvZF2dG9tutysowmEJBBBBJrHuskT6gYJx/HMymRQBh+Yu73MRAXOaq3kcJnCoqdGYrfa0V2FDwvubzWYFfbMugXnC82FNieeCkFlGf9l42xPMXh4otC7RlxWHDYP3fbJngudg+pvfsgKzB4bygjcc4sxeAZ9nj86lovYEc9jMuTfk4uTkpHh50DTvBsvzyDmurKzE6upqLC4uxtraWlHu3lYje5/mS3i31+uVnVNJlPd6vcpYeLb1Bvzj8C4yxjiznHsurK/MJwaN2YjXPeuykC3fAT68nT1yUhdluaw9tVHwwRy2cI3GxSlWLGVHQEg4HR4extraWvzRP/pHY21tLV566aUS+vjYxz4Wv/mbv1mJV5qAdW5QnXDl5gn1b/c7YrZdgZUcxo8wDztpokiorfYimMsm1H2cTmf7uRs5ZZcUoUJg7YmA0m0Qjo6OKruLes5oGLTpdHaermnJfKE0I6Js1OWVqxhLK2qECbqjSHBzHSf32QrOJXC9z5BGuZGABEhwfQ47oijoE2EJh0C8oM604bmX0ZHv+Z8fK2loi4LMijvzYY7P59AYaN+J0MlkUkoSnXuyJ+PEpDdBxPMjx4fMjcfjogjxKG0s2ZrF4+A78ydzYo8G2rXb7VI77wWQJycn5T7miy1z1tbWot/vl1Aa20dbRi0jGAiMBACOz7x1DHPA7qkADrZ+wUOrG4/pAC0y4qfVKXUbA4cEzVtuXI8ssYUIHpe3+3DBy1XaM/EUImYo22eZsjFeRJRYJ0SHAa9fvx6f/OQn47XXXivHPW5sbMStW7fizTffLArarpm9kjxYK+KI6oKujIIhvmujjRQhutEo6LLRmJW2OdnsPnlSjSyzMYJJ7QmxwAtFZVTthlKYTqel5I+yNHscVrZGVrjsZhwzvZPuXDs3N1fG7nyMq4MwFJnZiW/yvytWsodHojuHz1qtVklKklyrE0rGaNpRw+6kbqYpz2PsRpKet+zBXla8YPRvD9cGIsuS7/FaDI4qBe1mfieOb4MN78NjDg2Sq6jz/sidmcdQ0vQ1l4xzvw0i/YEvvMgR42ewwIJCyzs5geFwGFtbW7G+vh7Ly8uVikbGDwBB51jmCA2yGR2AA36IiJLLWFpaKvdPJrOTBeENr0g3PzjsY9mpA4uWafNw9hjqnpFD0S4PB1g63FbH53XtmaxTsJWGSO12O1ZWVooiYdIdbzw5OYl79+7FK6+8UvE4Go1GvP766/GNb3yjWHQr40xAu2f8z/fuWzYmEbO8RE4yexsHPnOFEIaERTyZGRxrpb8oQcfLaXbbESwjRCswo1wzHfe7PjuP1e+zwXCozAoKA4ALzQZleU55F8idRYs5YQYdUTYkunleHS1zPxuNRkFENAuRDRBGKiIqHli+194udEZpGf0aIfq+PJ/QmHlBKfueuioxaOVcBn11uKLb7RZvyR4i/eI6zzk86bOX8c79bIwboAkjAO8y7+ZPyxI5JiPy8/PZQTiWU+Yqr8bOpdjw4/Hxcdy7dy+Ojo5ia2urlK6yCBbDYq/MsmPZpJSTdQnIlY0Vc+KCCowI3lT2BMyznj+DgTp+sRzXKXDzrfNNvIefHG1wWPwq7ZmuU6DjERcJZnZDJNZ1586duHv3bgkpRUQlnu39Z1588cVYXV2Ng4ODRyyo43J1hDWiuyyG58+MBl09YURtxdVozA4syWWbdRN+mbVnrBlJ+h4j6BzXpi/eviD324rN/UF4QDxsXMhnLDQj9JHXXtggTafTUi8Nco+YCYcVNCE2wmwYEVdN+T18Z28NhOyQmd16jDfIlLlgi2IbVSsAnmVBM/1QVFmw64CK59DzxnP5n76YZvTBcXYbKsYLknVpaERVYXhFK7kI+Mo8Z8/ZHg7z4bn2YlPTzbSmMQdWqnyGzNlLyYadObD8np2dxcHBQfGK19fXy9nQXO/tTnh2zg3xmVec+3orVc8ffIPyrfMoDdbcDAgfpxcu4y/4irnNYAU6e/NRjAJ0fFJ7aqMAkc1cERHr6+sllNRsNouFf+edd+Lll18uSHFrays+9rGPleod3LlutxuvvPJK/O7v/u4jLpV/slW18jQhI6plXkxixOxEp4jqodpG+azIxJWnNtyozu/L92eLbgXk8IiPFUQJ8szsdbgZxeVVwP6N4ocWKGuUMl6G6QedUQ5cSxUSsVm8PZgRw9NoNCqnu/kca7wQC4DReEQ8gvoQePqR59keInR3iW0W1ly0YAPL9eRt6Eueb/rmufJ1Fnp7g/7OqDt7rTTkgw3bqI7JBQXmZ+bKxgJ5tXcE+uWHlbHMpUEMocLsTTucCC39A3+Ty2o0GmUltZWuvUXG4NJXdAqGrt/vl3LdwWBQuTYiytoYG3h7DrmgIesQFr4xN06+24jbICDv6BvzGs/JfFLHn9mDzYAGGePdzpvZEGSDfVl7ZievWclGXKCyzc3NsvBkOp2WWmML7c2bN2NjY6N89uDBg9jf348bN27Exz/+8fjKV75SQVYMLk+IlZyvMWrmc/8N8xr5Mi4mgQoKDsPmMJI6ZISrbKGImAmnGcQokL7ApEa5Fjj6FhEVLw2m9na5deWFFnBXhhhlGzHRb+8zYyVuD8vJRejmipusfE0L+uV9bmggPguCvTau9TyCRLmH2nSjbaNRAIxDPBlYZONMsxHjHQhrNlp57mkY0Bxu4Dr4Ch7Y399/rGdipeeNFgEOzlsQK89FBRh7z182lsxFxOxwJubLhSLwCjznajCUbA4ZwkNcw1g8zxgGksOcTkbylfMFyHn5nZ6PxcXFigIFRAAGvPo9G/GcJ8qgC1pmXjVINc/bU7Meyt7+dDorQME7mpubK9vVO4+beeVx7alzCpcR6uHDh/Hee+/F66+/Hru7u7GwsBDXr18vpwVNpxfbwL7wwguVSoPJZFIOj9jc3Iytra24d+9ehcB1ngJMxwRwfSa4CetwjQ2HFVKzebGwrt/vF+XifVQiqslsfhs1GonxP0rQ73Eog8oPo4Q8DhsLDIAX4jjejyGIuBAAL9YywzYaFyEdFuChYNrtdhm3V77m+x1m8XzBtO53rtSKeFSR4Fm0Wq0SmsKTiqjmfrjeuQdcaSv7OoNN31FsFkyaDbirvzA0NnD8tnExjxgl+rmZf7w63glcmu/JXgDFBijqOuADfZxs9hjcR/fZEQLG740J8/jhdTxub3josJy9HXsFvBcaYOjQHfS/2+3G6upqMUxUMvlAnRxW5N2ukCMa4EWfPvAmGwTLseUVObB8ZUCUPeM8tzzXRiUXXzSbzcoGg3znyrmPxChYKJyoZLB37tyJXq8XN2/ejKOjo/jUpz4V/X4/7t27F4uLi/FH/sgfibW1tXIfysWnIr3++utx//79R0I0JogNgq8zIeoE1kSm39ltm5+fLwnzo6OjUr0Cs9uS52flSUD4I6p7/hgVeBGY35GRq1G/FwqRNDNqRxhYEGWBR6kzdu4zLekLyhgj5LESBnIIAIRrV5t3IZhWfsfHx4WxrTycI/D2GSiHbJBs7KfTaUGTWSjNB3lO6oTWrjq/63iG3+YBK7nLlDto1s+q43u+M5L0s3iO0Sp9sZxiLHJf7fEzPiddeZ+jA1ZSfh7/c48P7HFSGC+gzhOB3ngaRuPwpL16jENElA04PdfwXp5DxkSOhnMfRqNRdLvdWpAGXbLRzB4fdLPOqvMOzDv5meYvPBnOTkdvEGbLRjZ7Go9rz+yQHRuDiNnGY1/96ldjPB7H9evXo9lsxq1bt2I6vUgucVaqhZJJG40uzmh48cUXK2cz+L2ZUHWI2v2yYOQEnwXbzLGyslIOlmeDLzORDYA9B1dzWGCZKMf//F4+zzsiWoj9fhANbra3N4C2xODn5+cr58G634zXi8sajUZZC4BA4SXwfpLQ0N1rKSJmiUYEmnnwmCKi5GgcPjNfwU/QhzgwwuM5tuLL23XwufvBZ55P3lUXBnCIiO8cl7ag2wvIBol3mP8wGubDPEaa6cNcWJaMLk0X8wcLuPAwPXfMA6EVvHgrNp7Jb4dg6K9DN0tLS2WvI/M85zFgAKCJ58frceylWjmz4SOfsUkc9/m99Nl85EQ+oW+StisrKxXD4N+WmawLDcRMI8aR78lg0iA0RyFMa+bbBzExNm/J86T21DmF7CFAUBJgx8fH8cUvfjG+53u+J27cuBHT6TRu3rwZk0l1tSuTjiAdHx/HYDCIGzduxPXr1+PNN9+sDNw/FmgI5Of6Grt9RjomNAxFHfT5+Xmpi8/oLlv8iCjohz7wfIcActjF7ib943sv3DKyyeV6oBreyaZf9KUuZu34P7TxnDrJx7u9k6avcz4DJUb8mM+8UM/9NmqDXlaqKCR4zoopIooH4dARz65rWdlnfnJzvDvPO3T1uOtCIX6HeROBzcDC19uAu8IFGhu1wxNGwjSHYDCW/A3fweNWmHXKxBVL8BDGw8bVHkK3242NjY1ylrP7YQVGIQJ991od6OE8WK7SOjw8jJOTk2KAptNpWbHuea/z6jAu0I/rCMVyEA/fWb/Q16yXMmjlf95Vh+LrvLNsID2X0JvwEeExA4yrtqcOH7Fgyhab75jwnZ2d+Pmf//n48R//8bhx40ZMJpOyMhaCgxZ45t27d+ONN96IH/3RHy0TiwtpAlro8mcWPBssL7Cj8eyICy+H+mfilUacjhNmw8P3uXSTd2T3OLvb3JN/2zXPpW8wKEJBeAfhgYkd8uG52W3lfuYSYTVTEtrxymR7MBFRWdgD3Z1TQAnRf/a5IRdi5OZ4tWO6EdUtBuAd3ustOnKIz/d4Tnmvw1L+yZ6f+YfvMdh13irzZn4zLzCmrEB8vxWuv4uo5lhckmkvyfPGuJxPwKvDs6SyjLwOio//mVevCaFfg8GgAEBON2POkSvzLvxlWpF3wADBf44e2MtkTPA74V+2eXfy2ord1Ww0PssltbkizjwFf1vuMw9kr9FznYFDnSfiUC50ZNHaeDwuhtU8434+rl0tyPSYZkZCyEGoTOjR0VE8fPgw/tk/+2exv78fi4uL5RoY8uHDh/Hw4cOi/M/Pz2NlZSXG43Gsra09onQgTkZjEMGfW9hgbltzK4e5ublYWVmpuMO4kPY0eI/RrI2CqztgpohHE3c8h/dbqLLxyMlCo1JXPRGLtxK30WGePH7e4yoXexKFYZrNEsfkfzwEu99O6KEE7MUYxbCYCh7KeSK72/DUaDQqKziNJL0vFUk2hNpeJs8zffksG2kbYFeE+Rp7NEb38EsODVgRWhFlRXCZZ0xzf60UzVM0lwibxzzHzBl/u3wY3mILCMuBx4+3htFYWlqKTqcTi4uLZddeIgGmhecYnrbMWOG6Ooi/LW94YIPBIPb29oqizKW58CqGsNGYHRWKx0BVE9EPj9FG2zS3l8T8wAfegwrv3uXdePSWFXuDPM8VZnzvY1HtJft5T2rPJKdgIkdEiYcz6OFwGJPJJN5///34pV/6pfgP/8P/sFIK+eDBg3jzzTcLA7HV89bWVmxubpa6bCYLQplZjAQhkqsNYNDMzA7ZtNvtss2345cgZTMS90EHowYzp5EltMo0ZNKyy2gjyFgRUhAh37saA8ZzH7zVt5UACMkVPdn7QZk4OewtjAkbZORj3oDp7TJHVCunPI/tdrti3LIgQH8jTZSVw002ohGPehZZ4WRUl/sEnVEY2buDr2jwuMdr+kIPKw/zMmNmvu1pmhezt+ox0qwUeJbDltCHPrkctc5TNQ85zGI9gAJk9THK2qAAnrRM+7MMwjAEXrlfZ8wZA4oWT4U+mrc8B57jyWR2FrL5LoePMsiyJ2hwwW9on+Ume4IGFJ4DruEHw+gV7l5Hlfnyce2pjQINYnixC8li1we/8cYb8au/+qvxZ/7MnykhBZieiSF2vLKyEmtra/GNb3yjJEgvMwLui60iE4bbaMExkZrNZjEIx8fHBRXlRKWFkMl9HLrkbyPMuh8zEQwDMjAD8L2NC9/bGGcGmp+fj263WxSbP88eFQzPeL1oZzqdVvaA8doCx2Od/PacGIHBuAiUk8neQ8lC4DFlJQiSi4hKaIG5Y56z4vSz8vMjZujZ85374ioYewFeqR0RlWR0VqrZYGZl5bFkHrbCqpMN3oFCzDXsKCh4w56my5nzXObEcqanlRZeHmNl/YBBlOUGw4VBzp6s1wOZPwyWeC7hR95LuIy9pByGNU3tAVkG4X3LHv3OYDHPVQYFPMveB/oQHuL90Hw0GpUcCflP6MvnDgl+kPZMVjQzQPbJsYuPl4BQTiaT+PKXvxwvvPBC/PiP/3iZpJWVlcIsoL/19fWYTqfxxhtvFOMBoey6ucFURnDNZrPkMHK4CYbr9/vRaMw2t0Mo8k6ttrx2EXN4gInOxsD9NDqwUrSXw/9Wul6MZEVid9v3IYjs02KEkpNdMKHpaMVv9xvjBCLxGQcwtt1lz4e9FcpZ2WQvK20zNsYmC5tr3yeTSTm9q44/rKCtNPO7HNJrtVqlQievUfD1OeTBGLLHaKVVN878bCvMrGzsQRg48Fx+53ADY3NfzEuAPHsn9mRtdNyfHCaBT1B86AeO3qT/NlIZMEF37wTrax0Spj/QgD64Mml5ebkga846t3yjs0xH86w9IuQpR0wybcxr5hl77y46QPYMRPgOr5s+t9vtsnPz0tJS7O/vVzyxDJwf157Z3kdmhogoMV0mwjG3yWQSn//856PT6cSnP/3pODk5ievXr1fi7gsLC7G2thYHBwfx1ltvPYLiMkLibxrXt9vtRw4lMZppt9slqczuoouLiyXcQsza4QQzDv1lzDYUvq/OdcvGxAraQmumgEkcBrGgG1EYfSKEJIhPT08rTJUVA4xu42AjgmFutVolJxAxqwKyl0NfXArMe71XEv3IoazMc/w2gvRuqRgukBfPgQ65X+Yp85D7kxPPWTmi2JwIt3LgM1cy5fvr+NgItk6pZD6yUUKesowwVvMYxiEDBYCewxJG/tDf/AEIy+gbnsvy44Q19Gq322XNCs93VZtRObyWaeFxQxefUb66ulpkodPplHtA2b1er+Ip0Afea1DnubJH4GKCOmNhmmd5gzcxhNCR/AfeHtuEsC0JZ7HbY72qQYh4BkaB5v1z7CVgUS0IjcZF2OAXf/EXS6kapV6TyaR4Db1eL37/93+/nITEBPAco0+aldrS0lJ0u92CRO3qMhG9Xq8YBC/8oo9G0VYgZmgLmZmQa6woHB+0gDh/YcRiZM1zjf4sIGakXJeNy+ntkPmcZ+KF8FxcYlxv6AfCRpAdm7VhAlGT6EZhoIRseLwoiebQQFbWGYW7qoVQoz0i04H760JCVlb0ARqNx+NKkpDnOKzgVoek/R7zpBWMUTD9dAjTNPY9dbTx31YOKNtG42LtAFVF5gVvHUGuIRts3pENCX224QEo0efsedpjdijOihCPwuDHStWGHh6z0p5MLnJNh4eHEXGxcSeywa6+yD7zY/kyfWyg4YOs1Oua5deGwv3kOblizzqFSMRgMIjxeFzOU9jd3S3PN0DM+czL2jM5jtMvhnDn5+flAA1bbhNqOBzGr/7qr8aP/diPxXA4jGvXrkWj0YjNzc24fft2TCaTeOONN4qV9DuzCwVTeEK63W6JGebELEllkC6hAZQmE1KHzupc5qxU7EV4DQD3Z6OCsFlZI4Q5zpiVtisW3ByvZW5YYwCyAFEY0ZgOIBEE2klh7qGPKBVKGIkZc71XaluIGQP0cqjFfYLOjAk6UhnC5+Q76DNzl40M72YM2SuyAvWc5WvMczbS5guenVFb9iTrPAEru7qEvmnk8dWFlaAH4/1/2/vTHsmS5DwDtYhcI3KtpbunZwhSAkGJv0LQHxegL4Q+iaAgguQQAjk9M+zptSq3iNwj7ofE4/GcNz2ysiaLw3svyoFERJ44xxdzW14zN/dDEkKGtJythcH26bYGMA6vkSNv5Mu8oODG43ELdWxubg7OXmLOGBdtw2sATtarrKgNTHIebECWy+Xg9Z/sfiZOnwge3oHerid51YY4ebjn7dkYOnU6eQMZR5exDwNvpurBC/r+++8HGwwBn723/q0rLzIK6eZ44mCQDLuYaFVV79+/r7/5m7+p169f18bGRn355ZctZfV3v/tdfffdd11BodhA+J7d3d06PDx8lP2BsBAyurq6qvl83hQGaY1eEDSTeMJ7vzGB3Od4PO3zaaO6ubnZXHS3Ybc5FSfoPZGJQzTcT30gM+YvF+vIunL81CExXFmE3iFEozvQpT0Ev7w9Bcd8ZPqkN5S8NB4/xFC57hM3bWA9Zx6T+5No3jFlAx4bA4fx3L80MG7fv1O3+5j1ZFjCv/GM0Wz2J9uCR+gf77z+6aef2llB8N3p6Wnz4vH82IwIrQEPzL/XvjBC5j34AMXscCT1mP+rVnsXWHPk/t7iMDLHeM1LBimkNY9GD0frAGZ98ux0Om209CJ5zg/ylGDD9/WMhfWI58cAwPzh9URoitfDDuzUues82XXlxdlHuHTetUp+sBnRguznq6q+//77+uGHH+r8/Lz+23/7b3V4eFhVVd98801DsjmoVBgW6u3t7Xr79m3bMW0hHI1Gg1dKEmOEmb0/wZOcnkqOIxWA+1k1PELXSqhqePyCw0qgA5gUxQBiI8fZ2T8oX+/+BHk5nkoMnr4jjNBzPp8P0nfxeNivkWtJVSu0jWHFeHjtgroYp4XVoYLxePXGKJ6hjWR2jMJyucoysSK2gHpdg3mx4vV9zi7pIXmPwx6Mx5rjZF57PJQGcp0hdNuuL70Gt5PA5fr6unmKxO7hMUAdCpD53N3drZ2dnTo+Pm7rABhOvABCP5wbxPwjUwkenZsPj3ks6d1xDzQxn9vQWfEa8CXvwM+EkmkXnsJjcugU+UrvA0Nlhe756OlA85V5gk97dIyLeWcDH2EkxuJ6XX9GEtaVF68p4H6SdUT+8Gw2ezQRdDKVPIP99ttv62/+5m/qv//3/15HR0f1L//yL4+UqkM3vUEvl8va399v6aVJ9L29vZZqyllGjRjyEvxScyvAFNQsGdu1crfVN+MjCGZWC3/VKpUxMzqS+VF6dt9vb2/r4uKi3esziEgLtteyWCzq7Oys7RVAqGBM75q10mc+6IO9JZ+flIKL0oVm1ImiMb1dLwYBQ05SQK+v5lcLMYJsJQqYsFeA0vLz9KlnhKzUuO45tcK2Z+O/jAEn4qQuL4R7sTZDUxh/jrB3bnuGJxiHDQQ7gq+urtqen729vcH7ReCffIMe2YOj0ajtWclwJHPPwrb5zEfi2GOhj5Y9Z+05iuHfrYMY48bG6o12AEfqurq6aqEzEgo8bwaotLfOQ83/PUfuc8/rg6fY53V+ft7aYyE/QbKB13PKi4wCcWdb07u7u7Y3IcMXDNDW2sRYLpf1hz/8of7hH/6hvv766/rxxx/bfYkWUDwWxvv7+5pMJu3kVVAaSHl/f78hbAyCURzMAkOmsGYxwW3FHWqwcPfCJhZqGDxpY9qlx5J9MbJfLB7OgWGh3msPuPGTyaR5TShBPBAKG36qHr+sBMGxMTCqt6udSNaGiHkAZKBUfA+CaHqQTrhYLAY7mPk9lbKBhT9RUIwFJevFSguyhdvzb8XA/dC1FyJyf60EqMdhIYdBc30jQ1Bcp31o63AjCpjsMcbqfUPMM3QiNs1ZQiDV5PfFYjFYQ4JGKNebm5u2H8jzZDCDXmHNyjyJruFZ75ZHjnPDmb1D5hFDCA3G43G9evWqlsvlwAP1/g7Ar8Gcwarnz3LZC+H0vFBoiKdtnoBGvNuF+XKozskIPPsx5UVGgYwAWyeMAqXnMqVRsDAtFov653/+5/rtb3/bGMN12FU06qyqQdgIJoAwZDg5Bmdmx0tgwmEWI4p0+9Maozg9znVhCvrn3HEzFn2iHRjSi8coAZA1v2MIT09P27HRrstZJiAOzop3Gi7tzufzxoDEl92ehc7rGUk/ox/PG/3CyFjBuV7XAfN7gdhrMkZs/O/FQoc0jCYBBe6Xn3f76eozhwYK6WmYrtSf9OBZ804qGvfNdOX+9CJtKKCzeS7nhz7bE0TRcx8eAnOU3g4xbhC2kyYcnvV8kjBgBeqECtPBStA7/Z1h5vng3pxH6HNzc9O8Ir90x+AgdZf5IsGGvSSXdfNvHWeAl+s1ZNphVDc3N9sRQRTrvsxw+1B58Smpdufu7u4GGS1mtvxuxk8h8+TADHbfc7GFeg4PD2tvb2+ACKtqEN6az+cDpUA9zvvNbIa0uHY7q9YT3crQGRWJdjPkRLGA9fLtbVhgdgwCR4UkQkyBxGXmncwYACsxaAKDsyYBSreRS1pYiDyfVm7pduNlZg58omV7CWw6tKfkfni9yPzmfpIJY6+H/qa3arRtPnKb5lErwJ5Sd3jD8Wja9bPp9TA/DikmH1nRACqsJP0qVcIjXq9yWBNawoOWT2jnk3kBikQWaJsFas8R4MdzhcG3nFjp8fzOzk7zXtJA9/7MS8vlsiW4IK/0k+tG5umN0Sd7S/CQZd9eoXnPEQvTPMfMXiPAHnxD+Mv393TXc8qLs4+w/sQJ5/P5wKK7OJyUqIT7UTIWnCQqTGPDM51O6+DgYIAAQTa8/5m+ZQjGiN3vuuUe9zHRpgWYxVU/57HSFozCd9dhujgu7jz+dA196uvV1VU72dJ0dd0WZM6b54z7y8vLlpHkPhh9Mg7SWxkvMWV4woKdiorrKRjU21Pa/iT0wZj8mleHFXnGKDsVwmj04DF505tRulEh/GnvxbTNMdng0W/ziHnRSoBiFI7Q0wcbA7zbXr2pGG2AkWGOQHFfHbIxv6K46Z8Xmn1UOvxoY8Nb3qCX0T6GGVkiw4lMxkTijut7ztlv4N319lLSuNPe4eFhHR8f13K5rLOzsxqPH9La2YuDQTNdk5/9G/3M7CwvlPvT8g3NPXe8Ehh6YNDfv3/fjGACzuzLc8qL1xS8KAfSNDKs6r9IxB3nWhoKKxOjbKPn8Xjc1hF8XnrVgwDygnPeh+D2uNcLzE4fTYYdj1fvFchFJPq7Thjpuz0j+uHz0L3+YHfctLGrSRhnNHo4s4kNg6nAEQiQMIiEODpIEWHEOPo6yheaobx9MqkVas6p5w/6w9jMZyrUngJ3v6pq8IIWC5hRNuPlN9OQ0IM9xBSuNDLQkDnLWD332Stzv8wD0M3zZSTqvqSRsZzwu+UmjZQz1eA1lA0png4b0T59sXGAno7dszfI4TzPJ96mDRl6xPtw7IFxnz0WA0LqYA5R4Mg03q35Mef/+Pi4jo6Oajwe12w2q6urq0FatXc9A9ISySeATFk2DTMcivzknDJmMr/w3tAl7AezPjCAo13rlg+VFxkFCE/mwXw+b7nHFkhKIr9kbKNaiN9D7bam0+m0jo+P27Z6CLyx8XBI1Gg0qtlsVjc3NwMXzaiSyfcxzFVDAcsYneOxRvsWUBsKBNKKJJnKCtMeiQ0NBWblPKObm5s6Ozsb5CnbpQctQVO7x/f3q/cZbG5uDg4MQ7BxhX2Yno0eiNObnhwCMt3oPzSGhiCqVOjQwTTw297INU+wkcJI8XfChhhmZ3fZiNsDseHLUJgBguczUXyOx2soViiJ9tKL9IK4dylb7hJUWEHznaOtmUsvpFatjlvxeOBnFo43Nh7SOlkEJYRiZe/5zDAwtEX5wpe0D10s48yF+2kZRLb9IiH3Y39/vx28ORqN6vz8vC4uLh55E4yf9TcbakdMcg4MNnxScSaUGOwaCCEXhDadOm4vAf40TXs88Jzy4oVmGOT29rbFuWzNjZ57RsETaGKmouV3K9HNzYfXZR4cHDw62wgjYUOVrjmT4peI0w6/80lf7KYZzZgxE51RECTTr+dR9AyDQ3L2EKDTbDZrCsIC6PQ7nsE7MBI9Pz9vjL27u1vT6bSlK9KGDwtkvPxOOAfX2MjMsVYXQgV4IqarQw6m7Wg0amdTVa3eNmeDz7ihcYaNoDEGwYaqZ9htYDwH9NcGLAFB8oP5K2UiwQ9zn3U5CSITDwxWzAsUzwXPA4x8Bhhz67FRt5XTaLR6dWWGdeEJwrZVNXj3hj1x4uJ4jAAdwk94c2lkvPZDu8gFIZb9/f22Uc1rKdPptI6Ojurg4KDxEVmJtAcNWBPheHbCZdDefNWjuxeKzZP+gx8sqxgjMjod1j0/P28HP36Iv9zGh8qLF5qrVnm+PtbCrhodtsvnTlPM8GZsIy+jL45SyLxyFoboUxKD/y0UFir3KxWJFYzHYIWU/6dguf40VA678T99Ay2x0DcajVqGR+4etYB6IdqKDVTO84TiWGPg/CrQhwW/avh6xHz3QS4Sm4apXD0HzInnOunDUQRV1XbNZzjQiscC6rnAsHCd+eiFKqpWRiMBhuc0jUPOtZ/vGYsMNdkoJNKmXZSTU3ZN+0ycyD7ATyRqeDMbKJjxL5fLuri4GBgT+A7FDyLmuuvhu9dAoC8G4+zsrE5PTxtvmF8Wi0UDNswN/9NHn7VFdh0eNfyyv79fBwcHtb+/3849Y95NR3iIvRnUha6CNp7fnn7gd/MV/JQ6gfH61QNcJ/R0e3tbp6eng7ayntRnqWvWlU+SfYSXgCUz86aC6xHBDJpulBWGBWFnZ6f29/cfufG85en+/r7Oz88HROu5VTBQvvfB9/Gc27fCt6eQbdgQWlmkIqMd/lDmMDvo3kIC3VF83sSU/fG6SL62j/oZI++2dT45c7u/v19bW1stTICRgI5WasmICQrszmP8ekrLnibhKfrs/TD2rLjfYRnPAfWYZ5mD9GxTiJOXevNetfKWMDSM0X2xAUxEb5BkHnE8H0WGIcZzszxln20AzdfT6bT29/fbQqYVt+lrPrVxd7jNXqnDboQkvbZlwzMajZqHylrAZDJpmWa+3wCEeWChm4M2mbv5fF53d3ftgExCMrzP2fOec79cLpussYsb2fCYe0o59R+0tlGDNswFPOIzvAwIl8tlvXv3btBn5sm6Mr2Q55ZPYhRubm4aIjeTuPCbO5hhFr5nvr8HzsQfHR21jBGHMKbTaS2XD9kDGbKwcNBPiLiuzbT+jsWmwCXqMyrlmhEiTGJhNfpjzPyPMgPd+6wT6qt6/EpP05hP1gocdkFBskYEmtre3q7T09PmEfiFRdA9DZ7DQEa5yaAIdSrFNKo8l9lONqIYASupNFAoFMdfUxk7NGihTqS1DgSgFKtWGSQpwKmo4Q2PwwrHPMV1e0FW0uY5JxyY19x3Kx7ODONUAmjE4jPzxXoim0E9v/APc0FWHnOAVwuvWlHakHI/r++cTqc1mUwGAMTv6mAM9gzgk8Vi0YAM6dfs44Gv7Jl4bphfDIOPcFkuh7vmfT/9sh4yX/Is820lbk/Zu7kXi4c3VfYAbBoBrmFonltefEqqt81bMblTaSB67k4SJBG+Bevw8LDtNiQWSMhjNFotLPcQjdtzOi0ClvG+RLsWvBynvxvR5xhQ7j1lXbXKhqKgBPgNofPr9mhznWGy55U7Q2nb4TTiuT4MzYKOJ4OS6Blff1qZuT/e49KjZdUwPOKwlNEW401DZFpQJ4vUFmbPcQKbnMeqYWqp+QL+Bc1bGXK/M1eM5vEkkveYR9dFv+x9pGHwfOJVuU7Th7pJJ82wHDRlFzwni+YxFRgSeMwZTHhmaciox2GgBJF4/jc3Ny1KAGq3twkgwtMB6HAa6vb2dguP8WfvgwxG/rfyv7+/b+8sIIRJn0ejVRae6er/83vqI67n5lInFXz//fePjDD0ok6DS3tXabjWlRfvU8i9Cf6zUqJ4spMx/N1MzgBR/OxHsFF6+/ZtbWxstBflMIkmvAuTOBqtUjP5jsDnYndvHK47vQaQgpGAlaqFo2rlbsLYRoL2avjjWS9CozST0Yw4UcYsGJKSaEFgYc4IkrxxGwW7tVZyjJ32bJQdcvN95gPzETTIY5tNY7fVQ0vQ2/HgXNCmj8m3jC15v9eWM7pSOJlj06fnoRolmzeSJr7fBsF9QmlSGDff7VkZ1RvJYzwx4HgJXuSk3fl83naEm57IqvegJHrO3d6pS4hKYOAAhyhjrhPeYZ0LY3B3d1cnJyetH4RKfcQLx3DAFwYcTqhhvSLD2qln8pqz0JBL5sHKngMIAYHn5+f17t27wfHjNjC0n0Yi5eA55UVG4f7+vsWcE6muU6AZd+65TBSYhAmfTCZ1fHzcBNuxWs7kIYwF4dIIGa0hADBFLvx4wdElvQUrXzOxJwia2JpnndyT6XcIK2147KYBgsvmIDP2eDxuISdCAih1mJv0P8/t3d3DqZCvXr1qcdhcC6Df+b8Zv6dAbehMO99r5eawmBUI9+UCdYYBnM1h4Ut+TR62wKUBNx9QuN9HQpgmBg0ZSoIuNhaJKpOerstylDzIfaYT9TMHHBjp9GzPI4o/+RB6E1oipdnzyr1pFDJEZxn0eA2yrq+vWwp2VbVjKThWY2Njo62Njcfj9jYyjAHppYSgbNCRNwMpeHC5XLZ3QRC68kvAeqg8AQIF9M935gaDw5rHu3fvunoNEJdyQz9M9+cahKpP4CnwggwLYBqEjAsbPaTw84yZGyIfHBy0DAVvvOLAtvPz8wFS67lyVrKc+OgQigWNvrqOFM7eJPh/Cky9bszc67N/7CHBVPYS3F9PPN5CvojErqkzLLw3oGqVanx5eVnX19d1eHg4eJet59Rza1Bgxk3E4ueMqm1IUlFaeTsmzdj4LUMyKCxCCM4wMa9R7Gk5tJRjSCTp32mbXH8rXeYR2idPJN+kPDHGVAD+NPpMvoYW9pzox/X19eDIE4Ol5K3Ly8uWpED9DufYGHnTqHnAXoznDqRuFO5wpeeWE4Cvr69rd3e39vf32+kGpNdiLLz+RvE8en0RXmG85ueqaovOnMacwMZz6fUpAxlHAbiP+bi4uKiTk5N2jlyGK63w/b+Br/nH936ovMgokLKYlrGnKNch6HVGwahnuVw2V9EhlKqHg+6Wy2Wdn58PFsVov4fKM0TjzJsesmPSzKD0M9GolT//02aiNS9C9vpVNTxp1G59tuvJtwI1A3ovAIrRBsav6bRS9nEK1O0FPvpjBZlznf1JdOv7DRpAQ85O6S2e9pSr58shBu61IbIyzrDBOqXGnBgc2JMw/2WYzGM1ijTNrDCM6pOOWZKeyIRDZTYQhCnwpHgXytXV1SDc49RmvEXWn+BNvJwEdoyFmL55PgFEhn0ZoxdXnQ5NqIVEk4ODg1ouH1JnvRuasJLDNsvlsh0GaQ/dYWQDKPMRa24857U6Z2EyPgOOHtC8urqqH374oXk0qRNNkwwXwRvwK/eZR3q80isvNgpYsqcYNd2wqno04PQM/EfWgZVOVTVXl3Sznrtu5cY1LLJji04J871maK657lQWHmvGlEHvSQ/qMCNBExiOMdg9TqRAHbTtNjkhFmYjLc8benzUAMLALldirdSFQiCGa+RNhlQarAQDVcMNg77PSgzvkPt7ShNl5DljrjFgiRSNnEz35E8b9OQp+ML3ZDgEj9ZKwYoZRZVufoKmnlw5hOBkCdO4F2+2sYBOgJK3b9+23y8uLprXAJ1AxT4BlXYYAyDC/En8n2xB98nz5jWcHD+85j0DBwcHg4Psfvzxx0eG3QYR2vnEBAOCBAq98BZjJG0UsESdPgcsQ6qui7U7vPKcq9Q7vRBUD5S42Ag+p7zYKPhYhUSZVcN4oQWC/z0YE8SKibARbd7fP+TXs8Hq/fv3dXx8PMjocT0Z1uB/hyGqVnnzjsf2EG+GwyhpILgXYaHu3iSC0hCOpBsMBILxewychQOaIl0QpYGQIvy7u7uD2Cn0rhouQPrYCowo2RcZz6Qfnj9owTW+c47LOqRtJGvPAc8ulSftpIICAXsRr8ef1GEvz/1PReH/EzhQj69j0LnHaZoYf9pLIbYRyvTf/O5x2SjYUJpuKDdf29nZqVevXjUFnOE69q30woJk4xBaps8HBwf15s2bQeaP6WcgwAF0qRC9gMwGVZQxe5Lgu+Vy2UJhpqtP4K2qgUFFN6DImZfkMfOs5zQzzpJXad/f6WuWdSCU7+hKy4b/z02bH7Ou8CKjYPRAyc65Y+nSulgZkEVQ9eANOD0T4T46OqrRaFSnp6cNyXBmCsWehZGD0yDTMvc8g1QISewUNo+1p4iqhrnLMKORZi/bBCa6v1+9/tTIDQWK0Ni40Q60dBigaoVwQNs2UD740GjQCs8CTj2eg1yYRWgSBVtR2pvAcBGq8JgslNknTrbEk7QRsLJ1XTke5jOfTZ5xWNDepz0Dh8s8twCafKWi23GIg+QOxu1wlemaSptrqVR8omi2z+IxXgFGAb7reRzQHC/p7du37egZIgzIpcOZVdUAn2WJfvBGNADKxcVFuydllzR5AIi9jZ68+7t3zfs+wmnQjfe7s1HOKdPmI+jB/MMjyV8GUFyn5HymN+W5N197np9TXmQUnAGSSrA3oF4xk6JMIBgbTQhH0N7h4WGNx+M6OztraXGgEsdeHTumLceXLYBWEIzFIQHuyTCBJ95IkfszrdXxZfpqd98hpKrVQWQ2wEZVtFFV3bCSY9owdsZjq1brFe4DaNYhL4/ZrriRfC92b+Xt8JLpnoLKeJ1qaMZ3KCg9B5RBVbV9LEbZybfmkTSmtJFhgPw9PUx7RgkojF79DKEurqM4acPhw1T8PbDlcINlI424FRRzy14V0PVisWjpy/v7+wMD7di7Fedisai3b9/Wn/3Znw14yUaFTxaut7a22roAtAIMXl5etpCWZcwA0PtPWBch9Gmg6k2Ty+XykVeMNw1QShmlLRtHDAPgzbxlIGDZyM/MSLM+6fF61cpLcTvmaebqOeXFO5ptYdMYpMCbQC5GiT66AIPAxNzf3w92JOIyVj0YqOvr60duodvnOvHlzLphPOtQP3VxLe9LAe4JKf8zQZnPn98ROIcAoAUZVKBgn+XTiy0zfvroefM8gggJv9APIymMt42sx2gesLKH/ukRIPz0zV5F0jjp1FOEKAAfS+57bSCS1ll/gh6XjDdTd6LFniFy/y2wfLdnk2tfbh9F5RBBxp4zHJUAyuOF16j74uKi7VfgmGaMPMoVEMARE/R5a2ur/uzP/qyFjjgfjRTSHBOKFJCHR+Hzf7xwPJlMGhiB7tybYSMykpjrqsfvczZ4AliQmWXA6PnKdS574KaVedAyZ8/F82M+Sb1k0Of+V9VgwbtnQD5UXmQUPNAPGQQzor+np4AQTyaTtniEsdjc3Kyjo6NaLh+OsXDWkENOPcXnGOFotFpPsLJPg+XYfmYUGR2na2ZkmSjUNHHYyAoFpWk33GEbC4E3dFEPSJL9Bw4n9DKjnG2BoaEN3GgzctVKEPIwskSvHrcFxmcWmZeswKEF82UExjMocSs2xsGeDIQvPTb4Iecvv+exIZ7HVKi0xf8p3NDbz9jT8JyAZBNAOBbN2NO4gcaTZw0wKA4bmrZs/CLV2yeD2qPFk53NZg0kcDbQ0dFR3d/ftzDL/f19nZ2dtRM+84VK/BEqc8jFRtXylcbNBo3NlqPRw7HYOzs7NZ1OH3lutJeKGr2DfqFteJH24c/0DJmP1Is20gkcLAe9ELDnyLzv7waf6Ql+qLzYU0gEbUVqAmX8Kwfi0BEbqvzb/f1924jCWSgpnChSK8qMAzt0ZGTfQ4Mmuifa19I1dFtpEJJ5jRyssOmXPaSqldK1kBjJuE4MRtUqtEadNpQIu+cCRcihZBYcF/rulE3uS0XMHxlLGTN1//yd+7knN61V1SMF2fMEbcTdnunQQ/Su0/PXi0XTp8yeoY+WDfMJipX/vZ5jA7DOC+Cax5K0tdwlHXgeI2+vE4UOD3nBeTweD07oZdHV7zfmjCGef//+fX333Xd1cnIySCGHbsy51w96fOMwlI1AhksdVqqqtkHz8PCw9RG+xtCxu5/xQ9dMQnF4yEkavt/3GOknmDaY4P8EJ9ZNnjtK6qCeMXpOefHZR27ck2LUkYNwvBTmN6L1efmgZLJI5vN5nZycDOpCKbFZKIWaPmboKImVyqZn3a3Q1xkUGwqXXn1+xr9niqxRhBWM46I5FgTNp1W6Lhsc0JDRlVM4CQvkOBHMDIN5DwTG2kbN/OA02iyJgjNMlfOGQeI9vTZ07p9plV5Y7z7XQT/92TP62b+cfxud9JKI5XsuXa9jyNRlvrVCtFGxF5pjQpYMKEDW9tC8l4ax8QxyCm/e3z+864NNrqwDJg+nzFGoj99slJyCnMY2M6qclcdGV+8xYPxeVzAt8SRYhzTQ5Vmed/gNOrlOyzL/J2hxscyZlyzLPSOQfN2Tr175JOEjiGIl2XN9zNy90BFxchZ4zLCHh4e1XC7r5ORkEDJwClgiqmyTfrFT08RjHJ6EDEF5zFWruD3t9EJKqQyM5I0ye/1ORGhmW4faTTP32YJnBoLmLCziBntzmsM4fE8PjLZSUYD6MBSZiuizkxijaWva51i5z2CEsJHzxI1EbcStzL2e4frcTiK7HqDgXtPHNE/gkYamapWpZRBivrKhcz98Lk7V6pWpzgRLD82f1MeccVwK7wX2Yj/9BIhtbKxessRcsyfh+vq6HZrpd4Bbbzif33QgcoD3zxEclgnzha9505mz7eDBxWLRzlFjDMvlsp2ESvGisN8OSIFP7u/vWxvWNz3Qk6g+wY/nONccXIef8T09/fonCx8ZMdKxnluT17gPBAIR/dJvnuNFOrixFCYYxrKxsRWHcM5JNjGtABJxpaLms2f516HB9AYynGEG8jOJdqpWZwAhkE57NHJKo+KMCSNEdmaCrGF8z6lRvhUH/aJuZ1yAmvzCE7ycdJW530oZ+tkdT6Nv+uElsEHPPOI5pK+M3TS3YqR+GwsrnXWGiuc9nsxCWYf07bmZxsxr8o37RRvmefYDODuG4nUm4uUYafMIyt7I3PPh+YEGhHnhAb9vxXtZLOeeH7wZj93hGZT47u5uW5fIufD8O9bPNebQC+S99nrpqzY2nm94hfsBXD1vhnnqpZC6/57vnPce+E2wxG9/cqOQiCmVm5WmO4nQ2crm8Qmbmw9vhFosFjWfz9tEJoLiO+3e3Nw8WiR1zrrRqhk9GYr6/Omxf+i7+2VhYxxJRwTfbjKfeeSF3VrGxD3L5WpjDQrZqBxjAHIjg8kvcKdPdrFthFAaVkgWKBQT+xzSOK6bu6rhegteg9tJA+6wkZG+EZPHkso6jUMa1+QP99PGKsNAiQDX8Y8FnOcyhNhDjDZQlg0UvefC4Muy5zTw8Xh4cCIL3oAy87GPxyYzaWtrq169elV7e3t1enralGXVKhTsdQI+rUirhps5Wa8AvW9ubtb+/n7jeyu79BzsUfc8T9ZMeE+IPUsb4YyE+Bpj5PwlA5seT7ifzwkhpWy4Lx6r+8ac2EvIeteV5wWZ1pR0gdJyGf2mAjBj4s757HDu4VRU4pAO3Rgpul3vXrXyJN6XAshztqbrDECOmWvpmie6MC16+fLUZ9c8DYXjq6ads5Cs/BmT47cIPUeM0w5vqiLMtFisNop5t6c/GV8yqEMDnnMnAmC8eigcmtiA8xuFcUFDXriEQGRWV4ZzEj2nss8MIdrseTg9hZ8CmOAJOrmv2U9CJ16LcWzftEik6HHZqGXYj2c4OgIUbC/DwIE6l8tlQ+veeMfeBrKKCAWjoL3ewO7k9DppgzZpD15YLBY1m83q5OSkvTvFe2z48yZO8489HfiI4/8trylDprE9Tl/HmGOAcu+Px+rnDTrsUZi/kkdS33jOkw8+xih8Ek/BDNZj/p6HQIHZq2ogAKPRqL3MAyVmxu5NFvWRSuncZhjXGQyOPfIs/fWkp+DnWPnNyp7iCU5B9XWEzJkrbsv9cajMLm16AjYQGAOHExAm747GFU+jBrNniCeNZTInbVuBmu4pWDYwGKxe/V4T4pRczzd9dz8xRp6bdWsDprvBCG3y6ZCY+dsGKfmohxhZb3G/GadThN1PG7aeYTD90wD6PngLlIyht8cOXzp8W1WDhdX7+/vmjROXPzw8rMPDwzo/P6+zs7Pm7XPOTxoBPAl4ASO1XC7b/M1ms5b+av4h2sB4xuNxO88rQ3qef/p+fn5e0+n00eJzGlBkzCFAwlB43MwrbfsvAZDrhxYZ7k1ZY8xZejyQ+u5D5ZOkpHrAXEvFR7Er487mqv/GxkYLG71//75NktMnrWgsyEymhcIHVqVRstV2GIGCwPcYIwVw3XP2VkDBfg4BSAHOkI1zz62kQeAZCmDMoBbCATYcZGRV1cDL8n4Hewk51jSazAvei0+WtEFhDMnw9h4Yg2O1ngsfvWAlA6KmLna0mr5eeEw651y7b+5DD12mfKTw2uBaUXlOLBsYBqfY8nsqFUKP1GlDaePRk0+v71mBwbfT6bTm8/mA/+7u7tqrbzc3N+vVq1eNLjznc7roJ5vS3F56gsiM5QgQYHCXfE7/UO7OSKQ+vGuDRWhwfHzcTgy255w6Kz1mxmMDi7Gi7w71Wnbyf4qNU/J+j5d4pkePP4lRWIew0r11511QFEy+herg4KC2trbakdiOr9qNTITJd4pDL0aTiboRSvpqQV/nmrke7smYu2mTyKinDKtWCNlZCx63mQykwmYhK0OUHjFi+kCbCAsvaqc4nmuhttFKBekx2FjYCEKTzB7LNQvGjWDZS6IdDNvOzk5LobWnCa0zTdLFQssc9TyH/Ox5f73PHv9YyTDHXlw2MvaiPQYQhG1j1eP/ntHI+TIN+MN7dKiyqtrZYvASipqX8SwWi8HR9j4JFVA2nU4H5x455da0t0LleYctOeoakGig4fUAsp5IeIDeXihmIdyb6ObzeTuK28YzaV618qCYLzzxTCSw95XykvqG+xm7P81L63gtjQxh2D+ZUUglmR209cqFQltW/+3u7tbe3l7d3d3VxcVFQx22xg6fZDv2WqxoiHVSrGxS6RjBPYUCPVlMcKJbGyDHMi3EGZZBQVQ9zqN3G9CVOpztYKPra9AKmvAmKVCYvTbQFEbBNHLfGKvn3ye1Js2yP/QdZc6cOgTmDKbR6GEdhLGhJFx31SrPfblc7cugDs+Z5zc9BOaOkjzb8wTyN/fNygL+zAwlhzZQhD7yJfk92+c3FLvn3f/Di55XG2W+89pKvFHGgYJ2ltL5+Xmdn5/XfD6vvb29tu9oOp22fQoGOBS/tMdKlXFAJ2c8sTvZayA5HyhFLzT7hUAZxrm7e3ht5+vXrwfzmWDTsstY0kO1J2EwZh3AGA3aejrVc5gGIeee739yo2DmSwvqe3p/EOXu7u7RMblHR0c1Ho/bJjXS2aqqhU+ynVwIq1oJMgrDbpvjpVXDs4J8zcLvkIxRr5nFE+vP5XLZ0t569LHBsCGz4jJT2K2G4Xd3d9v6S4bZaAsjAqPAuNvb27W7u9tOsuReQkhGfdDPCMe8YFS0ubnZdp87/GH6MibGzm5zzzO0oWD8crc27XjOLKxpyI1Q3V7POzFdcr3DSiV5EyWH8krhpJ70GEajUVsHqlq93L7Xh2yb71Z6po+RshWOjQL12gsDHBgR27sivZn3BHz//fdV9eD5Z9ICXhN/DltZ9uBPe9DpkeYbGbnuxBWDEOYjEzqYA9YYjo+PB4kT0ITiMJ31Gvc5fOO5RR95ruxBWz7MG+Zf98V09P+Wo14Ep1c+yYF4yYjZQYqZL5Eg93PmEQgWArKw5HZdD+5oGoSq1UKyCZv9pWR2AL97AYtihWghTLpY0XiijXJNA8cq3RcjRzO10fbNzU17nysIK0M+ZlSYzIvN3MeY7THZQEHDpIWfzTAGBVeb8ZvW3m9hV5wjClBkvFmLOowi3W8vrlvhpXdjRZNoP/tvg+Bit9/z6bmywcq6HRpCGVbVwFCyQS9DCozPB6KZr1FE7htjcF1uh2teD4NOCVpIgab/V1dXdXp6Wsvlst69e9cUbdWD51FVzXujPfMmPESUgIgBPGwlCq1Inc0QLMDJIA8jxRgt+7yAajab1f7+fhfAmK4O+/HOkZ6sLRaL5vX09ijAO70ISHr8CW54JlNRM9PuQ+WTbV6zsqOj+YeAGZVYAbFQdXd3V+/fv2918Zvzol2vFYzbp38opyQMjMH3dYLSQ4QOUVkZ+n8zINc92WnA+M1KJOPK9mbMBLe3ty39jjHBmB4rgkW7GCNvNLNSp/8ZajPDcs3zyZ9flM68JJJKbywZvqraGMfjce3t7dV8Ph9kpNkbYBzOpqFOz2uPTz0eh8U8x74vn0kw8NS48jfX6f4SgnMCAbFw9405ReGkgYJnbBQ8L+kN8azl07vTfZ8VuXdR8/5kniMNmvWg7e3tgfdESJCS6z7p9SwWq5N86T9rH4yX/nld0u9mtz7JcNtsNmtHffiofdOJPkDzfHmUkb+9LviW8aUeZf7Ts0y5Sz2RYKPH30+VT5J9ZGtmN4vfPZlWrBaS8Xhcr169qs3NzXr//n17+5IRqJnDE+mFaBNgY2N16qfDJakYrOyMfOmX3Tsr2RSIp9BlvuCFTyNakF7ehxDSL/4QNF404s09pi1CSP2gSSNn+uDjBnpGLo27F4KtOC1cmWHSC724PYc5TIfFYtHO4eEFKigsG02Q2Gg0GqCxnC97QDmfNs49vnC/rRw991yzx2S5WOdt8HtmIhmRe3E+hT3Hmf2iTwZEvs+y4UV4gAP8hfHxK16NTuEtjATeAzzCGoVPMbA+QYECbhz+MI0dWoIeLCx7Ax4yRn9sHDPi4cjD2dnZIIKR6B2+SGNrL5378Fj4s2GyjjS/GYQi97ku6XttGHre6IfKJ8k+srvjDnKPjQATmm4y71q9urqqs7OzgWvqQVoheXEJN7snIOPxw05XZzpZqVqh+ZlUEnynb6kILUzQhecy64RnMAIwfXooMJgFxegaVxlUzqIwRwrkJjHqRkh72RDpFfDn+Gu6xVbo1IGXYIHxuHqelOlNfxjPdDqt7e3ttjAOXXkWg+Bd3tzHmCyINg6eb487w0DmhRxTehc5ph7qM69UPT6eINfBrIQcbjFNsz/03fd6vrOvOUem4XQ6bWdLOZUXr8XHzjh7x/JG/6uGZ/8zf4ATDBD/Y2S2trbq6upqsPMePqAOH4C3XC7beWfL5er4fNOZT4wd/SST6uLiol69etUMkO+HTr2UchevV5g+ySMu1qcJZFNu0sPoJeQ8p3yyo7MpbryHmjMFDuIcHx9XVbUD76ysehkFpJsZBfSQEYT0EdC2vozBqNF9Z0xc6xU/a+XhZ0BVKCY/ZwXnDJ+kJ7SgzrOzs8F7cHHTLRQ2LEZjtHl9fT1YSE7kboNghrdCSbRNXdDc9OvR1YbE6NX0Qdl7YTmVPKjS73jIeUN4jWZt5D2n0A3hTQ/AY+rxSNLI9KXv8KTDo4nq0iMBQGAwSVN1W+5/8lFPCdlbtSGsWuW7j0ajtpn0/Py8GV1e1QlN4b1Eq9lP87Pfo+JjMAAXIG/CWN4pzGeCMuYND4fQlUEcfOf7zQ/cM5/Pa3Pz4cgd+puegfWQAZ5p7Dmxl2u+SX2Uui/5w7T2nw3yx5QXHXORSLHHbP4tDQLoYX9/v3Z3d2s+nzf30jEyW1jQE15C1eMjl2FMewWOv+ZkWVDTA7D7bMVQNYztZQglPafeb0aoZsJ1Bs50OD09bVv8CY15lyiKw4rXx5Evl8uWKUIbiRrNxGY0922dMNp4ZTZL1gUq9Nwk71jpoAy9OM81PqClZwAAs15JREFUwoVpiEzHntK1UfR4egK47rpp5/mC/r43kX2GUq1IEn2mIgJF90CL+9uTqQz9+o/nrFj8rmYb5r29vRYGSqSNrPrFVjkni8WihaLYNwAPkWTA8dt4/bRtRW5kzPMYdt7SRlsOa/YUusdBejzeOIYL3oEXmTMUfQI/aGq+y8gAdEu+ScWfgMRtZwjpY4zDiz0Fd4SB8tmLbfm38fjhhRyvXr2qxWJRJycng/CKkb3rwaWrWjEzk+IFSQuUiWzLbI8iha5qeDQB9zPWFEQLkouRpoWd+nxfFjMa3sbZ2dnAsGL86C+KAk8K5Oz+9XK6GRuCnejXxr3nDYF4TSPmOZUm/XB4II2PFT3z6usIN7Sh31Y8pn0Wo7EMDSVfYGx7PNQrprXrzrCq74dWrtuCnDxpw5B8Oh4PU7B53sbKSsbyCV2teMybnCk0n8+bR+Y++PQAj4k+ENZMA2S5wvO9urpqc8iGOPoEL5JYgJzjbTAeh1JJjcX4MMbsjw03PHZ3d1eXl5e1u7vb1hcM7qyzjN6T563f4FuDqB7oTP3BfbSHvHoXMwvQCVA/VF7kKeSk5uDdeTrIBKHMjo6Oant7u87PzweK3oQAZVBPbt5B6PwbCsSZGCa+BTTdZSaa+hNhWuDXxdmrhieZppVOVNbztKxMuefi4mJAHw4lsxcAsjZKtiJgEx9HkZu23GsPycicMeUCLoKMMDJe74pl3DyT7nvPu0LRJwiATgiVz43yzm7Pp/nU/+dc0xfT2f31fWnEel6GBZfNgCDEHhChT+ar5C/kxym5XDcvuS/uY4IK5pS/HrhjbChXjoIA4feMetLE/GJPlnnM0NLV1VUzPp5ThzENnNgLRD/cL9rx+Ube1wAfYVz8G+Xq6qoldngNAZrZwKYnmL8xHsaec5a81jMsqctyTrMfzykv3rxm5ZXhIe5Jhofgk8mkLVxB6ETlo9FD/I5jGmBCW9aeq2vkRCip1xejDiOvnoX3/1bWifpSsaGsHPt2BkK6gEZo4/G4ZU9xPEAiOb8gBHqwGMcOVNxeQk/ObGGj0XQ6bXTywrizKDAgGICqYSx2PF6loa5D1KaJPQF7M3z6N6471GODRF9dv++zcsoQgYXHc27BtJJOhW6lmQbDCowxeD3D6yjQliwVrpue2Z5Dau6TjbjbhRZphEGuVjLUT395fjKZtJNpedbHyPAMBst9sEEwyHIYxgod5Y182mtDF/TkiWcdIgIU2btwyMvKlf7Q79Fo1NbtOFGYdphfA6tE9eZrChsSzXcpKzYA1rG+J6/ZU/8YL6HqE2QfJfIzmnEMs4dM9vf3a7l82BZvZjaad6aDPQcUiDfYGO3Y5U03zMJn4bZLmhPUC4OYmXwdWtAP988xRAQkFVYahdvb2/ZKQ2iH0IFs6Btj3dzcbO/KZdf45ubDCZPsOGUXKPPkTCijW4/bSowxOG7q+9IgWLGaTgh9eky9XcsOT9nTWC6X7UXzbOzienph0NfjTcPMve67ryUIyHGuC/vYACSS6yE7K1UbggQajL+q2oIq97l9AyMraivdnsFATix7BwcHTT6JAvh+yxKABLpTh8cN72DMfBR6pueShu5sJYfgbHiRB+ufqmrvYoZPoQEeEPSlLuiJB3NwcDCYG48B45V841CZ54FEA9eRICB1jD2OHk9mePi5huGTrCm4Y0yKrTTFyozjFAgbpTWEmBy41RushSevo0CqqsXPbSjoTwpgEr1X0p1z39LFs6JEITpNdGNjY5AplEhisXjYQMMpoFVDtIznxJgxArxTmVMtOV7auz25j4Uzo00jpeyTEZmNWsbz19Ezx+H/GZPDVTxvYTc6NN+lMrNh6M2h604FnR7COsH2XKTh47r7wrNWiEaoCaBsuN2u+RPasI8js6/cN/O90a3rzv97xmRvb69ms1lbGAb0eHcv/A9fsUaAciWcBoDycRWmh404PI/CNrgCQPDnI3SSz7wu5RAzc5ret43y9fV1W1gn28/9Nd+af8xXAD7rBIPonOd1n27XUYR19XyovPgdzXZZe+4on/zGRLJDkE1qieQQ/jzV1PFuLy6DGoyezEDcbyvstvg/FQBteyyOk5ro7if1JmNRvxWr27EAcKIkHoLHlGfgEPYajVbn6zglz9e3traa249H4ZCWwy72BB02sdDY+HHUQSIk6jWdPB+uYzQatfdhUI89LNrHS7TCvLi4aP30wjCf3vhFyT6azhbgNBpGdYzJ/e0t9Pr+/N9oMAGL+4SCSiSLoWTu+S1l032kH3luGCUVMbSATkbqfNKeASJna+ExoBC3trbq4OCgyTk7mhmLZZe0ZPphY3ZyctKOzkC503+jaq7Zk3WIMiMd5kvkparaGWO849nrHfTh7u6uvWTIHgpzydyYru6n6Ww+7RXLrAFygo7nlBcbBQTEij876w4uFot2suHFxcVgkbBq+OJ3YuEM1lbQRHX9DoXYZXSBoWwMPJ5Elj2h7yHNDC9VrdxNGNBKNjN46DdjxcPxmgh0oT7Hje0dYSQcl040xILhdDodLFYzZoeFbEgTtVXVYLNYD8XyDHS3YvRaQlW1DUI+usP0cvvmh+l02kKRafDhRWcCOXxkw9Rz7T1O84v5w/xg5ZufppPDLKZdDyFm8dxwnxdWzW/JH5YV+NRykgrScsF6FWFIv5jJexSM4DlYERlG+QNw4FWvgTEXHOvuU3cBgvD+YvHwul7q8v0pP7kGRx9SRuzRZ6hyuVy2Y7n9Cs4EDdCWubeiT9Dso+zplz0L15+8gfF1uwYOT/FRlk9y9lHvWnaAAYEY5vN5XVxcNAPBc7Z0ZMbwW6abUjI0wOShXOw59Nx0ExxlWTU8N4X/mXC7e6YBwm3FYARRNQy/GI36j5zsnFDGw+RbwdtAWwCqVsbWC7wYAodhzMg2KhSE3XOWnojBAveZuZkL0w1a0uZsNhvMgZV1LkhWVQuDmY/s4SWvGFn5s3eP59jrRIlA1xXzNGM1irfBzZfiWClnPz1OhytyLQ3wkLyfi7U2og5bme7E+ufzeVuf8jEWuajsucFIbW9v1+HhYVPYJJsg2zyb4V+UJYW+OXTN+tn+/n7rv7Ok0sOEXhsbD6cMz2azAcjNuWAtg4xIjCQK3fKZoc+eoaXfpjH12yv0fCew6hV7C7T93PJJjEIvZkWnTODRaFT7+/stA8a/oySN7olTQoiMFyYStPBiGHjGSmodArP73Run/6qGG46s4NPz4Hf65P66D0aqbEbLxWqjOwylac5Gn62trdrZ2WkuNS+iMZKaTCaPFFuGRRL1+BpoyrtxHSaywevxjOmKZwNSND3oF33yoiKKik97AKaL+coI1jxjujo8Rv2mVQKMHv/ZuzX/5XM9Puv9lgiT7+kZOGXboR+34fUafs9FfO51JhGK8fLycpAdBJrH27RXVlVtbjc2HlJCp9Np7ezsDJTs9fV1zWazAc9ghOgrwIN1yB5A43fPCyFSxm4ZtoGEl5k36NTTC6PR6r3UvJ8BPk4j4NBor3htoRe6tEz5d66l18G11JfPKZ8kfJSC5Q65k3t7e7W1tVVnZ2dNcUEQn+vuieV/n7XisAafFmgm2Qot+2c3EMb2PSmYngCjZ09UFmfugKhRyInwoCf9sSAgNIwF9FM1VJb0hx2fu7u77TAxFpIR6tFo1FJQ+Q0j7TFTp0M4ifJ51oLsMVLsOfgafSfenKdM+ux+5s3JAyhG8tnNIzl/adhpw/zgknyRPGFl2eMV80miO4xFCq4VfNIzQ7S9MVatwnmeo57xr6qBV53eAvyAUfUJqOPx6h3IyKc9QnugPuNoMpkM6sMD4NpkMqnxeNwymwilogesJBkLz6KUl8uH97D45F+fFWW5oV5omCe1Wi+lUceDQbZNt8xAoq/JN4wDT8bhptRrOS8p+wnQrX//JEahahjPN8pxJxC66XRas9msnbHOM15HYNA+A3+xWMUVLdRW9p4wK24LmYkMGjIisiBSrPAdU+R/lFcyUVp4xyURGPpEOARB9uFdjMVM4DejJQLxGgSnUOIyI1B+RSX12TiCpDLG3TOcoCMLSyo/0wNUyvwx9yAtsqVAmhYCEKETEKqque9O2bU34Pg9JefdyJHrHqfvt0LqgYEeyjOfmp7Q3f2yN5heCDSvqqacc1HbfUyARhup4FJ2beS5n3kbjVYnk6LI9vf3B4czWrbMy/v7+zWdTtt1e4Lw43Q6rf39/ZrNZgNvLXWM6Y0x4I9+j8fjlnrq0K7329A+82V5cJTD3qk9RwwicmxPzfNmLwSZtkeJPLie7Jv50TzoOU4vOcHeh8qLN6/ZdU0UaKIcHR3Vcrmsk5OTRwxM7jPWFqPAfT7qlpIKPAnFNS/CWijMjJ4gEKmtMt/TspvJEony3XHLngIyomLc9hK41652hnNsYBaLRUtHhcnMePzuNFT6a6/BcVdoYqNo+nuHuvnCdKVk6AT68/5hr/9YkfrIZn5nXqbTae3t7VVVDV4+Y0/LSIvv9nqsND1XVoTZL893IjIrG/Ma4+kZjrw3EarpZqNCnz0Gf9owpLLn2apVimbe20Or4/HwndiAjd5uaO/g5qRbZ+ygAwjDQA/a4VWeHJdu3rOyc9IKPMNBeFXV0l/hY2jgiAS0wehxVLb5zYAGg3x5edn4OKMkCSRNT3+aXx0OzbGu8/iSB60LPe8fKp/8lFR3lN/Ibvn5558bEvTzENiLUQzQGUiUHJyF0tkCVcPTUU28qtUE8ZwF3MiQz1Qg60IUiSpxK9OCW9Cp09vlbUScbsvvhNOM+o1icJ/9EvIcC6iKfvO8aWO6pjJLtAl9k96u7/7+fmCQdnd32zzb4PBHn5y9Yhr7iOVE4uZRGyv3032lzfRWPEeevwQhPf70vBvde0Mm13ollYhly/xqj8T0MeJMIw3PJOq0QfICsOcNVO6d7ez4tUdMKiqKbjabtf0UhI8sT5Ybx/+Zf4d7vRZJKIvnqT8BHeAz0Xfyw+bmZk0mk6asrVjzGYBrL4TkdQJ4IMERAJJ5gu/SQ/J6m/uA1+Y6mTODgueUF3sKdq+4ZiEcj8d1dHRUl5eX9f79+4Flt5BdX1/X7u5uVdVgcF7M6iFyM7EHD5Htirt/68JGVuyJkHi+augl+LrHDdM6bORiTwGFlXFgo1f6lN4ZaGo0Gg32NOCugs7MWG7TiiQVuOcpFeB4vDpChPFYWeanmZVrOzs7LWyU8+i5cH9p3+PESPoZG3vG4b44xOi5yTWRHIvH6Xl0v+05mYcSxfW+93iq175/y08rJtfZ837Nhw7p4L1Zxoyyuea4PfO4XD6EivBw8QJYJzg/Px+0CzipWq80rcRR2gYDJKOYLoROt7a26vz8vLa2tto74KkLj8cH7kErPAEf5+F+WPFySkACC/NjjsmeP3PBeqA3AVoH9vQtf9YNFOus55RPkn3U6wCf+/v7NR6P6/3794NMIHcUS3d5edl2B0IM56E/1Z6RON/XuVM9L8DKsOrx7keuZRtWzq6TCbU7y+9uH6bGgDncBR1gCIyGmQilaqRlpWb6kYnksIBRkN1Uh2Bs/C0MPeRMvfa8rOzsCYD+fdpkj57OHOrNj8NYBg85dz1h8f85/17LsfDboHDNxtv1phK3cljXjxxnjjlp6nqNoOlXov8s6wyMAY3BFErWr1rl+s7OzqM8e4eCGQ/hFpJP4FvzsENUDh2mMYGPHXY1byBLyBb7GW5ublq6KqEt5pw+kDXlzDajeCtnvAWfFZb0pf4ExwYYGJfUGz2eSQPU4yfrvueUFxkFT1KGjKqq7VY8Pz9vxz27ow6HQCzevesXtCRBrFTSg/DvWF0LVqI5M3wqMsZm5Z0eStVwZ6jrzOwj962HJqCHjQEMyzi8F4B33NrIOMzCOG5ubloa4GKxaNlJuViGq49AWPlYqSKs9JGxG8Wk4fA8WqDzFEvThf8xlpRcywHJWWn603yT85T87HmzkjU6pK70GsxbHj9tuh/8bsVivqPYGNmTczvpmbhdp55mP7Jt87XRac6jQzUcvwLdMAqLxWIQurEny7sROHrFCpn59G52+oeyzb1LVUNAkLJ1e3s72Ht0fX1d5+fnbR3KMpN0hQbb29uP1h5sqOyppPeSoKpnnC1rXsdLHvZceS4zGuG2elGKp8oneR0nnTCDVlV7m9r79+8fMaaVIGVjY6POzs4G56kk07r0LKCFuOeGZlYSwmaFYaL7ulGphT0nh3bSIPg5t+UsB1x4bzbLc16c/gbDmpnpB8qb+nHlEUoWrh02gD6peJljM5lPQ02F6OdSmTIGjJHnzguXzpu398M9y+UqhHBxcfEIPXO/BdcGs4e4/VzOs8eTxXVlWMYAwsYoQUnyMPdQEgkmoDDYMd18hAP1JICBZ9MIes0pvShSnpfLZWuDetjL4LVCG7TFYtFORl4uH9KoCTdlP6kb1N4bJ30yPTEGKFiexTCMx+M6PDxs/J6G3Z4rdICO1gN+jjAZY/acOsqQes3yYUNGmrb5wLzmOjDUvj893OeUF68p5B/Xd3Z2ajqd1s8//zwQWD/LBFmZsH3e+xLWGQMzt91lC4+vWQFY4SWqS4uecWkbFj4z1mn0sY4JjCTsIfg+H2nh3cdGZ1mvBchtpyfEqzjzd+qjX6bZYrFoZ8X0FCb1pNF3HWQ/8W4I/1UN3f6ekHq8PtaD654TC5wFJceZn/7eUwCpPNMQ9uiSz7u/vbAS1w2c4BnX6e/JF0afKG2DEAMB09khOc+HvcTxeNzCL7S1tbXVFpGrqh15n55l7kk5Ozurm5ubtkchUTj142FiKMwPjJMxmodsGFzf5eVl7e3tDerxwnyOtaoene9lPnCaLnV4A2pvTD1l7eM2kgfMzx4zOgLamC/d5ofKJ8k+QnA84FevXtXt7W29e/eu6yX4z4gA9GmLnMRPgU4hhmi5/8FEgeCuJ+vvIUgzT/bJ9aQ7l9eZMC+q23gZUVVVY8rxeNx2J5vRaBv6EZPkd6Mpzq4BLblu+sKcwdDOUNnc3Hy0uzzpZno5vIVgg2h8LQ2c4/Y9WlbVo7q4N+coecm/0197ADYmRtX81jNQPWORxsr10a8EVNl2GjZ/twGmvh6fJnBDIdso8N2LvvbKnAHHd9YAmWd4ySf0wuPwGErd7bIm4I1xpJAuFosGiBgjxsYGjOcctfBcWLY44fT09LQuLy/rq6++qtFotTkOwwm9CF3lAXcZOiYk6vOVzDvupwFTAi9k0Om77o/52uuRVavd45mN1DM+vfJJFpqdU7tYPLwnYXt7u7777rvGGGbIVN48O5vNHi2kMph18dkkktFhMkdPQVU9Pq4iFUda2nXtUyxo3OP2KE4vRZgZf6I5H7oF4yAkMA9rBYRnYAwUQNUqU4fDzOinDyVE4Tu2zvjzzKF0T01/zxtIbXd3txkvC4Pn2bS2UcwQJWO3MU0vjv6kF5RznMoVoe2Bkt580z/Tw2s27neWpEMiy/SmXRft2lCZTihhH1RnBWPD4qQPt2+FbyU7Ho/bW8yqapAg4nmkn164PTg4aGsH5+fnzbC4f547FC1rUBgW6xTkzsqwl+rOp9/oOJ/P682bN+2655a6oBXrJl5z8dxVrXZt2/DnmHLNJvUjISTPj+9NeSN85fAeYXjX/6HyYqOQQrO5uVlHR0d1c3PTzjfiN5c0FHd3dzWbzR7FwxzXxBqmh0D9vTZMSJdE9TwLw7nOFAYbmjQy0KAXUjCqGY2G+d+mZ8Z/US4wPM8gBF6/YE+Cz18xLaB15sjDYAgJDJ2Iy8Lo390fz6/v4VWJoLw01KYBc2HUZFraq7AQ+/lUtm4T+jqTxPOcAppehvkvs2PMlxm65Pc0Su5Tb5OeY/ZpgJL/7NVZWVInfEAdqWQcxrQssH4DH9JP0icJB5Lds7u729YFzfuAArwBv0rWRz1gIBJomA+sbBNsIDtG3HlAJOBpPp+3N0FWDfc3WZHDL6TXZvoy4SOMWOoZz38PnHh+M+PJgII6fDqA5RtdyT6lzMx6qnySl+y4cL74u3fvmoLJPxcGR8YRRDUz2zigHIyiHY4x4YzEacuKysrVfXHpKQKeseBZSP16PaPsND72rqwY/JxzsXne7r2fI2aKUoCm/O98652dnbq4uGgbv9IjsNDRH/pBnT3ka6Rq+mCsrq+vBy9Vz7CQPQsE0X2yQMEblFwfSXfb46HvHpsVuefdbbg+08bxep4x/1l5JPo2ELIySBraSzPyT97s9TPHloo2jRrKOeuHLsg2x7IwxwY9GxsbdXFx0ZTxePywe3g2m9VyuWyn9MIPeZgeBshyCi2taH0t5898Yp61MYGvT09Pq2oov66bueKsNjwGGyG+X19ftxeJ0Q/qMk97ntJrgK9YuLZnZF7JhWjayfPTrDeeKp8k+8iomdchnpycPGIoK2d/ksrlAXoSe0iUku6w70+3223aMNi4eGz5599SYK3k0mA8VUwbKwQrgERyvRCZjV2iKqM/mDgRHyjeyt90H41G7ahj0zG9sJxn4s6EtyyQ5puekBsY9GjdG2eiJvetFwro0S2Nj0FIzqdDIwYlni/6mnWkUbXSTYOWysnvnEhFaeUBfwOokh7moeRH6rVB83zM5/OWEFK18nBQ7rmAjZxDM1A93jlhLhtWPAnfy9zRppGxDYB1SBaDK4wa4ZdXr17VZDJ5BALJqvLRMfZqU+84DGh+4jvyZ4Di+aYOxkv79N+L6rQJDbgPIOjow4fKJ928xnG479+/H+SN99CaC7sc0+LbnYeIVlQ2KtSbhDd6yPBAxv2zX4nCs95E/ijOXiw528YtdniHe1GkNhRGj6Sq4QlUrZAxQoJix32GmefzeUMeXhRjwdAK2HPFmgMbDF16sWyYFERlV7v3nEMcqZB789kz1Fa2PV5Lhej7rGh6AMK8kmg/ecf1+oCz9Fw9Vv53v1Do8AD3oEAw7PQ9lXsaIOpM5Fs1DCnZCFjGXBf8YzAHXXgXCM8h2zYovf75rKLlcpVFd3e3ese418esGD3H4/F4cNij55jnvG/B4727u6v3798PXtCTih3j5xTZNJ5em2AePdfWCzyT3k1VtTUB0y1BpHm1x1fomwyzrisv9hT8d3h4WHd3d20tITvmwVCMsBIhVj1Goo7vGTnbPXKb2U//brTI/T2Un8rJdZvRqmoQisnsGsb0lPB6DcXFdfEcC3COdYLUnA7rN2Q5P9tHbMPUGKNEnzZSnhfmyms3jIfNdZyVj0B5jcioiWvZhvnInxY2/3muezyQ9yRPpwFKkLKufz2vzTzCM7nO5ZCO++ricTjsleGJqsfvpaZPlimfoZPKg3nJwwD5zQZ+c3NzkMmGYvU5VinbXi+Af5lLXo5DurTX+JbL1WtojYShhyMLNno2xAaY1Ilx8SGQfoubgZvrR3/gifd+N+17SD3nyHNNHT6BFbDtugy+oX/Ouev9UPkkawr39/dtI8sPP/ww6JQ7lNcYsNGzEbgZ0oupXni1svUziUiyL6nkHUZKxkJgEWQrv0zfcxw2kazbr6rBGgrGwAjGY3WbRuFOGc0D5RA6FvBoD+Ha29trCt8ucTI9axVkQ5gGTit0X6pWJ01yX9LdSixdYzNzr9BOzy1eh9rXzb3p62fMA5Te3PaKFTb/Z5hynSKoGiYcJO9SEoH6f/efe5OHTYcMwdKWvbiq1QKtT+wlK+jy8nJgtHzECvXYYNpQYIQc4++FtwgVOWnBL6hxFpnpSEG5mrbemFZVba1gb2+vZcuZHuZ7aOiNcQad6IgEDOa75C0KNOS1tM56cl+Sn80nCcqfU178kh2U8uHhYd3f3w/ekevOubNmROpJN84GwUzJxHOdybB778mB8A7p8GyiT5SThcy/55iSMXrhKBsUW3THzik+x4V6U8AtTOPxuPb391tqHc9hCBA0YpO0zb2TyWRgxDxeG2gjKJ9Imp6P6ekz6U0rDB9ZKfxZIHpo3jTrXU9PwAoyQz8fUuhuI8fpviVPpCeSdZpW8BrX0ptwhhfXLDs+MytRqBG6lZRpSNwffkDJmD7IpA2jZdHtgKp7qZooNuSA35yB5FTljAbYEHkeOCKet8BtbGy0HdbOHrIRcKYYMuFMO7f5888/1+vXr9v7GPzyJ5Q99xpI2UNx2C29QwPaVOJpXAihJThMowutkqdc94fK03DsGQW3azKZtIWndQgovQUPLBmYkqiP5xEqmCeJy/0Z802ExBhoNzeTGV25XveTe/JIAAtS1fCwtBRCx489Vrdh7wH64QWQaYCSx6V3rNeCxgt4ptPpozmysRuPVy8pSa+pZ7wRclxqX+cZG0srt0S9WYwYLRz03cY5FxqN0E3fHmDgdz6tGHP+PD/uh697TOklGZx4nImUUW5+50iGEgxEbCwZO3TxESlJ21RuPTAFbYkQVFUz8nt7ew04uJ2e/HOPs44Y487OTuNb+u0juuEzDAHveidU6fx8jIfBmecOZU+GFAZksVjUbDYbvPoTOpuHnDHJ/7TfOwqmR4ss5tVMR3ZIjH4lOHHdKacfKi8yCjR8dHRUVVVnZ2cD5Z7oyCUNQi64WuhsESkW/h6zm6Gpw4vYqXB76C6Vt8dNnVb4KDiPg3q4ZqZgfN7kwn2JlkEotIcBYr0A+sCgLCzbA0OwQE6j0Wpxr4fW7SU4vuzx2NujX4SCErFYQZheppPjy6a7vRgUJH2wonLf0oBl6CYNBXXYmNsI2zAk/yTdekaC70ajyTvQzMbMackoHJ/6ad40yHB72a/eXK6jdXrMhBOpDwXul2VxXLvp5XApyvrw8LCWy2Wdnp7W1dVVbWxs1GQyqaOjoxYiwnAQ8pxMJi1ZAsVLfVaaKYfsYrbcsaDMcR1euMWbYY2U41ngT9boTHvq8ZgN9JjDqsd6MefRPEg93gNFHQaHCQx6uvdD5cVnH21ubtb+/n6b1Ke8BA/YyNALjlYkPWto5rXAmulTGfcEwNY7kZPv918PhXlMVnq0Yy8mvZCsO8dhZQOz+7p3d5IJYkPKWoGPMnaIKV8haK+CNr0InYbR3gJKGoNgQUBpZ5jJPGLa07aVueeF+qBHD+X3lHZPgbqPNsK+bi8LvsmxPMXrnj8DAgMD05B7vUaFMrUcZP2MMX+HD817lN4iKjQ1L1lelsvlIE8f/nNq6Gg0akoY/jOAsLeLgYQ/aZdUVEKRPMcYCBtZL2xubtZ0Oh2AGOhq+iaI83xYP0D/y8vLOjw8HAA3jByejueMQtjJ9DcNM5U19QH3Qlen7vaArPnLevZjyosXmvf29mpzc7PtRk6mc0d7iDmFKyfJdVioUxiMDK3Audf1ZgiJ31AyPGNEwbVU1NTDGS15T/bfRqvXV/qwTuHBpKwb4PaC9tmc5pASfXe7MBaoz8aZ+/ltPp8/Gr/nlHvtIfRo7zoYI/Ps0Jo9MN9rI8F9KRQ9ry/DgCh1z9O6ttNT4JM+5fOpUC2kVqrrQIrnBWVsbyvXR9ITs+G3QfH824N2RpA9jzTcpo3RqxWc49lkmx0dHdXR0VHd39/XxcXFgH9QmIAP+jObzR7Juhe6bSSZC+bZa1X0N9/jYvAJzc2HDvVAq9ls1jwVwlPmJe4DzUNX+sn89OTaax7mH4OR5XLZ3v+wbn3UBgdaGnQ812N4sVFgwjnjKF0j/yE0xNm4P5G8hcUDybRH7oUhKYm6E1UlikwFRruZ4paGKEMNFh4rP665DiuJVFYeR6IIK11nWOHx+EA8hJP0PhieTAZncqDQcUNZ/HO81couvRuY1vOcc2B6jserbCWnwabCpA4rMu8+9n1G9VYKPW8kDQK09PwmkOl5EQj+OuPXU7LJU2lAmMdU0mnwTGtkIhVBejbQz2HFqqEBccLFutx2+BVaEYrJNFYU2evXr2s0GrU3s9Em/MzawMbG8KVLeLzeD0C4pCffCdrgldFoeOKwDwNkzC5pvBaLRTsBwIvV9qK4v6oaSLNRMN+7HctF1XBNyUDbpxoblKyTGerq/f5UeZFR2NnZqb29vbZZzcraxEyhhBGqhmcNJcKGCTKmmXXu7Ow8ylyqqoGrlYraJT0ZT7CZjv5aqCk9oactmDiNicMsbNTpeQcwIC80sQJzLJp2oakXBPmNjWq073ZBWjDeZDKpy8vLgUfUK8vlKsupF79232yEM6RiuhqlWwlmvVa86+ah9x1lkL9RjOrTgGTJ/iUv2TilF52KDaWXmWz5TCoG99vegw2kx+XxZjaRDQL8ZC/JCR7InnnA4SH3jwyj6+vruru7a5vUzM9skmTfg9dfkKMMs2BIM9WUsWEQeuCgqgZKumq118ggbTR62DtxdnbW3iaJ8a4anlEGnavqEdBK2hs8J3j0J7THEzHP5XpCDzAlwH6qvMgocELi+fl56wQdTy/Bv/uoBAuerbonzgrQWSVMnK0t9VYNz/VP17dqFQPkHjPCOnTHn91FowLG4rUOf5qJnbVgFzhDHVU1OB7Aqauk8FUNM0PssoKyoB/PO4THrmMWo/f395tRzvcymLmsJLxnI5URY8wFVfpoPrCSp/7cw5AoiXqsdD2H7rPbpS0+ETKPxfzr+9JLtKfhdTK34wVy0yiVgsGQXzaVsuQxpfG1UnFoyWN2/22cEvlmuI17HH5hX0rSmXZ9bTQaDd6/ztpVVTWDzW/55jT4ktfLMl8GO3g+VQ966vr6ukUzkF8bXvOOFTx8Sp94MdDe3t5AXzBGZ0phSPDIqdsRD2gBeDXP5d/t7W3L7PIaXdVwIyj9tleVYOSp8iKjwKTM5/MBwu15CEyEN19QjC5S0NIqGm1aeeQxAhAwFbsFgXpSARu9WMiqhpvoKKmMfJ3xGf1hQMyEVgSMg7F73wFoH4OQChZ3G4RCe+4/CMcoDEHixMu9vb12pIXHkXORXkoac89X0i75JdGx54g/Z+EkMu8pWt9jA2JDkv2uWoUqjboNBLJQv+P3Rng9he3QgJUVdfiIDKNZ0919TsMEnayoTZ/sj70ZK3t+czs8jwK0Bzufzwfo320DInkO/jOvZegmM4JsoAhx2uhCS3vevBrYrw9FzmmTzLyMBljhk21ENtTW1tbg3Q6WDeaBOQCgcb/pmJ6BdZCNOOFe60Voa4PJZ3oZzykv3rzmA7E8KP43s49Go0cZSkZnWEGuV63ix+nCg3xB26mYjcBTEbmequHiczKy700hsrCsMziMjXYyldKonuugDYzo1dVVY3KOjiB9D8E3ukWYZ7PZwBUmY4RiJcvJj6PRaJBKCL0SmVhRp4FEodmTs7DzvFGWDbTn2ArASNtteX48xz0FmCVDUamcucdjTz43fZhnj4W+WGiph0+URqafUjd8lEaJOnrhmpRDK1Tqt4ftNSrzutd8koZG3M46YnEX+tE2J6nCbxgClC086L5gHEG9llvTnkwl+Bfvg7o3Nzfbe6EzU4g2TQdvuLPBv7+/b0YMgOZQpHkK/ZUZeb7fPAKN7cUzVsZvfUrbPQOQwOO55cULzZeXl63TVm6ZyYLyY+0hC3ExrDWC4WOWjdQYJFbRaMdhGbtliUaNYlO5oMBtgNIbog4rzFRIiap6C5oocSsllLpdP2ceIKz2Blxyzwb325BjhH3KJYKTse2cs1w0Ts8vlYvzw62krDgz9MM8+4iNjY2NtYctGjyksHlePHcUgwp7VdDF4Tie4/7MHc8+9YxArz9uA57xfpL0Jk379M7tpbk+GzNnONEu17jX/xt9Wl4ojvcjvxgHDN5yuazpdFpnZ2cDT8jz4WQK74HgHvM16x72QnmXA6icuP9yudrI5jbQO+nBJXq/u7treyGQIQ4BzXeNw+N4UbnWkfom5Szb5hp6kvGalxMEmAfd9ofKi40C6YppxT1AmO3i4mKtxWIybAltIHJBzRbZ5/ZQl5VSKuH8P9FoGguvY7j9qhpMDvUk09pNdTFKTmTu90vwO7SoWnlQVrhejMt1AYTPhoQ6ySOfTqc1mUxqe3u7pRhTvKhoFGMjBc35nX5kCh30s4FMNG/kPh6PWwzXsWYK13mOtpgHh7087+mt0BeEzoJqI5gGz3zb81iS90wr14Pys9GkP9RhkJGo0vychstGy7/RZsrvU961DTK8xwYzwJ/3PxAFwLBNp9O6vLxsc4bCx4u9v79vIACDiIGBn0HoPIfxYK44+ppQKHRkzpGf9GgAHOZDK9TFYjF4Wxub6PgtFbaNe8593pPzRPtphPGyHN4zAE05S3n5UHmRUfBCkb2ERHwMlHjeusKgcgE2md0CxiKkmTJ/NyOY0a3YuJbEs4GwEBoBe5LTGBnJO0bo+yzk4/HDqabeh0D80juPEYhMIUzlw/oB340uvHjHb5PJZHBwHv3G7TfDOR5rHrDi8v+mkxFyD317HlACCGT+zjy7ZEaNaeLn00MzH6T3l0rVdXqNyL/5mvkmkWJ6DsyxFyjhN/jChiXHnuEHh448vwAJDAO84PEzB+l9YQAI1ZjHbfABfAAL+sIJCPTz+vr6EY8SwplMJu24+ETyVdWU83K5bPei4B1tsFdsXmSNjrodVmP80IXrNzc3dXZ2VoeHhwN+znlNXmN8GUJyHeY786RlC17ORebe8x8TPnrRMRekjbnjFmorY7ajrytmcCNOzjJZLpeDl8tbYI3iadeW2crb/csJSAvLBFqRJOrMeq0k7W6bTu63jQPoh4wF6ifMkxNP/bTtM2MQcgR2b2/vURrm/f19XV1dtXuI5zq+PR6P2xuknAGVQsDYKXgmni/aNQ1oL+OiFPMA7duAYhB7c4WSgjd6oaWMo6fHmWEhh2nSWPSQeP5GHanY3T+PyXwJLbie9/V4NOXTPOox2gh4jwT97CFQPpkHwIv7xzXLGpvA4FWu07ZDzPf3D5vZWLw2n3LP9fV1exUo6aKcw2aaQ1vz7vb2dtuAy3gZszfjMUbz8+3tbV1eXjZj5rUV8zO8QqirB0wTYJpfMKrWiY5uJI+5pE59TnmRp5CbMBwbTJTOLsXnFgsgSAwF6TPY3Y4JZSagviTKuv/dbyuStP4ovVzcM4qif94wBBqjLe5hAauXU40CMONaQVKsfB2vZTObX+xNf0gt3tzcHOz+xDupqprNZlVVA6Fn3mk3Y6Z2oxN9e+7ohxUYv1t52shUDcMqifbdt6qVV+TSQ/yea3933fYuzDe+1/zmjCQXULYVT9afqctWUD47qYfO+TTt6afR+Hg8HsS+6XMaNWiUIQ+uO6STz3nuCQ1vbW0N0kSpD4UK/y6Xyzo/P28yR+qrE0yurq7q/Py8Zd45pEU9vcVd88J8Ph8ocntc/m4ZJ9QFYIWOBqpuowcaLQvc1/M6zTcpD8n7+czHlE/yPoVEwlUrpMablNio8qF6/B0LicHxDlgICfMwEY7h4TradXbdVvBpBBxqslKzV5GCx7it0KpqICwWSNe3WCxqPp8PUk9tePIZGxczFF6GlTdxfYSe9yT7SADKyclJi9HC4LxTNxUk9a9T9ukdMf5UXJ4/p4L2kHiuHfi6PQgLFfV6btzvnpf4FG+mMTGv9vgh67NBNYK212ePABRKiIP5rapBDNweh70L80wv5MAzzozjWSuf9JBcHEZO3qZOjMlisajJZFL7+/s1m80Gc2F6eJGdsXIvu59N86urqzo5OXnkEULDlFEbvs3NzXr16lXNZrOWrYS8JMjN0NLV1VXz0gln27BbV/UScMxLNvzrQqWAQoyQD0fshbASKH+ovCh8ZKWZMW27j7PZbO12+XVW239Vq+wkC4uZLJ+rquZROKbYQ2xWdokGqtZ7FBYU6rHhccqflWZv3H6b1Xg8bqmnFmIEzqE4MzZMZ8FCQNm3gPGAkYgFE+IDLe3u7jYGNy18HDZ062VWpAdBf8wz9gS5PxF4D7275LqGlZw9Gs9J0iZBTYZKeiFEGwPG19tT85Qx8TXzHteZc6emEko0Gk1l53GYRxKQOPxkWuI1ZnzfCNZKPjNhnNRAfR4nsryzs9Pe6WEQ5D7d39+3UBBKmnEjIw6xele1wzvIl/uNNw+dNzY26vj4eHAceIbPzDdOXUVOSBt38dwaTHn+oSP8ZiOUc2s6cG/yWQIv88OHyh/tKdCYs2MsmHbZLi4unuXKeHBpGIzUQUre6egCYrm5uanDw8OWYYPnYOXhybVCMWF7xq9q+GJymMz9ZGLTPTaCGI1G7bWYGQKhDhsamDwnHXRiQV8ul4MXn2f6rvcjbGxs1Gw2a+9YsCIh08HojXH7O/1JulDSm+R+5oC6oZ8VmennNhKR22NMGvX67T74O21YIfp3/29DlvTg2jpPKfk9BZzvgICkB2N2CDMVSc+L6dEWBU6bfrkS9/i754u++90IVauMIt8LQMEIoJxtkHLvDhvcSDqgbjavWTGjzK1k2Zzpl/B4TABOv7vc+4ssi8iYx359fV3T6bQ7l4w1w8y5v4u+5lqT6+J7Li77/p6uTb56qnyS8JEVZaKqs7OzlvL4oZKd7rn2eU/GCS2M/Eb4xIraiifRqgmdws94q4YHs/Ec7aclh5kcz6decqmdDQQjksbHNRjJxoY6qqpldyBweAJeNPPLSqqqvaBkY2Oj3r59W1XVFs+8N8K7xI1CEWQbJSMjM3QiJiPtRD0WOv43LT3vqZRt2OlPT/E7NOjnzUue+54hNPo2bXwtQ2Jp+LNvGaoxXRwKy5CGw28omFzAT8OWtHYownK9juetpPDMvTN4PB63c4/cF8Kf8BRIGxDjXfmABsDP0dFR8zL8Sl+DI1D+aLRKa2XPC/KGfFXVwAMnMYM+px7CEDNeZAyg5UxD6GyjAO3sdSCzzGEvEYG54RWd6YV5jpOf/f2p8iKjkMIMUzGw+/v7Ojk5GaRl9qzVuut5D5/E0qzcM/5oRGKX2wrB48i1BCNEI/6qVQaFGZL+2ZX2M6l8mGC2vJueMJxfCpIxc8dTYRK3y0Le5uZmO5nSu57dBvsZ3r592wRrPF692QokRfGGIXslHgd/iSSZv16YLUMQiXzSa+op2B5PrTPuFko/Y1To+9fxJPNp/nQdvsdK2waRkgbR9DB/8Lw9wBy/5REZgRY2qg67MA82JqYl8wLo8bgyfGSQYGBhfuKonDw/DCVr2WTcrE9ubm62l/Egoyh1vA97u+gH3jbofnhxG/5kZ3byILJjLwxjY5BkmvDsOn7K677XNIAOXmzmWspaest/Mk/BmTpGL1VVFxcX7QApylMGIFGi67SSJiRiTyKRmhnbWUJWKlXDTUU9RUNxeMgKI906ozzqNSJ2vNRZEjZu0DUVI8Js1EmfckEMowXigslHo1E7D57dy1wHiZFGaGSHC+7NeBnz9PpJIvMezfnOvPTGa57pzU0iqRQC0z/RePYllarrTP5wG1awFkquYdB9TxbohvJPJe97KA4H2sikAjBgsYeXnkwauV7Mmmuux3KPzDk0ideJhwo/Eq5B0dMf+Mx9XyxWB+7Bq6enpzUeP2xs5EgL+mCPnXrZ5by/v9/mz+DNXobny/NnmliemXOO2rCnwH3QCzok/xn40We3bXoABhy2T573GP+kRsGKyEr87u6u3r17N0CYObBePWkY0ojY6qeySdc2lZwXmhwT9HfvjragpDExqjGKQslZkdGm68tr1IOBgIlcf9ZhA0T/eQ8CXgx7SdiNTKx1sVjU/v5+vX79usVQ7+/v205QcsURboyLGc79ybBKegceg+npZ6xwemPNupM/esrbaDaFovd/Kn34IAt0sNHsGQ7aZjwW+OxTehvwovnMz2fdRuz85TEo9h6sMKseKyV4mroAWDzPM84ANCAAwXNOlwEk43ZaqfcWIa/mF94BYnTPuWDUub29PUjp5nnWFDO0SUqpPRM8dOTR+yxcJ562PYabm5tmfKjfaxOee4qBZvKh5zQBzO3tbWufa+mZ/DHlk2QfGTky8fP5vHkJ69DRh+rOZ2wQvOAFkXthDJSihdZGgHqtgNYR1krOh4Rxf6JSK3vqT0ufi1YZx3fbbse0Xy6Xtbu721A/DMNYfQQAYaHJZFKvX7+uvb29Jiy7u7t1d3fXTrKlfntp/jTt7CVAwx5TWunYDa8axly5rxeHdbGy7Clk35c81UP9CUp6aL3nzSSQcb1ctweQPJdK3x6keadnRAws/D+080Kq+5AoN/tgcMQce/GWaxklMD/v7e3V3t7egA4YPGL7BlhPGf+qx+/RJqHE2XnuG3Lq0JNDtgY49I0wEPfkbn7Pr8Np9MGnGveAYPKigVMCXesFr8fQZs7fU+W5OvhFnkJOmjOCTk5O1qahrivJmCbWeDxuVtvI3MztPlEfqWykxnpCQOQwAxOWqM+MU7USOk+wUf46g2Z0ZKYxY2W9tGfDS30IPciGdD7GBXLy2sVoNGo7nI+OjppBYP8CwkMha8M0ckjOfXRWicedXhbfe+i9anVAoA1Mj66eIyvNdd+NipPvGIPH7nvNH6mc01gasKRBzRBOKgQrZaNd0yD7nSmTVuoOpXLdoUZ7BFY4eADZpkOXHgO84HU+lBlrVi4GONmvPC2ZcBNZh3i9lvPc0Ol0bvrNfICwqd/vggZIspBL/bu7u83boD7LrY2lw9YOA3tera/SWKR3mEDK42XuzBNpWJJfPlRefHQ2A7RlPjs7q5OTkz+qznXoMpEJn5kWB7E9YTATk56IypOWVtlGyai/qi+sCBQMmCiHPlUNT9dMD8hobx0KJHbpP66bsbyZZmtrq46Ojmo6ndbGxurVh5m1Qr9wrb0JkDnJ/vi39LZs5EwT07WHgp9S0j3kZoUF3VK59Z41jfNexuDn/Jnj8+9WkPmcDW3SxkrT/ch6uNf3m2bwgYuRuY90pk8ZdgLwpKHid9pAOZkPfXAbbQEcQbqEJvGOOKsLL5fjruFNQqP2pHJh3LKX748m8WIymbQ6/PZGL96iY+iLXxXKOG3AGB9gyiHlNAoGdi4Oo3os9MW8bjCaoMuf+f2p8smyjxj81tZW/fTTT4O86uxM75rrTOE0AuEeELCVScbWrNjYoYur6R2/1AFTpzJPIXPmjyfPDOvx2ZKbcZlwewB22xMhG9WRRsozuZOU9n3I1/b2dr19+7aFkxBG+g6Dma4wNIzqjVOmXy9TxQLq+12M4FPhpUJeNx/ZXk/RrzMCbhM+s7HPvvBsGrM0DmlEPN4co+Uovyei9xjcZ0rSxh6DeSjRKEbdnqjHw29Gq702uI7nyhrXaDSq2WxWGxsb7ZP4v/mI+XNaps8XI/rgxVqAVqZ1V632UTEu5IS+OuzKZjevP1atwJxTr80P0NYyjM6x8RyNhju+qdfyZf7p8a/vcQaSec5zl2DrOeXFRoHBEdqZzWb1008/fXRHKD3klSgOJmBiUdAQ2YqBGDnn+3hjS1piM5DRuseKJ9FTMmZIGzEMDqGXquoKAgVhsEHgOidA0g51Qgt7HLnL8vXr17Wx8fD2KJ8Bb0NHe965bMWNUKSx6imJnsdgmpmJjZpNw4ylmgeSL1ysyHoKex1/WhF4LL4/F34zLt3rI7yVypa2qDe9GOayZ0wTRaYS57513pbp4E9QN4rK9zut1eFO+gDN0jgB4jY3N2s6nbbjLaAf527RDnPvELHfsEZ7Hhd8nhtB8UBGo2HKOkfC0Ba/4YWkkh2NRo/eSGiaG7wikw7pIifWmz5UNENsT4Fp6rOHlryR9SQPrSsvWmiuGi44bW5u1g8//NBevPOUR7Cug2ndkslxR03kRJh+brlcPjq6wegrv/vZrMfeQMZEYUoWqZJGy+Vq8deTlIbELrEL+wm8Q7TqYZMZLu329nZbaOb37e3tOj4+rrdv39b9/X07WMzGiXFYIWW4zDSA0Z3Bwnjc9zR2SVuHH90HrqN87UlRbypW95v+poLtGZbkG37L/uR85vNp4Pjr8aT/T283w4f5B6+43/400ven5yONTiJiL9paCedY6K/Bjn/DE80suOPj4zo6OqrDw8O2Z8CbsHKOUKCme3rY8KP5gLU2ngW4sobG+M7Pz9t6Qa6VcY26CL/SlmmTRhl5R2dBL4eALGeeE89f8lNPZhKEUmyI1uniLC9eU3CH7u7u6ttvv31k8Vw+ZK3SKJgReqilqgbI2cdYUAeu5cHBwaNXC2aM/EOGIRkTZqNvzvjA3QR5Ow7qcSRNEW4Y0gvs3ixn9O7dmRyHvbe3V/v7+7W1tdUyiqgrN91Zgabn5T5aWSFUNrSpKKFpIupe3aY315nT5I+cI/qWxo56M7SWvJR8md5eL6xHHT6WIVF50sBAhr44HGHvwUrZY6eOnlFMJJmhDq9RsQbI/Ua4fj69JStVxuxnDbLm83n7DVlhrwB9uLm5aWnj8KWTNuy12GgahduYoYu8zmae9Tlgo9GDx8Ceh1wc9vjpl/dLmJcSzN3c3Aw21mVCQPKI5zMNv+lsWt/d3dVkMul6aD2ZfE55sVHACm5tbdWPP/7YFpif46r0PAlbNAhuxs64tpnYGRQ8TxvX19d1dHTUdh7Svg/YWtdvIwIm16GOqho8n4IOs1qQPbkgGX4zA9qFBpFZEYCQECIW6UBh4/G4oaDRaNQ8DRgo880ZSy7OmpaO8eZv6TUkHW3snfZqZZuFRbuMsyf/mOY9Pkjl6jb9W65/pBHJNp4CEuaJ7KufhRf4zJLPZnLEeDwe8Bh1pKeQyNSeWQ+IGVj1+CH752NYGIvBhvmM3cxk+8xms8F6g0EPssfYkVnAoUOhtDWfzxtIpI+Wd4PC6+vrev/+fR0eHtZkMnkUhXBojzCX075JYjEP8n9mQll5EzazPjGd8xrjpx0MQ/K2+aLHQ0+VF6ekMoGXl5f1m9/85lEHP7akp+DisACEtSKCWFbKMAKHyHnjm5V7LtZQqNsI3goaBvP5J9xnhuIaY0wlmHF6o7h0N/l0aii0mUwmg1cE8h4E+gkyS3TqFNmqarF8t4mAooCcjmieSORjulFfok8bxV5dGE/Tv2eA0/Byzf3hj36kF2NhSsXnucvfPTYrRAtoouueEbPRS/Rn1Gr+TO88PRFomMY7x+FD8GxYLC+mLby5XC4Hu+cZl0Mo9nLIChyNRjWdTmuxWDSjQFueVxJFoKHXBHs8ZMM6Ho+bIoeHXRf8f3193d7JkL9Tn+XEv5u+DmtdX183o2DDD8183fxh0ORxmN+gIeDP8+pzo3rg+6ny4s1rvCT75OSkfvjhh0eCzX095LiuZIZOGgMGnHF9GDm9DepkgSjPQbJgouxTKDyWTL80AssYMQLg+i2Y/k6fiHsm/ZKWRjybm5stk8JhpKqVQfA7lu2p2CVPBGmljuHz8z0EnYaBzx5y8bVcMEueyb66n1aA7kfSjs+ey09/nEpoBWfD4fmsqvZCItMovZAMx7ik59P73/zo+s3LKWP2ZnL8bCCz8Xco1jQ1z2fdCXq435lCKHHvijeYm0wmtbe3N3h3Av0D3e/v77ffPY6Ud+q3N5Uy7eQYog+EAQl58TwhrapqG0vH43E7kM+0IirAojh0S/DhYjljnmxAPVa89OR3G2uDgJ7X+aHyYqMAkX7zm9+0Lef+/SlDsO73jLslsTzxPG/htfBxn5UkfXYbvX6kULo9C7qFwX2BoagjjVgaEZS70+cy7GRkQht+IQ6KnrF6gQ5ERP9tRLlmBk0PoGcAPK40XC45hzZCiXpTIbouKxYr/TRSKVhGdzYiqSiTxwxQPL/uV6I/o9pEaObJ7Ef+Wembjv6jP6aRx2FaeKx+nhAE9HI4Mw2tFRV1pRdYtTrXi/mylwIq5vkENPZ+PRa8RTaVYXjsPfHn84dcoCdeCiCRXf6bm5vtHem+v6qabHr/hT0rzw/foYVBnA089eYz0DXnNOmP4XHmpfnFhuG53sKLjMLW1lZLL/vmm2+6XsJTZd39aRTMIFaYHqy3mbOo6+3vV1dXNZ/P6/b2drBpperxbs6eAQLB57WcLIcFnGlgNGbESx3OkuB36sMrsntKv8kBJwR2e3tbFxcXj9IYe+stvTRJo04UhENr3OOQW4ZA8jPn1UYj3d6n6rDihh4gVIfresXI1DyVhtrK2nRKxMYccK/nyIulPQXtknPiLJqeQsvvWfdTxtRj4jt8+SFvwDRLxZNjTGCxWKxONrUBox8o5YODg3aWD394XxhZsoAICV1cXAyQPPzFupjHztxdXV21dQzTkPaqVmFXe8iMBfkkdM66nOlr+qCb7Nk7spAgwHPrMB8G0PPriAn3JXBNHv5QedGaAqlav/vd7+r9+/cvqWpQLPBMFsJStT6Ni2c9eTAD6Pnq6qq9Xcnvh01EtA71pvKib+PxeLDwZEWR/UsBqlqth6S75/vtDdnbYS441wXBcw42rrENTYaLGK+NG785fsqfszv4zem6pqNp6TZtLBPt5hz3lKQNQ0/hZr97dbgNxmLhdZ9SadKOUb2F3kDCSsq05ZN7c5d+Lorau0gF4X56LrwQag+ROYD++ax339N3QMxisWjp0DnHrElZpqyYDQYIZXH6MS/TgX6EQ63YLCt8h36j0WhwvpENYMqid3Sbl5bLZc1ms7ZGZ+/C/R6NRoOdzm7PIIpMpAwf2YuzcbDuS53T472ksUHcxwD1qhcaBSbr17/+9aPTUHsC+NR1FyNWKz0suTdWITCJZGFK/0ZGwsHBQW1vb7esHIc/ksGpL0NEJrjju15k4rCvRONpwKpW2R2pwKwMnG89Go1aiqtd3kRwMDntZfyXcfr+NMZGNdDVedqJrPm0oemN3/+nALtvVlb5vPmFMVjwsh8pNG4jeYjnTQPzQPbX39ctTNqIep543l6iDZrDTqkkoAd1W36yb73wj9txP32mTw8sWIF6zHzPtwHSvg2OQZH3A6SRTw+xqtpx2ZYnH/FCvcyDx8h8+0RVDIn3Gy2Xy7YvwdEAGzaeMd94rYHF91zo9/NOG885tX5JkLTOA0y98zGG4UVGgSMtvvnmm+7v65Tsh+6renzIF8rQW7tNEKdWpvJzPPTy8rJms1nt7+8P0L09g5z4qpUBskA6RkhxaijoJZUUf86x5jffk23jqiJsnN5IWAzDAurESLGT2wrPxtTjtqInXmqUBmOb+S0AVhi0Y/rnNdfVMxa+7n46hmpllQYa+qH4rBASObotK0oLW6+kIOZ4jLi9LyAVai9LzUow1y6SXp5fK8bsewIa+tIzfFyzAsu+uA3qdqjDhsC8DbCpWr22czKZ1MHBweAd5KRZI7Pz+bylrMKTADAre8ALuqHHi/TZIDLHybveqcueMbK5sfFwfIeVPX2rWu2VsnG07FuXpDGHV22QeQb+SGDjZ80bzykv3qfwj//4j3VxcfHIEvUs1HM7VTVcIDGaMLHN0E6FxR219TZimM/ndXh42LbEm0k/ZFEtbN5gYyRXVQMlnNad70YbFpZEgJubmy2nGwTD7mzio97BDK0xJM7jZgwWDhCmjZdDFilAViCMwxu4XI89n1QMqbydZthT1umVuK2kmRWf58CGOFGw+2veRanwO/UnwrYS7nkjy+Wync9DnYAHo2CjRSsy12vPyUaIe+2NuG/rgJnv89yYjrm2ZMNm/rFB4LoVF204VXx3d7cdfsfmS794B5Cys7NTe3t7LcX08vKyLi4uGu08V7TlkJhpzUt+PB4bSvpNdMEgpQc6fMQG+sRGgb5YT5iXPD/mWRvw1BEGQcnHlouPKS8yCrPZrP7P//k/A1e4Vz7kMVgIjZx8vpEVkReZM2+9akUIb3LzJLDwvLe319pJZu8ppBynlZiF14fQpdB6IRFEQ9s2Mlzb2dlpih2ly+Ly5eXl4Ox2+mPGQ7igi+ngdmBixuWSKNxolHpNMyvMZHYrrUS9yRNpAFJZe14cXlgXznK7rsPz4zNvPM6s2zSx15H97MWHeX4dv/l3n9CJx2Gecz+c1JCKwsrC4+E+59KzcItsALJ4cYzDPvbYOUjOz5smjM17XaoewjaXl5eDw/McKt3a2mqxfSN1zwOeMn0jBJULrKY7tLXR7J14wFlhADPrIa8F4sWn8UMOCU/BB9YnCSzWlZ5xMG/3vMM/qafwzTff1O9///tHyjiFI6/3Sv5m5Q/i8FECtsaeCEJC/gTFcj+ZSNPptCaTyeCsplQYDuFwzSEQMybb9PESkiaO8WUaX49BfLIrY8Rtph2YC0HzNn0EyIrUyt9oh4IbC52NGE0DzxPPoSBQBm7LtDNDp9Fw/T3GNn3W8VUirERXicLcv1TSjm8bgKTRY/6sdLN985H5kbZ8FHp6AX7WY0gvwckESVfzAs8zNitqh19THqqGu/eRP8+nETl9SR69u7trobT5fN4ADvWPx+O2Zrm7u1v7+/vNM/ZR2xgjeI858Hqb+SQVo43XxsZG8x7oA+OhToynoxPQy4kX6Ykvl4/T05FPaEed7lfytWW55xUYUHiOPqa8yCj8+te/bnsTesR+yjJ9qKMYAlABA+eaJ8vCZeSXBHK78/m8rS1gcFLxJCKlThgxEUXVcEGL+6uGJ7gmWs/P8fhhY8xotDrJcTQavt4QOvSUL/VsbGwMwlimUe9+BLZHu/QmPD4YnzHm2ksqWxsiG0QbLtMujZERutG7aWvhqRoucGbdVrwId4ZPsg8OaTokYb4330E7r/uk1+Br+Zy9tJ5nZXBinkja5nwyX1Ur3vVJqHnInNvL4vU+ULS9/dFoteOedFInSHj81EOZz+c1Ho8b76dhYuMbawD8xlz25h5l7rmhv2QKQbe7u7u6vLxssgm/+0Viy+WDZ88BnBlZYA4NGtBzjCPnNnWPP23QrAPtGfQA1ofKi4zC6elp+74O3a37bV0xQZgkJiqZxoKZVjORsZUaLuHl5WXt7e01b4HFKsdiPZacKIe2uHZ1dTU4q8d9cUnDwfNs5FksFk1YRqOHowBubm6aC+oJ733azaZ4PG6X30xHo81kYitfe0ugaqe7uk9pRE3r9FjSkCQPZb0Z4umN0YrQ9Pf85JykgPkPxUXfM+RpMNMzsu4T91r5e/7WgRXzpRdLe4a0N7acQ040zVCZ5a3nxTB+09ZKkHZ8kq/lkNARoV3fiyzkOWXeJ7O5uVkHBwd1e3s7eMGXeSP5gP8dAsI7WGeEr66u2nvMCWexplE13L3tuugvi+YpD+gRh5Ds3RrsrAsBehy+92MNw4uMghmF0mNa//YxFov4JAgk015p38wKikjXL919Fpw5KA+E5NCQ27FQ5uRxzTHYRMXUS9spuKPRqOVk+xgPNvZcX183YU16Gh3SNgwIU2T8MZ8zeqVg7Agr9OpwP5gPLzr7Pgui21yn/NOjslJPRL4uHNUzzD1E5n76fhCkBbUXckOh+JgIH3eQewgMKrjfdLQwVw13zFKP6WY07vBTLzRJvXncC4YI7xKD574Q0jEYwnjlHFAHPIyiT0OVYTl4jZ3LSXfzJXUgexsbGy17yRlM9J1rpjvj8z4oPjOCcH9/XxcXF7W3t9e8KLwG+IC9Fsi855GX7yRfeu7yzKIEIubXdcC7x9d/EqPgkgL6MZ14qk7ih2TQmBHMRDYQTE7PUrIgBIFBIKAUTmmE4I6NMkHeyGPF6vclcB/GDGWZSBZmZ5e11w+cTooXg8uaCN/og9cPIqw9w2il7EwjBMw0TkORSoHnenHyqj769hz3EFEq/UTKaSDclmns37JNeyqp0NKT8Bgd683UXq5BYwyk13/oP/10UkJPkbt/OQ730Z6FaZ5eitvndzwEPN0cj9u00fGcOPQI35NGbTlxH8mQQ9Y8rxgnA5s0nK7fhoG3C3K6QVUN1vqYU8+fecZ8zL2sg/DSLntCfnc88wJItZzBPw5/UZI30iikF05blmnz0ccaA8qLjULPimXcbJ1gPlUnvyNQPhjL7Vpxg6zJ/kkvhjRVUDkxyvl8XkdHRy3WmcxiRW8mYazZZwTELmguTIEox+OH9x5U1WDzysbGRmNA8psTWfE89KRexzqNVNJg2zgkM3GdnbA8kwg+FTxtpeLozbfXWSwMHp8VbqIh6G8hMQq34UxlkHVCV+owDTzuVLDO9HGqadZp197rYukhoNxsQG3kbDTcn6RVPm/FmnH++/v75onm+zqc2s2CshdUM/WV3+F50wR6OvefdQDPnRE4Kbz0nX6waJ0o3iEge6YYmTQANvAGBNCYdtLYXl5etkQQ8yPe4ebm5uDNbh7Xzc1NCxEnD1smeiAKPnIIr+cxpJ76GMPw4qOz1xUzayK3j+kgDMQRtFZyzgCqqgEqgyHT8mas//b2tq6urlqe9HQ6HeRHGyU5tGTBRdBYS6B/XnhjLFY8tFdVbXc1SH9ra6ttSqOvnmQztj0TTkK1oXSIzUJhIUij5zmknnUGIVMjGXMKUzKsf+eZRLMen9vkuxG/+dH9TNTtkjycRiqRXAqfjRGxcAy6vQ8+oRVrZT7QzemTtJ8IMA2I701wRr8yzOKxpxdg5UufKBgI5NAIHNmjThvAqmrInbCt06TtKdnD59rGxsMZXyh1n1uWR08koKG/eEC9kCS8Z961N2K5rVqduLyzs9NSaJOGeOvmGZ71Qn7yUcp4euoJVKkzeZJ+p9fwnPJJPIXnFIdaPqZgWW0UrOCMzLxIRvaOkfd0Oh2kjNkb4YUcLGw55c3GJdFJKjfqJ1zgbffuN4cJLhYPi20ocfKyz8/PB8is57FA16rh+xJ87kuP5kZSpnMahvR+0vOyAsk6rGD4zUybHsm6Z03z7M86Zs/rbjvBSSrRVMQ9tNUTTAvocrk6vwikbMVVtVqQNJCxcctxpmJw+CGNp3kj+TbpmkrISDTryD0eiei99ofhgyb2SPzucCN2K0zkh82YyBJ0Oz8/b5EDwkL2FAhJcRYY+sDhm55c+/+qx4dlQg8WtN+8edNo5yMzRqNRW8NIWlpXJJiBR+0NQB/qSF7l9+RTG4c0Tk+VT7amQPEAP9YrWHc/StauZAoNChSFmyEFu7UmGhNzdXXVFqlY4GINw0oFYXQ/CUMxQRgUFILbH41G7X3LCA6KBGTDyY+Mz32wUFpIiWsabWZcNN3qVDaePyvpnmLPe6FNzl8q0ByPS2+MPd7I736+FxrqGXHokwit5yU4FObwVqKwNDjMLbnvngcrBngDpYgyNXLueWPU4/a57oXpnkE3rb2GhbJ2ooDDKMkHOWYjfBsGjnI3Sjbve38Fss64Uf7ORmJMaZzND15XQ+7wwM1jnnvzQMboWY9kvogy7O3tDY4HxwA65Os3HrLHiM1wVu4JjGiXfkI3GxrzfM8r/pN7Cp+i9BQEBcJcX183V60niBgMzkVPwfOzFnIzMGeqMFm21nd3q3eh2ipnJooXiplAmAjG3t/fH6BDG4TZbDbIPsi4qOPIHg8IimMDeN40HI+H+xASnUPPRIQowp73YCXn/3uKu2doPM8WRI9vnSFy+Mv0SuTvOlJwXV/22fX2xkKBn/I5Iz6OZcCbS6UDmAFEEFp6Sglkm67TGzYdAso5AEnSvrOsDDCQA4wcc+SMOM8dz4PcvcaVPEW/vP8oN67iNThDkPrJktra2qrr6+vmURDucngUPeC3xPl+1jmskB1KNvhcLh9OUt3b22t9hi8zlGaj7vkyTznUm8DV+yEypOT+uL/w+1Ph0175ZAvNH/tM1dP7GCyIVdWsstFRKqC7u7vBphPHHlMBmuhVK+LBVCASM32vn941bPfRr/MDJW5vb9d0Oh0gQlAEHkLmMee6iSfYipqdz86WSsPhetcZV6OSDC+Zia1UEGTuy4wL2rGSzOyLNBI26r4PGqRg5T09dGSjSj3Zj54HYB5PLyH7Yb5Kg4ay8MFoTmc0nUCkTlG20nGooMeXBhM5h+YPI/eq4WtYzSeOUaOMQbw2RClX2RbyuVyuvPtcN4Em0JXjI05PTwegj7ownovFwyGRrA96rBgPaM46Q9VqvQND44XsXFOsWr2vmfm8uLhoae324u7v71uihr126mKeUfiM3yFxrhsMmKY2BJahXJv5mPLvutC8rjMpvL3f8zoKmsnKV+TZSJALnNktbtvKwJMGo+zv79d0Om3XQPPuMyjDW/SNmqxYCRkh3AgWuyNPT08HyI66zQBVq8VqK3tcU6MJfnfmBug4+2hlZHqZLtDSXoHReiLudXzQmwvTjWcy3p2G3MLluvzp+y00vTFSVxqCp8bl6z0DYIXkfnANxYhRT4DFfIBkrYgBFtmH7Gsac3vI9gRyDu0J+zmDDoxVhg1Rajs7O3V9fT1IxzXv0D4ybU8Br8CvpiWsdHd3V/v7+4/6TX+n0+ngZTzItOfWsmWjQl3IojMWk3cYw+npaQs7z2azJm8YXHtgGM6eF2aAZDlLLzH537+n3kwefk75ZOGj5za87vfnGAdCRFh20IeRlXPEXbcZG4YwsqHc39+3LfXsdq6qxvxmbJg/t95bEY/H4/b+WQvzYrFoL9w+PT1ti8NG4fTT8V3G4RAEqatW4lXDeDUGwYJh5JFegOfUKA7vhuu9OespqJ4CToPylNLN+v0/99mwrVOQbjONQdLfwuZ783dozbP2GHPeEi3SLxZE7SmkokKZERKxB8F9md6ZNOt5YFZAmV1H/1iYNb24bi/CdeJ1mLfpw2g0GmwkS9pPJpOazWZNaVM3mT+j0agODw8Hhtb1wvf8ORwHXQGOeG8JID1fBkXuM/dwZI49LXgCL95yaYOYx4ynDCWfm9/TO/T1BASWm6fKJ11T+BiDYFT6XG8BBvEJiEwMMcfRaPToDUcZb3X9GULgfxCZs4TsoTjTh7DWaLQ6sI4JIO2UTTQgdVzg09PTurq6Grzyj7CBY77QzJ94CVZqMC5CDDM7hZaxmta9ubJHQoFWGYpKZd+jbc8QfWju08AkUrMHZMOfz+baT4Z8PA4/b75wu+uEzXOVqC6fzWvME0qNsRGKTOPmPHnAxmg0GrwB0KmR7q/DH64XsDMarbxm+JrfHZqAXs5wwbDwP/t/zFv2RnjWmz15FgPAUfGu++Liosk6OqC3i7/HXxwnAx1tfNJIMTfU5RMJMH7X19fNQ2Gs8CQhQAOrXDyGLoScMBbJ++kZm34GBJlx9FyDUPWJjcI6IV9377r7U3Bc2AvgV+8ZveNqG7Wlhc62ewoVRLKx8bDbmP0EtF+1emmPFyzZGV31YBAODg4aSgFBTqfT2tzcrPfv33fTR0lLtctt+iIc3OdTXm0QjBytrDLebDr4t3UGxAbV/aJ9/28B7YWEeiURkK+lYjTy9RiNupgrC7nn3X+5XpEGw31JupkPXb8L9axbD7EiIxzoNRrX4X5gwAm94JVCG2f3GHUnUKuqQTjHAMjKzF5ZKs5Uola8ppHXZxiTQ6vsLUCBMy+EmebzeQNdu7u7zVvG6zKo8hyhP+gbnglGhb6Zb+m3vTLLImnt6AkbuqoavDGS8bHOkbyFsbVHZh7xvHs+LZPw/B9T/sOyj9JLSAPx1HW7YoSPxuOHs1L29va6SswIF4KmN5GhBwxD1YOyh5FgWPKz6Zdd7I2NjUHIiD+OAD49PR28rtNKjvAAMWQrLSsGH6vt0Fkqbguuxws9evORWRuuO2mW/9udp27oYzqnInG/bDxSYfrZXjinh6asiK3wesjdcfRUvubDnlJMr8BGJsdsJbVunqpq8H4Ch0Yz1s043R88BRI1DKIMmKgfUMIRFe6P58heAwrQ4Uv6w72EfUG/jAPkXFWD86EcfsJYXF5eNs8D2XPYB5TN/Pr4bGjk9Ubm2UfsG1gkX2TMnnkgtHx5edkAqVOJUf7QF6/Oxr4HAOkb9ITO0MkhJ89PzzA/F6xX/X+BUXiqrPMkcLEtrLyRCYvvrAoYDyExIT35VnBcwzPweoYXrogH8jKc0WjUDAheAAzA25vOzs4GuysxWN6c41ixUTZMBPNjtDBIDuNYyFLJeR543nOSCqinHDLObsXSKyjATAV1nZ4vK3D3g+fM+OntpaCg7KzM1wlKzwBnO+4DxQbRKK3XZhoUK1x7KhmWq6rBq1cxYsx90oBQJEiVECZKy4arl2mTBZ5wyCIVGu37WIeqaptPF4tFWy/IUAe8jYJnnPB58vDd3cPb2+w97+7uDg6VtNEl3OS/5F2Pw2GZVLDmD7wAzkViDDknmcGVAM5ejT0r08gGIg10T04/tvxJ1xT+mJLKg+9GO7ine3t7A2HI8AbKBsbjNxiHyUAYaZvzWZzxhPFh8nBJd3d3a3t7u2az2cDKc74RZ8h74lBYXuTzYpXHTb9Yu0D4HP83UjH9UrEm03hjYE/Z2oCkYjStrchMfxviRDiJkr0WkSmb2fccRypb2oJ2uUaTfckML4p5qkfTDAn1gI8VWgqwBZySITHTmvvv7u4aUPFOaaNQI/eNjY3a39+v2WzW9rWkIjIt8EIx6PCc4/cGMu6HFRjjgK5en3NYKZWfUbcBnkNjPheNNZkMnXr9wbzFPEwmk3YiMUaFeTQPUSybjMvrg4BEnvE5Yu5Xb6zmuwz58eeQNPfl+gL1J28+Vf7d1hTWofx1CNHKx8+vG4gFdzwe13Q6HWw6ybeu2QUzIyQycx9on5RPn9eCkmcNgUW/RGSbm5tt9/Ll5WU7V8koxUJnpqd9M2JVtZMhjZCqHqesJUpJNJ7FTG9vwEyZc+R5XYdSkp6OyXr+e14DfUj+cTHTZx96fGYFaLT9ITolP/bGaFramOaY0pugHw4ljkajgbdnZWn0S3uLxWKweTGz7FAku7u79dVXX9Xd3V39/PPP9eOPP7Y6qoZ7MeBN2nTYzaic8cC/jMlId7lctgVrJ0F43vwsfbJXZC/FvITnQfIHMsH6AovKppeVvelFn5BDI37Pr1NZiUDc3T2ctDyZTAbrgsh7KnjzmRU3z5BMQt9ub29rNpvVyclJW880ff33x5ZPYhRS4J6ySKkIeH6donlqgDALCD0PVOsxk9PUzPgpkDAK6AKBQihgAtplMZoYP+OcTCZtbcIvCuF3DInjkxk6sOJi846RUcYY86ROK+X8pA4zbA/dpqJEAHvIuBe7781thrKsSLOtp/jChqBXejRwW9kPC6nplPTpeS8ZE85+pLGgXs+3eQBFTNu9LCsXo04ftkcI9Pb2tg4ODpoMHB4e1s8//zzwaumr0yVTofJJ3cTVvcnO+fmmCdd8rpE9CXu5Tt8EZKWHCX18TLYVsWXMxgQjen9/3w6SZDx4Wn4vgg+8tPfqMCuyvr+/3+Y0s5Wgo081MKBD3qgjjwe/vb2to6Oj+vbbb+vHH38ceAY2KjZ85v0Plf+QNYUU8lTEvt4zIvk7ytJuaNUqu8KLphQLndGAF0OZkOVyOTi0jvsvLy9rMpnU4eFh7e7uDqw1R27gIXhHdtVK6BzCYAEqDRX94gXmRjEor0S+qfAt8B5fD+07dEMx0xv1+DkzYLqrHmfOOf1O5dz7jmDk/VbUqczNR8l3Rmi5mG7UmAo+PZMe0jNtrEihr59JulhxeE3FJY0m9aYiZg3OygOAtFgs6u3bt3V2dtZO/kS5+n57DEbzVuA2Vg75GIQxRvgfXt7Y2Gj7fUx/kilyjwTzxHvRPQc+OBOjgHLGWyFDC6BHyMk7rv0OaejHGKAHtKR+UtgZO/TiHnZSQzvLog3gZDJpEQbaYM4AotB1Pp83vjLwsAfxIeDk8ic5JXWdUudaCuGH6rcwLJcPi0eTyaR2dnaaZU/Ew3cLsQnl72ZaYqcgEOryzuTFYtEWvmEs3FgO3/IiEArNOdd4OVZunnjcyO3t7ZrP549S4zBEtGUlTL055jQ864z1hxD5OlqmsrDCtXK00nyKP2wA17XdW2wzryC8TxmgHIN/5zkE3v3OmHyOg3t8f8qGDWQvtm9FbNqYvrQBejaSXiwW9cMPP9TJyUm9evWqfv755xqNHt5xfHh4WMfHx3V3d1fffvttvXv3bsCrBl1p1AEtPrOIewE/IGPGknNlg0P9oHyjXvrEp4+6NoAi48ev94RHvBcCWsGHTvyg/4TlHGKzt05BZ5ju1G8ggf4g9OzxbW1t1d7eXktWwSjhKeHJTCaT+vLLL1tY2uGu9BKeaxCq/p1OSV2nPD7GgPS8hixmEt5cxnUroqrhhi8rSTNZtsUaBRPMvSAPsoXYz8AznJo4Ho9bqIeXatjYOBsGheLjiDOHeTx+yDZiURGGTQWW6N/fjbKSlj3DmJ++38jEz6yby56CRdGkYegZKfOWhayn0Hne3h2f5oHkM4cY/AzF97sO1/shDyfpk15C0sheQ4bsXHohJRsIyv39fc1ms3Ykw3L5sEns9evX7R0Bx8fHdXNzUxcXF40/0+vyWG0UrMBAq/f3921TF+sEGAaUGYaHMCsRABbSmU+vCVomeygeY2j6gMqN1qFPhnqYJx/Gl2FqjAU0WC6Hx/0btdvjZjzMd56FRniLhW/66kX+8Xhcx8fHNZ1O67vvvnu0Hknfki+fKv9hKanrFNfH1mGm8HZxIwEmzExtAmVeOqiCZ6lrsVi92Yx7QBPOfybzCMYcj1fvm0XZc51P98uKr6qaS4wwI0BWYJkJYWVbVQOhs7E0KvW97oeVrL+bjj2j4fo9D/xuJJx8kOGXXhaO+SBLhiFMT/chDWUaCWhlweIv03jpXw/QAAasmGwMDUqspCjm0TQ69AUa+fm8l756Eyj8+/79+xa2uL29bcc2sEZG/Y7rM17qITbvUBAKzKcCmwauC77GaPBynfF4daYZAJCxOBuJncW+zm/sLSK8BB/g3eClWLYAf/BUzgmeiueI8JCBI/SD19IY2aARwkpjAD2R4fl8Xsvlsl69elX7+/v19u3b+v777weewlM8ta588uwjBvaU25LXeujUv33Iwllg+MNAZJyNdlzselatDtgzmrGry+5Kr0ewhuBUVFAPSt3egelDfy0sVoI8C1qyIuOepJ8XnqzYPT8Z7rB7uy60waeRlufwKQ8kPZRsz6iJ39LDWzdej6vXHxtBz7fv7/GlDaxL1uf+pNH0/2mQbZDMD65z3ZqClbz5O9u3QrJRol7GdnNzU7///e8brQlRED5x2MoyYR7yWppBWk/p8rwXtF0HbQGIRqNR24tkoMZ42B+AIgWkYQBJ4fT+B4dpqat3uCUZQN4fZT5wuIp62VzH0drUjw5A0Zu3WBBPwJXhJZ97RYbV/v5+vXr1qq0xWPY8Rx8qn+yU1PxuZu8p4SzrEE2vWJCx0riI3rSSyuz+/r6ldrmvjtfiCVxdXbVJ9oSANKpWrimx/ouLiwFT3N7etl2YtMVZLvSd9q0QTU+8EbIOEsGjZNKQ8slfL/3P9OwdDsgY06g6ptzzFDDGvXCQ+8W9eGfp3qdipR6P04bBRjWVtZ/tCZvn3x5DZrv4/ixW4F6Qt0Dm3PXozZ/j5u6rlaELNHXKJvxl2vo5FArPOTwzn89beiW/39zctOMkqlZHf6N47RUxp4RS8LpZJ/BitJUrv4PgMRLQx0fLwCscKXN1dTU4i4wMnlxnMz1spJFp2rXhIq11Pp8PvDKAA+OB1/CSdnd3B6Agj+HJsZjnaIO5YQOtIyI+V+ro6KjOzs7q3bt3j4DBc8snWWhOy5YKx5+9559zX9ZXtToQDuKjOPNoCCueNDa9Cbm9vW3HdFugYM7RaNSQDcdqnJ+fPwoDcKAeStLIir7YgNlQVK28BNYtPI6qYWqg6Uhf0wAkSrbydLgl12bSyLhdX/ecMk9eTF4HDqwA1/ERyqrnFVjZuR3TGkWangrXEFi8QyvYXjs9w2L68LnOQ+2NM42ikblp7u/QhD57ATyNMr8nYLKxccjTYRR7F95p76MoGItTopFJ7l0ul3V1dTXYS0D9hJ5QgvClFaDb590J29vbbb+Q5w9dQPiHttwnt2ma5+tAvTEvwz7eTc6+KIydXy5k8OcNsfxu/qAfRBc4qoTUd9YanAQzm81qe3u7Dg4Oajab1cXFxQBA9IBMr7zYKGQMNZUTpSfo/q0nzKlIUqlgNTEKVasz11GmRqHr2uAemJl4KEzJM7iQuJ57e3u1WCzq9PS0uXUoBuKnuMFVw4PNjP64ZuWKUJIiaKWYSNsoPRW06eZnbchT8Tvstk6RpdeRtM2+uI/JG4nW3a/kK57PWKzrSsPpWK4RdLbBfFPoT7r4btd12yAkSst2TKNeYYxu2/3rGbt13oDryvkzKkXxum+Wn/QWDXS43/egHAnPcJ7Scrms+Xw+iOsbDdtIYch8xhiehN+B7GwgZxs6QcQL1FXV1hgwGoBCvHnTEMU7Gq0WtaGd66V9aMb6Cl4GY8M458GF0MLgjhDeZDKp169f197eXr17925As9Fo1F7ju7OzU4eHh21v1HPDRpRP+pIdI5F19yexk5FSWJ/yMJyhAzPDPImSq4YpmPzGBII2SPc083OWEczGm9murq5ayMgKG0b0y1Ecw0QYMlPAfatabZxjcTmPochF655x6aH4dYbc9O+l26UBM8LPkFKP9h8CDzbSTrntKVAjn/QeenyZQMPtQEsrQdN0sVhlnNizzP65b+6T58z9rRouiFtx570JZlwYh+uhf0aKVo4+ZZjfcjGf3z23mdWzubk60Zf+cT8LxPAJiny5XLZwUq5/eGGb8aAQqZf3kNgwgpiZJxQ9HonDXV7kJRS1s7Mz2HTn+UlvBzlEjm1s7+7umkwCTln8NlChDiIOzIO9EEJyOzs7dXR0NNgDgddEgQaXl5cNLE+n08EJyut0aZYXGYUUyp7Sp/SUfBqAVE7r0CBtw1xMWgqq3dvlcvnoLBIMguN0EBu3cWNjo77++utaLBbNPZtMJnV+fl4XFxetr6YFsT+74hZIDAJ99ZoGyGNzc7Om02mLX2ac2nRxTLZHz56i5LlUlDlfSX+HbTIF0wat5yU85TVYUUOnp/io159EyVbyPe+E3yzU3lDIc7lxKhV00rznGfRCrO6vDeZyuXz0Fr2qx2fl8IwNj+lgo0eoBORogJFGI3kMNAvI8X6EBDd+CdBoNGr5/fA0zzhsY/lhDszTKHWU9dXVVZNFvHOHUUgEYcEbeUa+zYtG604rx7gQrx+PV5vgRqPRAPljCAxEiRTc3692OHujXfbBIUHLRK4lGADbkFdVS90F4Eyn05Z6nDz2VHmRUXD8u4f8EiH1FFOv5HO9kgiMSbVLm+ECI52qVUycCWYDiFHPq1evajwe1/n5eU2n05pMJnVxcVFnZ2etH0bnTGpmNBAXpF36zfPpgpJh4cPzUukmzaqGitp9SkVno8vzPSTvZ5+av0TMieQzbGOD7/5wj2mHUknj1GPyHt+kF+PvGAXTJhF0KmGPyfSBD8mxtwe8Dul7zj1fVTVAtG7fBiWNcI7dcW2UlMEF/8OjbsuLvewdSLDlMYKmrayd24+RIoyEQkXhen0NpUrIlqNsLi4uBuEd6MxLsTBS/I4i5zrt5brD/f19OxCPvUbz+bzJH2ms3mTK855Lh9pQ5lVV5+fnTZdAX/NNz6OEBy4vL+v8/Lx2d3fr6OiobdS1LuMZ88toNGp6BI/hOeVFRgEiEbJJQc0B9hBrosYUjHXteh3Aewd86iP9QkHbQvsPhe3428bGw7tej46Oaj6ft7Sys7OzgevrsAOTjTudxtBnvadiMCpFEM7Pzwf9hD7OEEkPwTTkfxuCROamKfX0UG0P5afByDFxv/93TNUnPFJsGNz/9Bqt1DLM1Xu2h+rTMDNuhDmVsOu3ILvv9M2fNniJ8NN7cR+998A8Y+XjMbifDiFZpnzeDnPgPQvuh3fs473YI0AZe76oz/RFQaJcMZzIL/faw+B+PA+/q5n8fMIpKDyjZurlgEqjbXQEiN6eODqNPQK5bpLAyWsZPk6De6mDdUoMLaGu8XjcjKlpbhkkEoKRevPmTTvyxq9xZe6dqYhHRprqc8qLjIIHlsiP7+vKOoTzIS+BiYBRvJHFZ7JgMfkN5kojRUjJedhV1XZ1ck9V1bt371p6GQyEYXBantGCjVFmIFQNd/vyLK8vNDN6XNRldGkDQb3USf1pkF0XdVMvwgwSM1JfZ7zXGYI0KNCv1ycboB566oWLsm73oWoVfsj2egaJ+3tgxpk96WG4jvSs8lp6EObXFFwjX9OzJyM9w5X0t1FaLpcDEGVeBfikfBJuMb29Ka2qBug5PRW84Kurq0EM32MndMp3ThxF2R0fHzdjxO5fzkdiHPAX3gcA0TKFZ0E4C2Mwm83a4jbGEF50mBejRuiKsdoztUdyc3NTBwcHLbsRnvKc2XPzH9fPz89ruVzWwcHB4D3WFAwutOL0aNZqnlNeZBRAAEZtRsi9YoWyzotYFxaoWp0JhDtJ6AeigQiMzh2jdJvEWUFPWHwWdphA3LdEkzCJlSputWOUVSvvJhdQkxbezZjjtnKCThkOM0p1XNZI1QrdSjrXKnpKNhVFomW3kfPK/xnWSwVnYwqSou5UjOvQetKk5yUkmCHsk33Jtj2WpJPnKsdOe9ln085zg3ylnHCv6WvvMelqFO+2c02CheHRaNQWYH36MHMB0gW9e7HUNEXhEku/vb1tC82Ej5C7HBdj8ztMaMMeBTLJ/gePz4khGEADMsZmut7d3dXZ2VkzVBnatWGgv9DA9/Abumk0etjpfHR0NED0rH/46ArPWwKM+/uHUw0ojDm9YepBj7Dg/ZzyyY7Ozg0XTxkGfk+hSeHK/6tWRoHt7iAN5xo7tGSlaUXNc1U1OMwOJn779m2Nx+M6OTlpGUmgF/fDglG1iqsmfRDKHqLld7KasP7JYBYCrlWtdnT7GTNIKsOqxy/AyX65/uynFXKO0c+tqyvnNwXAaByhy7h6r19WLO5DCozDMsylwzGJ7K1MbUR6QmgvC2XN/T10b2O/boxW3nx3eMhGNJ+3wrCh3djYeOSNGpFykKMX3q28AT+mt8duGmEIOCkYY4HXfX5+PpgHHzO/sbFRFxcXtbe3VwcHB+3sL2fVoHuQd8/vxsZqsylnhtnzsjFwuMyRgB5Pmf8IieF5mGaedx/D7XmxF5LzCV3c7t3d3WDxOBNGqMOACuPxnPJiTyGt/DriZUkEajSQv1FgAG8iAwX4GRS7DQCMwITBLCAYu3uvXr2qyWRSv/3tb2s+nw/ikw4X8b2qBu9aSHoYrZt2Ro641TBnKmGHiqrqESMlgqH9VERWXGZ4BMv9SSSZBsrjdEjEDO3xVq2OGc66TRPzj72BRM1m8qeMGSX7le3Zy0q6OUOsV6eNA+36maSXjWGul+T8+X4rY99jj8jjwXMmHGR6EtLwmpuPzbZxy3lB8XovAvSwUnaqp+PvyA4v6XH4KPuyublZp6eng3dMGwQ6MpAhWzx/b/Yyr+eb56BbpsUm0MLIopD39/fr4uJiQCNv8mMueDMbRm08Xp2tBL05ObWqWj+Sb4hu0H8Wwi0b0MqH5z2nvNhTsLuzTpn3Cvf0lMC6e5kIEyCfcbjIDOi9BMQQYTwz0u7ubv3Zn/1Zfffdd3VyctIWajBGMKAP1bq6umqT530D9BmFZkVolIVwbGxstJhhCuA6A+EwjOmVnoOvu21ol4jRqDoVoYvbyTnj+eyX6eLr0CWV2zpjZN5wf9JjtVG2wnc4MPvqup4yhj1jmXPC/a4r+5/KP+cOJJy0M0LHaOaiNMqbsA9KGk8BBU27zipy/e5zekDISNLbwC2z7xjT4eHhwDtZLpctrEJWUFUNDtlL/nS4lPqdVjqbzVp6N78RIWC86A2nfrI4jJJmXiznXCNMZsSf/HhxcVFv3rwZ8Bfxfujtoy9cHFL0Qv/19XV7cRK053fWFgwkPlQ+yTEXTPA6pd67n+8UoyyXRIZ2EfEY7D7hJRh5WJidBQFycLjpL/7iL2o2m9XPP/88WCsg1k8/YETWHOzG+XdCHwgE/UEB0e5kMhm8C8JIxMJpJuwpx0TM9kisxFKZ838POedc5Vym4qAer33knLsfDu/YmJqfXBclFTZt9xRv9jHjwjnOpK2Vs/vpfniB00rd8uFnegZh3VhoL9fw3I4F/6nQDvxIKIcNXqY9fAmaZh8P9HcGU86hX9DjtQ7fu1wOswOrqilV6EsqKgqZ8YKQnZlFCiwvoVouly1tE2OSACU9QvrFWWagce9JoJ+EjjE8bBpj0dn0YA5vbx9epfn69evBwX2WbYAqazbWOfQbYwBAvbi4aFEMMinZmZ1HgzynvHhHsy2zr/cUl3/Pki5SrzieTvjIXgPW2nsCLDSJnp2qtlwu64svvqidnZ3653/+5xqNhhtUuMff7+8fzojP3b+J9GFeu3AYC8JGFhJ7AkaFrttMbYVpNMm9Vp7uQ4ZPcv7cng1d3puo1W0l3Y2EragyC8PubwqNQwfJO+6T27exTZ7LuUuFsW4MKfhpuK1Ek1aeG/+OYWFumM9M4jCwSM/H4R/3HS8BGsJzy+VysLfAa2XEyuFZ5A50m3sV4GsUF/PE0RQgYcInHAGxXC4HHgXjpM8el71u74OgPvrvTWn7+/tVVXV6etrqTd6FTpxZxji5h/0V0MoH0zH23d3dNjZo7RAzEQzWIZ144vmjD72QJUoe3ec1BkcznBoM3Z5TPvk7mlMZ9e7Lkh5GzzCg8JkQCICrt1gsBozHNZiFOmxNMQj39/f1+vXrOjg4qO+++67evXtXb9++bcgfQluJwPjEOa0w7XlwXyok7oHJzs/PB658KmF7CG6/anj8xFNlnWfhftm7ynnL9YtE9VbkaWyyb4yHeuzR5LzD1Fa42bc0TD2PIcebxi8/rfQdenI7rtPGx3NluiUytewk3c1vrtO/G5TRT57xTmPQtd8ghmJHQfU8EBaHDV6swLPA8z69k/tA8bRBm469401wBH3V8NBK9ACK0bRA8XG8BDy4ubnZjMJsNhsYEofNMJY+xhvjgAfjtHffx7zwuk3zZ2YIsu/J/XZGVSbtJA2oB+PCnqbLy8u2PuHD8NzOc8qLPYUUyqc8hHVl3b0p/F5cJnSE0je6SYTnuCPPIgyLxcPOzVevXtXt7W398MMPDX0z8TCz64PpvVej6vFipd22VJQbGxu1t7fXXE4bF4eXbAh69E+lnszj+YDxveiKcjHd/Vsa+2wnFWmOM73AVMqu0yjb408Pw32grlTavgdFlO3aK0ve6/FyKvHsv5V+hidM/5w7jyU9OfMjwMHKyXyT3gSI3d6Ds2RAo/y+s7PTPAfXB3L1QjLfCbPwHN5AGhp7qSBtvO3FYtE8BvrgV0zag8mFcMuqIwQ+Bp1ndnd3G5AzP/m55XLZ1hKqqsnn3t5eLZfDtZgESFXV2qBfPil5uXw4DPDo6Kg9z8KyDQPeArQwOKF/8AVntnHI4M7OTvOIkp+fUz6Jp5AItIfE1j3zoXvzPhixauVGORMIIvcUkREOgomXAGOenZ21A/BoM1ERdfllFia6lVDG8k0f8qSZQI8hx5+hkHUomE8j8fTcMoXNayG9utNgpCJdZzQ8b+uQsP9P45dz6P7YOGR/fX96WD16pUHp8Wbe06MH3qfpbo/D9VlJZLtJC9/jzaLwscNqHivPOUQBejTAABzhOdvLpV+8WhIFiMeBdw6qhwb2SOjX9fV1A1jIFMrPaeGsEXCkDPM5mUy6CRH0C31AOuvBwUGjA0ra2U7Qw3LKmH2WEXXf3Ny0DEGeYRF6Y2NjcEYUu66rqiWiEO5h7RBAy3eDKWhnQ2r+oN8YgZ2dnZrP5y3k7f5/LEj/ZJ6Crz3Vgfytd3/vedoyIUEAVhIIC+EeCzgGBVfw9va2Xr161er78ccfB9kvhKR4vzILONSBl1A1TE2EiTKF0mPZ2NhoOxJzI1yO2YotFVwqLsdaewYB+rpunjfKN4pKg5bGKetwv3qI2mPIOiycaXzcLyvUdW24uF/MT89AoVyrhsbQ35PW69pzv5OuNsy9kgaCOu1BJvrLMZh3UBIoYNOcexeLRVtYZaHSm8dY/DQtfcQDfaAeGwqMwGKxaEfO43H4TYfI79bWVgv5YBhSvjnmgTE4PMZCut+RXFWDdbvkOYf6GK/T29E3LEKnDNF/6sPQQSsbI+/Ahi84Cpz7uSd5xAv2gGJOYSUM7cQB5uW5huF5iasfKIn26IT/7yn/j7FgRtF+DsXlNzPRpt071h+M9ggbccbQ+fl5Wz+AMfwMdduwWIlZ+EETLkaMCAYv8+lZ9nUGxfTN6x5zD3mmITci8Zz5vl5IwnFgC1Qq8R5o6P35d5Rm3m/U3Ftf8Hj4DsIjtICx7hktCzQlUVr+lmG43jwlYrZB63lmGSZkrL2FdSsm/57GFV5zG/Qj89jhceiMgiHMRDZPppja8GVfOLvn4uKi7f0xkALw2RMCiR8eHg5CK9AOpcob4nhdbVUNwrYYCNJyGZ/BmRePHfrNpAZCxsvlKruJOfAhf06ASbDFXBCN8PqKPVx4piezfPLc/v5+TafTdpw/gDa9j+eUFxmFnsCvKx/q0Id+N9PDQEwIzEQ2RCJ07vHegru7u3rz5k2dnZ3VdDqts7OzZq1ZfAaN2CNh4ow4qoZb8FFGjCtRtheXqSPj8Iks/ZuFCcZHMNeh2FTWqcSfQq1pvFMB+PdUXFZgqczSY6F9o6Oe8WDcPaVsZev8bBtZG0HTyoYnx0cduXEsQUrGl9MYrzMqSQsbo+QBG4E0nkl7lCNvO0MRVtXAsKPIDaBQkl53AI2jyEDT0AZlxEmemT1FCjd7Ephv8w9I3F40G77Ya8DcJho2LaE73pFfaGM6MF7vVzDPXl1dDULFPkeJtRP0g9cvSaWlH14H8c5uh6ycZGLw5QgJOo7+QnOSbtgRnpGHP4lReEqR8PtTHUllwzP+5D6HGnKhtKp/HHVVdZUNCzhbW1t1cnJSe3t79f79+6pavSO2qgYGxIyEcBlZWWCtiKpWqWkI3N7e3iB32oogww69z6S9FUeuYyRte7narttx8XVz4v6Y5on4XZJBsxi9+f+cQ/53/58yZtzP3Ce/5VzlWTi99nvGLY1fD50lT3NPxo3dFysJ18GYWHxN+qWyZPNW1WqXbJ7mmbHt6XQ6eMEUXhdKeTQaDU5d9XrKwcFBHR4etsPsCNmBbk9PT+vi4qKdX+aD2zwO1hygEeeQWfGD9E1PaOMFZIeXfJLBcrlshsxvT6S+3ADmIzFIOMFz4fWgVcO1GvrBc9AsT2RIbwF6mzdynQlPBiN8f3/fsqz8crDnlk+afZRK6mNL7xlbfJSe45dVw7NheoLHhKHg7+7u6uuvv67vv/++Hb2LO0fdCJkXorgOesm43WjUT1MzesblvLi4aBkg3NvzKjw+Cu0nvawQMiZPnd7lDRrpeQu+5rWJnnLKubMRSSTNtYx5Y7Dok+maYQOExEjZvNAbV/7f47cEHz2lbVr0DAceJs+lwUja5tzBVz3vwOMyus9xuk1nLZmPPa/mJ3iSFFbWC3zEtNfRGDcIH4XMegJKKsMZGKrxeNyMD6FUFDAKlzFvbW3V4eFhnZ2d1f39fVPAV1dXg1g816GfE1Dgf8YCWOEdCoSazs7OWp+tN6gXJA6wIwrBNXuc/O+wJUATmjEPbKpl/qAFBtO/OazFeieZSGSYsQjf4/d15ZO8jtOWNRHTpyiJ1EABFOcls/BCH2B8fr+6umqpZT///HP99V//df3444+tXiMOhDPrAiVZcL25LZUFf3gJs9ls4BL6Xitb09Chq0QV6Ukk3dP7SHS/ro519bk/ViaUNAb8b2ULvew+9xC/FXPPeKWSTM+nN7b85Dt/NgDO7sn57bWVNOh5ENCiN0c9Wrkux9vTkNh4eb/AeLzaD2OvKcMWi8WipZ7OZrO6vLxsRgIamGcBW9AJ+bm7u6v5fP7ofSCWS8aMFwCgQoYdNmKDKIBwd3d38KpP08ObylCMNgBV1UI+0GEymbSjNOydnZ+fN6Doo77JNLq+vq7d3d3mLXGvQ8g7Ozt1eXk5kG2H3tj7kXJjnmLHub1d6uc4ENJs8ZoI9fWA04fKJ/EU/hiDYIFcd28aHRgTxrYLDIPC6Ha5eBkHaOnNmzf129/+tjECR+WSdZHxZtxe2iSOSn/ypNTeesBo9OCOw0CeKL5bQSbaq+qfbMq9aUDWzVXWnWjYStT3JuL2vCWyXYfI3Qf/36PVh767Lw5NOR++ZwyTDj2+fcrY9XjcxsHCbw825wJFyndCjPTJCo/v2W7OIW3lIjEIcjqdtv8JGTFGwND9/X2dnZ0Nwg8OnZr2PI+S5jgMePzy8rIBMuaGfmGoWBwejUYtXdSyS99QchgGy9vW1lYdHBw0b8H7EOwxO0TrtQDSTO3tsGeCo3CYi9ls1hajQfv0hXuqViE69I7XsaCdM7tsuOgjz5GFRGjLvI8eoj3CYHhPBm/PLZ/k7CN39GNKIqusl+uJ4kwICG0ljRVFoHkRz/v37+vg4KCur6/r/fv39Vd/9Vd1fn7eUDtGgVQy3EYzsuObmWHRWw/gd4wO8dCqx4vnqZB7ijDrNo3yMxWjkXTV4wPaoJnrAWkZ6dH3LB57LnxzPZ/rGbLnAAZ7O6BU84hz9k0jP9sbh+nmvmQmmZ+3IbdhMY1z7nqhTq7bUPt36Ap46NWJEvdeHfYS7O7uDvpsOXFaKPThf8t3ygb9GY1GLfRipUXYpWoVMsEAeNMmY4XHWPjNoxqMkLe3t2s+nw9ekPPTTz+1OvHMqT95DJkldRX6wOubm5ttgd48wOdi8bA7+fDwsBaLRTOCqQ9ZJDdP5d4Rzy0hN4MlXkHqjbKee0JtGFtkwPtLnls+2ZqCmdRC95Ji5WaBd35vT6gzQ2R/f7+lkr1+/br+3//7f7Wx8bCb+De/+U3LRQYdkKvtBVfa8eKUEaKFyXTBWOElMPG9eH/GsnvIFlpb4RvhO85o1GtPgN+MZG1400D1MlwoPe/CzN9DKYnae2jd4zS9e4oURZFK34rZ9HN/LXyEWpLmnlfHZ3teiBV5Ivr8jvDnvCRf4+EmTZNPeCY3aCIzztYjtGCFAfDJtQP4m01hhHlGo1ELF5lPMAyOv1dVkykygRwOub+/b+tsGDHzAHxtY+dEEPqPVwHQy7AcBtXtAHwwMEbkrG2YL2nPL+9hYx20wzgDCFnkZz7tHRps2ejb8/ChhQbH9Mv7QnZ3d9tJCcvl6oDC55ZPsqPZqPA5xuA5SND3Zlw+FRh9yBj5aLR68ff79+/r8PCw5vN5nZyc1C9/+ctBXHAymdR4PG4pb3kqZNUqxsxE9pS170XYOXXx7Oxs8GwvXcx1rou3W4mkAbJhMbpM49HzSuxu0wej0Jy/3hz4t3XP5XfzgMebdRls5DX63Qvf0A/XbYPjMYOys3/ZHh5V0suykGP1fet+S6/DbZonmE8bdpQVWTdehDS/4R144deK1WPivkS1VTU4y98hHYelMgyGsQahmyfJ6mMHsL1W04h+4CGSyTcej1uMPV+/6blPo+FTV/f29mp/f78ZCxbZk3ecZHJzc9NCc9AMQ8M4oA18zf+mE/21kabgCXjNIOWNPqLPeJ+8s5+eUz7Z+xSyrDMQiW4+VEzEjI+ZWdKrgBmw4Hd3d/Xq1av69a9/XaPRqN68eVPv37+v0WjU4nDELZfL1fqEw1Oko/q8JccnrViNVqfT6WAbP31fF/P2/73wxDr6pYvMfUkzG00rHP9u42G0nmEat5OI39d7yHadh9D73/f11jWyH6mA8j7PQ47FfUhlSLtkeyQv5jgTBdpweRwc8ubrub7V4wm353475k5dDi2BZjlLiHrwwo2y0/jkHM3n85YdQ399vhJeGEc8V9UgDOVPxo8hy82keDbL5UNIhcXwqtUO5IODg7avwCnWZBZCa54xr0Azh7OM+m2c7VVdXV3V4eFhizJsbGy0cNJ4PG67rwGENpY9EJH8xHj9vhivbTI3eHOj0ajtkP6TGoVUKB/zHGWd8fDvuEo+kMtMVFWPLPli8XC41+7ubl1cXNTr169rNpvVyclJHR8f1+7ubv3+979vawl+G5KJTiHjIF3X+Xw+iHvaW9nc3Gz513gJPXRO/9eh5x6D9IyjlTn/G1mm0amqgYLKbCuK++YYctbhvtsQ9JRWtuHf/GceW4cYue7FOoCBnzfdeigr2/X4Pe/OSDJd0kuxgs97TSdQb/7msTosaDrTfxtlezD2lnIjmQEMyoXvm5ubNZvNmlJ3vruzcFwfG7Jo6+7urnZ3d+vg4KBOTk5a+NQI2ogfuUVpu+8GhshiVTUUz+IvSp5wLa/S3d3dbYfLOQSGnGN86LcRu+me6eh+x/R0Om36ilR30kmZf691saiea5P2KGlvNHrwfjhqnLUFR0+8BoPu4Znce/RUefHmtZ4S+RTFQsEf/7tN/2YlMBqN2vG07F7+7W9/W1VVb968adkVm5ubdXBwUMvlsuVEe5Ob0THunvvROwXVins6nT56YXgigXXjt4Kg3VRyVY9f/JLPJgo2cyYdUzHm2GyMrIDSU/Az2TcrL/eXT4ftUjlasWd/egjaApx18Jk8lsbTddCO47meh+yb/zIZAoXIZ84r7eYaVIYUe8LeGzt1sdsYJQrPo5xQNA4vjUajpli512sO3tjlncMo7L29vYEnYdkxn6HYbDxQ4jbk1IVhwTPgO5k3zIP3Nhm0eG2B+c13RDvF1HNGn25ubmo+n9fPP//cdmzTphfkvVENY5QL+e4zCN9ywnlUVStgapCMdwTd/ca455ZPdszFcxq10viQEbGgGyEwuU5vc941lpWdkvP5vI6Pj+vs7KxOT09rc3Ozjo+P6+TkpCltMiFcX9XqOATa9qYpK1aup9Lx6YkehwW/p5R64ZE0Iok+jUrtovo30zYZyTTNdq2IevOUyt+K2nWnou8ZOxS7jWh6Cj54rFdfD3FBm1S+GRawgPYMsOfc7Sfy9sJw73dKjiMNnefT/OJrVla9Z+A7v4+EtTYKdfJ71epdAvYmq1YhHMJP7i9n74CSb25u6uLiorXtJJGcS3tVKDefW4UCxoiZRzEcGDbCvPv7+4NUV+jkvQIOAZNKy7HdKPPxePjehwypobDpL3uRMH54DJYZ+m/AwTXGZz4FmHo3tPeYWA5JJ+bU1I8pn2ShOUsiRspzr3E90ZaNQsZ4rbjG43EjBieh/v3f/30tFos6ODhoG0p2dnbq4OBgkEqHZ5DZRDmJnih+wyCBsg4ODurq6uoRwyfaZjwO9SQdjJAZr5+3IrDQGRWlIc4QSu+ZdXPle/iehudD3kp6F9DRiiHneN1zjAdhhc4Yc99vAXJfkp5ZesaH+nydPq2jHwqm116Pnp4/e4U2pPmMlUlVDRQbfEJ2EOEbxuJncr74vr293Z6z18N6hbOLeEcy6NrgwbTMMKQBBQoR+QLJVz3II+f+JD1QxD7Ezx6eM+ucPovxn06nTSd4/jEipsly+XBOEkd+TyaTQXYUShwepT3mhrqRZe/XsKGczWa1t7fXElise6AZ82gg+iEgTnnxmgIE+fcoFgbcXlbeYb6qx8cJkHPM4vLFxUWdnJzUaDSqt2/ftoO2jo6O2rZyjABteYyu35kEJrQnYDx+OPularWgRr3U5YU8o0mPPSczDWD21cVGq+ddpALrKWPX5XYdA6WYRjYARv9pdHgu2+nxgZ9Lw5d18r+VjxWqvzvDq2es0wiZPtmfNBpJV9eTc2P6Jj3Tu0ApOZxV9XgvhdsllDEajZpyREHRhvvkncs8Y9Sbm0dHo1F3lzEehcMe5M/7pVgYFa8zQAc8AH5nwRZFyIa5+/v7ti64tbVVp6entb+/X5ubm4MwilPD8RowOuYJXu1J2GyxWLTXXjqcZfm+vr5u6acOrzHPHLDJmoXTey0LGHDzIXWwduMzn2xQ4Rs//zHlk2xe+/cyDlZitrLOv2YSLYCs/i+Xy3r79m393//7f2u5fEgNPT4+rh9++KG2trbamoO32rteKxELC0T3giP3s9V/f3+/nW3uZ2AehNrKpGp1mFcqmUQS65B8z4DkPOXnOoXdU1r2Rnr3W8lCS7flcXph2/SxEXnOGP28+5qhvxTi7JeVtuuwwkz0zlh8v+m6Dv2mkekZNX83f6fX6vuyTRsg+I45Yg7wjH2eD9eg397e3iCLxyELG1M2nVWtlOJ4vHqVpw+Sq6rB4ZI2rvaIzJ94IE5nXS6HefqEgDc3N9u7GHzYHr+NRqO2edVeJnPkiMF4PK69vb0GIKmHZBPzNP3gRTtW+js7Ow3UVtUjxW9e87PmNzwSvAyve7gwpzY2zymf7B3NFqbnlnX3p3X0wlcKqBUVSntra6vu7u7qq6++quvr63r37l2NRqP2JqbLy8t2IiIbaaqG6xe0774wQd5JnUqsquro6OjRJp9ElFYAGfboKeanDEHPo3BbNioOnaCUHR/1mBLpWnDXKVVvIqO9NA6JlnuGMT0Sj9OKo+cag2x76Ktn6E2zHh9aqGkvlXTVKvupZ+hs5Px/GoR1St1j64EJ86kVjZVr1TB7iiMdUCwgV2fE2OiMRqO2VmDec0YOL8ZhURUFyqkCLMKiPL2Yipwb5EGPqmqxdKd/Y+hYIwBA4gktl8sWymGRnNAyxiLl2JsY/b6TqpWhgMcSGGaaqOcfulBvVT3SETxrefQnxpj3WgAi14E+klySt58qn+RAvJc+v844WBnZ1cyYPt9hPp776quv2lrC5uZmffHFFw1hcCgeL9nuxZh747Pis/DyP4drvX//fiC4NjSpXNcpc4+ftrNP/O97rLSgVSqiXIxOA1D1WKG7vQQBqWjTk0jE1Bt3tp3Gpzd+K+KeETcK7BlnI91EYwgpAmoj5fsSROQaRiq35HcbbI/Pz/EbCjt5BE+Ie70Lupfg4FfM0j4hFpReAgMKC7T0xTzG/Dpmzn3T6bSts81mszo9PX2kuO7u7gaL3ZYzDIz5mkVvlLF5inGS4np9fd3OBNrY2GhhIZ6nLWc8LZcPC8hEAAgjOYRtOmHkrq6uBh4V/MzmOsukZdGAJ7MpPSdV1bKsOOwQfkUm6ItDfM8pn2RN4d+rDgjBhGCJraggHtdADr/4xS/q5uamTk5OGpO9fv26fvzxx8YM3thigWZSjLaoH6/CAs8EbGxs1PHxcRMYT3QiWfrvTSVWnlY0/nTIJY1qT7lmvrXRqY1EL2QFk7nuXru+33nVpmEaK4+5qgZClQKSz/UQt+lHfZQ0Ch57j99yrJ7DDGv0QkQOrfiaaWEvzVkxHwImpotlwLyaIa9cy7LiMe9WVUPSyIb7BDizkczQoxe0vS8BBZ5pruwGZs3BBsVAAl62N0Doht3H9Bs+9MI0ChJab2xstDUDeygYUL/HAFROP/CwXBeeD30/OzurV69eDYBAhtqsbxJMWQ6yDp6nXzaOqcsYs2XtQ+WTZx8hOJ+qLhS9kY2tphUJGRFVVV999VX967/+a0MXh4eHLZ6Hi+s9BolauW7XGEZP1M/3/f392tnZqXfv3rUxIIAInifZ7ea4PblPKVQrByvERO5uy+6p7+eZZN6qx+cfpVJN+qXh8jO9ezPT4kPFY885TM/IiMxj4zl4rIfkrax93ZksvjeL6ZoG0saKPrge08eGrEdf09i/2fCkh2NUj3L0WUAoxjSiiWbdLnQknu026fve3t7giOnxeNyOtgD9cvREVQ0MDG3f3t7WdDptv1etUmWNjB2O8emweAFea7i7u2vH3XhPQc6dU19pI9dr/BItr7FgSLxJzvS0twdvJlhxn2azWRtLHgFko5O88lT5pGsKves9TyDvTcTpOrH0qRCtABGq7e3tury8rC+++KIWi0V999137be3b9+2hTRv92fiYGyHU+gHbaRXwe/07/j4uLnCic7NVBnXToVsZUHJkBNMmeggQxmJNGxQcx7M6NyfCHfdfOV3t+8xPsUDjMtz4TFnPckrqYBSCaLYfGxCClkKpZWn2zKvMN/2/tzX9HpyDlJ592idxoC5qXr8kinLDgg2+czjcz8yxZGFVerHeHmfhvcaWH4c0iDcQr/JEMQbIc3UR03jcc9ms5rNZoPTSr2BizoZF14E93Lf5uZmy/P32O21+XcbLdp0mA56+qQDxsuhg9CAZ/AmyKKEVqnMqS9D5AnYMJ63t7fN0EJnr9d8TPnknsJzOrDOWPTuG41WruI6ZMY9CPOvfvWr+t3vfjfIiX79+nWdnJy0re4wcRYzdYYgqoZMRj0c0cvrPVOQqQ+0Sj1WgtAuUUHSw33k2TzXxItfRsXrjLcVA8xuRrWhyefTKPXqpjghgHoyXm+lbuZfp+zT4PHdSpNrGQNGyHJRdZ3B8jwkMEhaJlrvGSwjeNPTSsDKN42LgVEaXfcHJQ5SzYw4b8rKYrlyuDGP2jZ4sPKj2AOhX94bwWmrGO0EPxxZcXZ2Vu/evauLi4vBvC4Wq5fqEFnAI+CaaUIxUPQcWIboMyEkdBGyT/+c5AKtbSQwFPbM4APTymsQCSIznLZYLOr6+vrRET3Ms/nrucbhkx2dndeTSa3wntNBC5BRsRfcYG6Y4ObmpoWJ/vCHPzRGOTo6qvH44U1Ke3t7jeiOtSWSS4XheCeMS5+2trbq6Oho8KLxVHpWuFYcvr+nXHvI3iiiqgbCliUVSAp/KulUaj3l6vnpIXcblYznmxfM+F48zb67rxm26nknPRrm75llZvTstqykPVfUYZ6x8syyzpgxJz3jkXT33CTPeEHcYCXXF5ypYv5ZV6dpZABTtdrg5UVhz33Gy00L2uRZPGwUO8/RXxbBLy8v6+zsrGXeEHLy8RrL5XJwVDVoPtvEoFEPi7ZshPNeJCILJLPgNeDhgMqh2Wj0cNrr+fl5HR8f1/7+/sDbSNAJ3aCF+SyNgnkW2ed9DbypzpGQjy2fLHz0VEkD8Nw1B6NX/pzGBtMQF7y4uKi/+qu/qj/84Q8tP/f+/mGT2sXFxaOFZRsYH5UBoxgVpMXlmfF4XPv7+23Ry2NMYcux9zyDvOb6rFDS8DrLIecllVsqANPZz9oguR763kPn7l/vO/fkomovBJLeTRqfVKzpoVnZmuZ4Vt6Nay/GCjMNsK+louvNXYYanlKQ7muv30n3lCuDB6NQG13kCPlJQGQjgpFjYdXG0QbFc0fuvJWqjZKP4aY+dh3z5jbzgRd/x+OHY2m8r2I0Gg32PtzfP7wX4fT0dBBvR/F7Po3YOR2Zk01p02sq9nLIaOrF/KtWIbXz8/Pa3d2t169fD943fX9/39YtMmzojbSWT/O25b7qwVjO5/NBBMPz9DHlk2xeYzD83/MCcjAfKhm+QDlTl2NrOzs7dXNzU5PJpI6Pj+sf//Ef6+5u9SaiN2/etHOPSHmDYLmVn+L0w95LKpg0XvjNgVz02Z6E3dFeuCPpk4rDwmxlk4bB9biuZNycFxuMHhKxQlqH/Bkrn/YAjKjdJ9OgR4v8njTrGaaeAenR1F7KOgXrevJ7Gg/fY2TnttJQOJ4NP9qY9TwP5qh3zRkrPu6Z/nruHALJ8JOVEuPMPUIej18+j7K0l+NxgWDNJ1knitr3EIIh/TKBmlPLeVkO6xiXl5f1/v37dggmfXFWlEEAeoM1CGhmLwv55oRV6ygvRJOe6iO5oTWhueSxlGnPoz8xslUPRuH8/LwZ1f8wo9CzkOsMwh9bt78zid6OzuLK1dVV/fVf/3X99NNPbfLv7+9bRhC5xgiOQ0eebCsIGKwnnAgfXgKvy7PgQY906xOBmxFs6RFeF/cNZeBYuMeQhoE2/Gz2tWeY/IkC66XG+nuulSRf9LwAK0LXlwLiPq+7p9cn2qFv9hD9e/IAaHQdMvcYbQBMxx7vGLV63quGKYnwrftIPTY0XON+G14UBH/Ijj2CqmohELflfjkMlYYkM+xy3cZGxcbIi8W+x/Q1natW+w/oi0NC4/G4GQ6M0Js3b+q7776rn376qYVa6J+NCwvAeB4AR9rnfe/j8bguLi6atwI9oSnGBLpxrAfhpqpq/fZ8mU+sN+ij+2pQQRiNBWeefy4Id/kkRiGFcN29H9NBoxQzX7r1LBxvbm7WL37xi/rf//t/D9LhXr9+PdhSjqvqReteaMZ5xzlGt81xFomy/ZlI2ye99hBzIu91CNltOrRj+lEylOJ7ud8eAyXj6PRlnVK3IGfd6S30PIU0Ylmy7oyxU1eO1/13sZE0bV23FWOGw6xoeR5698bfkxl/UqdBwlMGzp+98eY1AwL303sOrMS9OI8R9Tw5tp7HuWTMnE97/QY2ePIO7fCc9xxAP56pqoGHQvu8YKuq6tWrV3VwcFBv3rypP/zhD/Xu3bu2kZW+GF07y8ihTmSWdxqgqAEOfuUoXjL1+fwpxsLmOegGvW2E01Ow/Nj7Yt8C76U23T+mvHjz2lMGocfAzy0WHjOslRdEvbq6qv/0n/5TXVxc1OnpaVPmGxsb7QA8M3VmfGRhMjm7hEk1o7O4fH9/P1gYSqWVSoLJtOBlOMaLVamAU9lQEj33DEtVDXKZs1gRuY1U5mlE7XVkyMJtc79j0DYOaYzWGVn3KfvfM7IWIIcsrODyXvc3jY6NRHoGOS+mlz2UrBfeyY1GDjXlHPRo3OuH9w6Y37z/IkEG/XVcnbo8R94HQL3QJHPwTRO36zrcL8+pi2nn/nEN4Ecf0BOTyaS9bvPk5KT+7d/+rc7OzppSHY1Wr/G0oad+J51w/Pj19fVggZuxMNe8/ezy8rK9U8Ihw93d3QH/el5NC8tbehQYBMJleC3rwMSHyifxFHrIsOqPs1JZB98tLDCgN6t9/fXX9c033zQCLRaLOjo6qsPDw/rd7343OMTKrwJch3TTVWNyMDbT6bSm02nbqt9DZh4/3oyFL1Fb0s4CZqbICU6D9ZQydd30wX30GKyYEoUbaaYCy2KjlkrLv1mw3R/uzd96Srg3lny2avhODNfv+bExWWeEzBc9I9fzhqB9zm0a+XVhNPMM393HpAf9pF6uMTf+9BgxDJ7DdfX3ZB36phwQEss2UWRWgsib16UcNmHcDj0ha3gkPMd5Z5PJpI6Ojur4+LhOT0/r+++/rx9++GGwQc7yST8c5mMN0WGr0egh44gIAr+zruHnWZDHKEArRyY8pzau0IMMzNls1nY2j0ajlsmVwOG5huGT7VPoIZX87bl19OoxQzpN7ebmpr788su6vb2tn3/+ebDC//r161oul82CkmpmZGEFULVyo01Uu7Pj8SoFldxpx/WNyBJFMQ4rQ183AkpB8+JdTq4XxdMgUOx5+J40OIyX786KMEJ1G24r+51pjaZBGuCecXTbbj9DPjxjlJnPW2l6v0imPEOD9O7cN9fl/+2N+N7M/qGkss76nwIcjombrkkf09gljRD1et3N4CGVuOfP9DJtx+PxIL6evJBzb6/GyNsG1+Ox0WIczC9y6ZBQVbU3kh0dHdX5+Xm9fv26jo+P67e//W2dnZ0NMhup256MX85TVU25E1ngD49lsVjU5eVle5VmHhViGpo2NgzQxGEtHwToDXTL5bJtaPtjyic/OrtnFKr6aXxP1WlF3VMixOeurq7qV7/6Vf32t79trlzVQ5jkyy+/rPl8Psindkqq+0Z7HHgFA+Bh3N/ftw04BwcHNZlM6qeffmp1JIK3ArMwpWBbkP2/lUUK74cQtOnc80QwWJSnhHUdas95MS2zHguAFZXvz3Glgesp5awj209EbrrTVhpiC6Tbs+HlmvcBWGm4v05bTDpasef8GrDQ//TY+D0Nao7NvJR08FiNwm3cPM+5gdThWI/dMpy8ZGPjdgxEoG0aM8tGGnuDMNMzET8onXe4s7dpa2ur/u3f/q1+/vnnlpoKAPX7JUDi/I7nY6RfNczK4jWdHIjHWNFjpiFzbR5Kz4GxQRODvuVy2Y4KSV33nPLJPAUzek8Ae/d/yINIJG9hnkwmdXNz015m8+OPP7Yzxkejh3OIXr9+Xd9+++0gHdQMZkJiECBo1eMt5hiW4+PjlgNtJYLiMIPkQm16Abmm4Am30nPoaZ1ChK6p4DObJJW4F7+e6l/GxqkrvZ5eP9zfVOI9MOH6k6l7noDnlHt6Rizv928Z/rJC91i5r+eVGLF6HEa18FOGrnoAwSUBQiJL+pwZa/YAuadnKLznwDS0sfP95q8EFlZqbt9IP72PNAymnfvoMVtZ8pvBX+qP0WiF9On7zs5OffXVV23j2v7+fv3000/1/v37Rk97T8w9ddOe54U5ZuH4/v5h/8T+/n4b02Qyae9+qarWpx5oMG+gW+wNOaTG7x97Oirl3+Xso57w5f0fqs/FSgjEvrOzUycnJ/XXf/3Xbc3A71l++/ZtjcfjtttxMplU1eNsGhid9DB7GhQr7cPDw9re3q4ffvhhEFKi37buvTHwHfp4UZm2ep6AjWwvzNJDvBZij8OMZoF1vDONRA/t9pRZKgTTxP2wQnNf1oVfXDyHGY5xyRCTlVwqi0SfOQ+9vkG3nI9UpMxfrq3YC+gZRep3nR9qx7KSxtd9SH7pzWkuRGfb/s0x/55XYB6B7hkSZQ5yHcM8ivKjbRtX6mGhldT1TKGG7oRdMAyvX7+u3d3dthh9cHDQvAaOrtjY2BjsGMajGY1GbeEZ8MiaBuPlOYxMVT1KHzXoog3LQtKRDXCk3XsNxfP2MYbhk+1TWOcRvKRuf7cwkoO8v79fe3t79fd///cDJt7c3KyvvvqqvUB8NBo1o2BGszL3CYpVNVgI8z1v3rxpL+jOLB0K6MULUc7USCNaNYzZpwdjJklBtEIyAkt0lLR1G1ZO/O7rWb//HCvv9b0HFrJu8xC0MC1tmHw/99Ju9jfDdu5Hz9j0kPdTYMeIMXnU7XoOs86st2dUPa89GvWMcyp67nO8P+tP9E5JPsu5yvnM/nr+MsTCPbk2kN8ts6lrsh3aSGNFfy1PrDfS1u7ubn399de1v79fx8fHdXBwUL///e/b63zZ2Eb/881x9pqQeRs2jBr98svDTNv0Djx39NfXoE3qreTD55QXG4UeanVn/th6/bwRLkS9vLys//pf/2t98803bWMI9+/t7dWrV6/qm2++qZubm5ZTnO4ZBWKSWub2rFAODw9rPB7X2dlZt39WYL0x9IoFKZVSKqTMEXf9icL8XBrvbMcCY2WS85djMX0SrfkZh44suG4jFVuvDxaE7GsqxN7/Oc5eP3uGMefW/eUZfifXvkeHHi1NM4/Jgs29OW+pzD80bzyXyDn7Y8Taq6PnsTw1Pt9vLxkFNh6PB+cGgXaTlmQnmd78Zh5zyq/77H6imKtq8HrMqgdAeHR0VHt7e3V0dNTWGt69e9deB8rz1J0nOfukXAAiB+IdHx+38RicJrgxDzMmgCbGjX0R1GWP13yTuvqp8snevOYJ6jF8dvS5BsTMQOio6mHijo+P62//9m8HaaZVVa9fv66qqrOzs+ZaLZerndBWnNQPamACc0w7Ozt1eHhYp6en3WwPIyELaSqfbJuSYYCcwDRAvfZNM7freu2up+CkMK1TnP7NCirbcns53qRBIkrTK+mZC6OpmHvGxaUXMsv+Zd+5v6dITctUmE/Nk0vS0sq+qr/R0c/1jFaPn3IBOUNaKR/0OZG5++S+2Ngnf6Hwe3PjjWs+ImY0GjUw53m1h9oDD14/yfl33Va6ps94PG5H2Hz55Zctnf3bb78dgEue293dbRGMjY2NpmssS4vFQxbS0dFRe5mR13GgEXoEsOojPRyq4sgP3gVPe3kEiMf1nPJJj85eh4zWGYmeAfEzOWFV1fJ+//zP/7z+8Ic/1MXFRR0dHTWFvrm5Wb/85S/r5OSkLi8vW7zQQmbhw8LnCy+YIFAVhoYz3Y0iE7mvM3wpoD1j0VsUNmpNZZFCZ0SQwu1+9PpN8cJa3usFdfqRBi3Lut/XGRyjwOzbOs+gV2+65DnWXjgsUVUaqESo0MT1WiFaAbvPHksiWvc1M4E83t7cZfgleS0VdvIWbWZdPIusQI8esLGByg1w5lv653mykU7Dghdg5Zl07xlM981gJecjDSR6582bN+0gvuVyWT/88MOjLMa7u7va29trGUfj8fjRfqj7+4edzrnBDAPga+ZRew+50S/PVqpaLURn6V3rleeZjjWlh/w+5pkPFbs/y+Uq/jYej+sXv/hF/fM///PgBeGj0cNbnXjtJodVeZMbfYChSRFjsqpqYGU3NzdrOp22nGYyjuw6Vq0UaS9TgjFY6aeCTESBAPQQUE/Bui0YzALxFOrnnuyLv9vg8Ol4ac8YJLJN5QkdrNySP+yV5f2+7v/TS+vVm8p43Rie6p8VP797ftLT4BmEOo242xiNhmmQBipWih5f9rX3Ji7f05tL/540ohA6SaOQ6yZJq3W0cNaer/G3s7MzWNeAzshbevnuA/dXrZRlGgLfaw8DoMj7Ur788sv6y7/8y/qLv/iLQRrp/f19W2cEtDK/PpYDo4BuYFwYCdPaIMz0pH4yLb1GlO9VcUng9FT5pNlHPeTyxxajHAjDQVS/+MUv6vT0tN6/f9/ejwCi//LLL2uxWLRXYvrUQPqaCo63SyUKRzDfvHnTTl1lfEYAICGnvvba6yFR7vG4jebynnXC1fueCjGVqQ0Q7dk76iHNRPNWBJRUlD3PKEsqo3W/5TUbLdpbp9xTwfWe99wkynSbvXafOrjORt+/p+GC/vl79t/f1ynx/G5jlAaCsbjNnrFyOCbpwz32JNMjYHy9dkG+7qM/OXyuanjCgJWzDVXvBGTPnXmYP9flPi2Xy3a4Jkf1f/PNN4PQFpGKXpiR/zE04/G4nVHEeO2hMWbmAWPApjSvY/T0R6/8SYzCOhf2Y0uiXl8fjR5iint7ezWZTOry8rL+/M//vP7X//pfjVg+NfWXv/xlOwlxMpnUzs7OwJ0CTYzH4xZWyqOCuW88HtdkMqmDg4N2nIVPNKSPVcMshJ57agEz6unFtR3vtJDBQD3kx58Xrt0/fjcT2Tug3/ZO3J6Vl133nCvKU8aoapiH3lP6eb2nvFPweorG93It3WgrsV4/qG+d0q1avZvB13uhpp6B8Fhzr0Aa1ZQT81zSOkMm/t3jQgk5hTKfNx/b48u6bSSRq55MWOECvtxv+mT07/c6AMIydm+ag9xtiJKnaBs5JIaP3nF/OEPp1atXbUzffvttVVUdHR3V7u5uizgwRmcgIU+8J571UXgQzyLfELhcrk5l8MI7f+lNr9Olzy2f7M1rH9Mo5SlD4onmXQkbGxu1t7dXNzc39e2337b4G4Ta29urt2/f1t/93d/VcvmwzRyj4XgcwudNJz3hYlc0ruE6pWC3bZ0SsXA4Hzvb7LVhpJWGJhm9x/QprDDnOlSRBsTt2+g4LNWL72Y6YBqHdUajh2Z7RsifGQZIwEIf0hhlCMZG0+iWNtZ5CT0aeg5zbvM399neAtczFJeGZZ3BcH/dhn/zGlLm88N/HxqjC/di4NJQ2bPmHn+6ngQjTh3PhI8enXtrY+nJ89mjA0rXi+CTyWSQCci5STc3N3VxcdFCTlWrkJjHzWnNvNIUWtMuEQno5TeojcfjAYjFkHtdosdnH1M+SfZRD9F96BmXfMYIBKbc2dmp+Xxef/mXf1n/9E//1PYpgEgIK93d3dW7d++aF4GVhflRxBxZy0FS2cflclkHBwe1u7tbP/744yAGnMLAe17zdzP7OgXXQ/tpSNyn3v3r5sPKzYptnZA79OUwV4anqNs50T1UacTb4w9fSxRvevvep+rL5/KeVBA9JG8j0VPYXE+DkGPvGYH0JKgnn+VarimZBskX67yLvJabKg02vE5m5O3+0laPr62kzT9WYB6L55x5o98GHdnPBDhJ05wr86bTXk335XLZ3nOchmI0Gg3WLDBOr1+/rouLi7Yf6v7+vr3HOefGB/QtFosWijJfsv7gDWsJqHxago8fNz1fWl4cPqoaDv4pq5TM7+uuj+9mwM3NzTo4OKiDg4P613/910HoCKPx9ddf13fffVe3t7ft0Ctijs4t3tjYePT2plTam5ub9fbt2zo9PR2c95KxzqcOnUqh6AmrGdpt5G+JZHsKO5UV92U2iQXQdHZfs176RX0ZgnkKIPQMG/1I1JpGj3pyt6vvd93r6ksvK2me9DRC7vFHCr5/TwWdQCL76n70lCDj95zkGPO5de3n777msFB6SVWrBIycn+TtXBOwITIvpPFJsMO9PmCS+wF8abRybBSndrofyUPObuI+kkuYBzaubm1t1RdffFHn5+dtDwPj4nhtj4W+8hty5DGMRqP2KmF7MzYu9DkjFDkvWZ7SzQNaPeuuNaUnZJ/CUlEPkzAaPRxJ+1/+y3+p3/zmNzWfz2symdRyuWyr+WxL/6d/+qdaLpftKAyjQywxB9tx6FUqiI2NjTo6OqrxeNzeu2wFbXTXy7s246NEU6nQbqbguR98N0PRtpV6T0Ddbs5JIjm3k4zTM+JpqLK/6xBdGp4ca6+tvMeCkiCEa4mGrTx63lyPjzPlkPp7St99NwLN5/1/7hLOflTVo3mnD+sMoenTuydp6jEnPWjf9OfTitXzQVtpuHOXrUOQDnvY8+B5p3MyjwlqqLNn2FDe+R6D3qJu8ibjp/8+YI5n9vf364svvqjxeFzv379vYS3P5/39fdsJDf3IegTxW17dtovlmDnwwnzOq597rkGo+oSnpH4qY1A19BJMpDdv3tT/+B//o5bL1YmnWNXXr1/X2dlZ/fTTTy1eNx6PBxlD9JfNbpxFYiVN+tnbt2/r559/fqTAnGFiVJGKC4asGsZW1yloM7gFjGLDkmEP18VnCgyfaQigLf/nePO7UWsixFSG9DU9i6SXlTVxXd/bM5pJr1TOyU8erw2yjXvGZDOUlrSxgsi2ewq7JytGpPC8n+mFs9I4ZX25J8BKuKoGNO4pE7eXnkUibO7lHivxHmgx73KktnnA/fU8mJ65mc2Zf95YZoW7tbXVogNpbJE/v3bTax5EFhJAwodv3rwZoP6zs7MBD3uHNmBgd3f3kcdJnx3OS31hmXYavOX6peWTpaTm/y8xEhCfSb+5uamvv/66vv322zo7O3sU/uGUw3/5l39p72LGXbTrd3d3105Vvbq6ausJzgLY2tqqX/3qVzWfz2s2mw3c1NyWz1pCCrD/qh7vE8iwiRV+5ra7/l4uOfTuoaueAOf/PcWaCoK2ExX6dytGUBd9SMPbQ2Sec6e5+hm34zp7axfmJa4nPXjWsfSegezNW/bP/ewp7DTACQR68wQvZLp0Kid/9uYIHna/THcXK6es24qwR/8EXgAIxuK2MhzkOc6wZuoT8vuRcVA4xz2Yhj5KYjwet35x8GWCJC94swZQtXpjoY/CQXfwnparq6u6vr5uL9S5ublpGY6e49FodSJzruc4Hdn0RufYU4J+GULr6WN/fqh8koXmpwzASz0IBOM//+f/XP/zf/7PGo2G4Z/RaFRHR0c1nU7rd7/73YCoFxcXdXt727yG0ehhsxpH55qp+f3LL7+szc3N+v3vf/9oG7qFNg/G8gTmvf6zB7HOPU+lkMrAYSELTKZWcj1RId8Rbhsot29D1UPFiUzyWg/1WoFSUmFyjXvSK6At09mGJpFx1gcNXXLMic49xqwrDYc9Mvcnx8Q1C3Vv30cv/s2zVuBuN4FVggIr995Y3IdU6M7goh+0mQY/eXUdOu7124ZjnXcJ+iaOD8CjXpQ7St3yvg5wYNS4396Gecf7kra3t+vVq1ftvQkYHe43MGSfQ3pJNrYGjOZPh6Z8wupTujh59kPlk79kZ13HnmulfC+f0+m0ZrNZnZyctDcXVVU7nOqrr76qd+/e1enpabPay+WyHWOLoOEC+qgKPsfjcb1+/brevHlT33zzTV1dXbUD8Hobdjg2Nxk96cBkcz33HFgJZKjASpl+2Fswssp6qx6/PMXzxH09gUgjZKXWc/F5HqTjXZw95e+6EvV6/L3Fx3Ubu1zWKe7k03XfrUTXGTD3l5I0cdupbHuIvre+kaHHnBf4y8YGOpkX3J+eseLZquF5QQkcqoYnCLvvPSOUCrhHu/TUenRIrybXKWxUk27md9MoeSj5Lo17VbXkFmdacWT2ZDKpL774omaz2WCTmesfjR7e9ZIeDHLuxBUAhtdTzCeA3fTqnuLZ55QXGYUeUnxOSfSVxb/d3t7WdDqtv/u7v2tIYDqdtpNKJ5NJffXVV/XrX/+6MfPW1lY7D4S42+7u7uBF24kKptNp/epXv6rvv/++zs/PH70RKd01K+beJGT6nZVkCnIq51T4FA7uy3utMJJ+SetUQO6flWgys5Eg/TIN1qHhFHTq7815Kqfsb467RwMrBJ63y+16E5WZZr12/H/yvg2gFUDORxpK07mX4turj2s530bpveQGrrve3ryYnjZIaaBcV+5ErqpHHibAht9SgSVQoeQaicfO/14TomS4dblctn0ClluPh/aSDjakPuqG+UQ2R6OH1wDP5/N2LA59WbcGyTXugV/pr+fGz+Q7XwgxvbS8OHz0XEPwMcV1Etf7h3/4h3r16lXbZg4iff36dW1vb9d33303EC5ewzmZTNrncrmsq6urRngYY2Njo+1S/P7776uqBmg3lfT19XU3hAOTmHktgFak/r0n9NSXwvOUcnZJhJjt8b+vZ6zYXsGHDNA6w0PJ0JUNB+M1muv95kyynqfgBdQ0Mok21xmm3DyVdaXBMM2cumxF4vrMU2lwc5743gMe2W/Xa3pl3cxLzt865ew6XU/SsrcW5vpTNtJr834A1++Yu/vu+SdklOEY84yNZc6VvRwbFvpIain99OYxog8YhcViUcfHx80g2Fjyx/6EBDYYAfN1ghr/RrLNOsPxx5YXGQWndr2k5GCsdLa3t+vdu3f17t272t/fr8PDw6Y42Jvw/v37ms/nA0Fjuzn7G7a2tmo+nw9eoVm1eh3fL37xi/q3f/u3ms1m7RhcK0XXXVXtLW0Z87MSR6ATVVshgp7Spc2URfeZe+1xJGPRF9M3DYf76T710LaVVypb9znbsoKjvt4+Bxs585XrS1S/zkjlOF1/T8G5/gw59IzIOq8j+5a0MFK2cButg/7SCPJMGue8j/p6c0g9Rt4JNlzMG6az+ewpj8Y86j5RMnV4NFpl9yW/5zz1eDrTiNM7gb6MOXmQncaeL/eB+wGa9JeIBAZlc3Ozvvjii3YsBRvbSJBh46xlzl6Cx+MQsHnApzvb+DCulxiIFxkFuzlZeoJZ9fycWe6ZTCb1008/1d3dXc1ms/riiy/q6uqqdnZ2ajqd1tu3b+tv//Zva7FYtFNUHSJaLBa1t7dXVdUyB3xQ1ubmZh0eHtbm5mb99NNPjbE4Z6VqeJoj6xFGgalwrMBSOVqwoYcNi//43X3w/1Y8VY/fpmWa25BYkNOouT4r256S7sVsPUYLIL8nmu8pZ8eYXXp81osrezwZn/a9PTqnMrUhhB45D0kzjy0VdQ/9uc8pH2mw01Ak7dJwZEiH+8yP7htjMOrOOk2/9JhtMAyQqlYK2c8nKqZ/Pa/CfJzz7fAOPG4v37uEQfU2iDzrxWN43m9Gq1otMOM1WEbgn93d3Xr79m0LY9MvXvjFeC0L3jVNe973wPybZoDflIP/MKOAxaMjlJ6w/zGFSTk7O2vvIH3//n1T2oeHh+0cJBiAPQh+Q9Lm5mZ7f2lVtdATk//27dtWL66it5Ob0XtnJS0Wq9duZuzWgsNzPaF2ffndSj4ZlDa9XsF80G/HfhPZoagt2DYc67Kv1nkf9If7cz7XjT3/76FUj8tK2kJgA52Is+dh+M808TPpMWYd0Cmfz7bpUyLYXpiO6/SrZwxyHtKQYZiTDuvoTUmPKQ1a5sX3kHdmwmVbSdc0jl6PMEo3iPK8ObxknjcdGBPyaqNo5e55dcYR8+UXAhHipR+kqW9tbdXh4WEdHBzU5eVlXV1d1cbGRk0mk7ZeSdu062Mr0D0Of9mAO13Z4NzP/rHlRUZhMpnU7u5uOzOE8iGD8BQa4v/R6CF9dD6fD7aP4+Lx3gRORK1aCRceAW83WiwW7RTTXExis9of/vCHgWHpnVbIvggmFFc/F7Qs1D0Fn+iIflO3DUvemwoHJoB+qeTXhaCoq6fgzahmNqOqRJWJ4vgtjZzn3/TI/vXCOFbIaTBTKWUfe6Al6emxJXJlPtMTMN8lzXtKy4JteiUdUgn0io1+KlkvCjthYt1cpKK1J5qL0zbUvfvpQ9Vj78DzRsm2Mvup1++kg2ngjWy0RSjZ4+U4an5zmMlt0jcDQsumPQfC0fTlyy+/rPPz8/buA2dPJj+hzJOupod5h0Vvv1Hy/n51cuwfW1680Lyzs1P7+/uP0rSeYxieqnc8fthCzluOnKpFXO7o6Kj+5V/+pd3vSa6qNgm4cCj3qpUgHx4e1v39fc1ms0bY6XRao9GoZTthJDgWg/6z0NPLNPIYUbKpbHx/KjqKn8uQUNafgs73DE+tU9ZuY50yzt964zai/tBzVso2BE+NJ39bR/t1RjSVkwXa9PVziWZzXrm312fmsWc4fW8vVv6hOegpFu4xOMhceRuRbKvn6fj/DJt4bL31N9Mw20l+T2/D/cHYQTN7yG6TelG+yT+WCcsXyJw+5vqDDYHf+e4TU1n0XiweNq+9fv26Tk5OWj8JH7kuo/6q4VqCaWPe3draehQ1sJF4SfkkZx+hfDOd6rklBZv6/O7l5XLZLP9kMmlHWRBaGo/HbQEIq8yZ5VjOjBlyoNW7d+8GWQKcS2KUZ3e/qr+hKpVAxlQtxD0jwO92l9ML6dHLv8FgvcXcpHGGCGw8eoYjhZc6eu6/+5K8kAaD8TrsYUWS/VpHf9eZCJZ+pHIYj1evZE1lxmdvnwp9oI85j24vQ3oZDlkXgu0ZpBxDjrlHiwyd0Pf0YHNcrtdxd+qkJLI1uvVvHpf5KuXBc5FGznXmQnUqWdfZS49No45ugAa0b1oZBLIR1ovOaexGo1H98pe/bMB2f3+/eSk+jj9DPuYbiueOMUEDoii8MMz1fGwZLZ+pvXuVHx8f1/b2dlvsIOZuhv+Y4gnE4hIaIh63t7dX0+m0tra2ajqd1nfffdf6R6qqjQKH4pmQKOytra168+ZNXVxctI1uGBe8Du6rqoEHYrfSDJAKMQWvp1x6hqF33XTq1dH7dOndv+6ZVBbr0OpTJZnaz6xT6Fl6io7nPoa/eoqU671+5r3Zh3WGLhfbk842OIlwrTyzzlSc7oOf77XVq38dXd23p+iR/+czve8ew1P3edy9OvI3P5N96clNjgH69kCU20sDhjJPuhKutmHkSB1Obz44OBh4JuPxuIWZvJ5AZhHt8Bv7tc7Pz2s2mzXjdHV11XZT98pz9jE821P4WAX/uXwun8vn8rn8/175NMfqfS6fy+fyuXwu/39RPhuFz+Vz+Vw+l8+llc9G4XP5XD6Xz+VzaeWzUfhcPpfP5XP5XFr5bBQ+l8/lc/lcPpdWPhuFz+Vz+Vw+l8+llc9G4XP5XD6Xz+VzaeWzUfhcPpfP5XP5XFr5bBQ+l8/lc/lcPpdW/j+YOq6A7J4eqAAAAABJRU5ErkJggg==", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeMAAAGiCAYAAADUc67xAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAoFklEQVR4nO3df3BV9Z3/8ddNYm4UklhAQiKXGCtVNIA0sW6C8bfpNyqjllW6WkALHTOJYsjSwch8F8q6XHVajF1NNAgiMyqsRQRnEchOJeBSvgsx2bLAKAptIiZmQtsEUr1ZkvP9A7m71ySQc3+dc+95PmY+M5vjOfm8bxd43ffn/HIZhmEIAABYJsHqAgAAcDrCGAAAixHGAABYjDAGAMBihDEAABYjjAEAsBhhDACAxQhjAAAsRhgDAGAxwhgAAIsRxgAAfGPXrl2aMWOGsrKy5HK59O677573mIaGBuXl5SklJUWXX365Xn75ZdPzEsYAAHyjp6dHU6dO1Ysvvjis/Y8dO6Y777xTRUVFampq0lNPPaUFCxZo48aNpuZ18aIIAAAGcrlc2rRpk+69994h91m8eLG2bNmiw4cP+7eVlpbqP//zP/W73/1u2HMlhVJoMPr7+/XFF18oNTVVLpcr2tMDAEJgGIZOnjyprKwsJSREbnH166+/Vm9vb8i/xzCMAVnjdrvldrtD/t2S9Lvf/U7FxcUB2374wx9q9erV+u///m9dcMEFw/o9UQ/jL774Qh6PJ9rTAgDCqLW1VePHj4/I7/7666916SWX6E+nToX8u0aOHKlT3/o9S5cu1bJly0L+3ZLU3t6ujIyMgG0ZGRk6ffq0Ojs7lZmZOazfE/UwTk1NlSQtXPgvcrsvivb0EXSl1QVEwGirCwizr6wuIAKarC4AwxL1f2ojxufr0fPPz/T/Wx4Jvb29+tOpU3p74UKNCKGD7fH5dP/zz6u1tVVpaWn+7eHqis/6dud99uyvmdXfqP8JOVuc232RUlJGRHv6CIrcH0zrpJ1/l5gyvOWi2BJPf4fiWfyE8VnROM04wu0OKYzPSktLCwjjcBo3bpza29sDtnV0dCgpKUmjRw+/oYm/PyEAgLiQoNBu+YnG7UIFBQV67733Arbt2LFD+fn5wz5fLHFrEwDAphLCMMw6deqUmpub1dzcLOnMrUvNzc1qaWmRJFVVVWnOnDn+/UtLS/XHP/5RlZWVOnz4sNasWaPVq1dr0aJFpualMwYA2FLiNyOU483av3+/brnlFv/PlZWVkqS5c+dq7dq1amtr8wezJOXk5Gjr1q1auHChXnrpJWVlZenXv/61Zs6caWpewhgAgG/cfPPNOtfjN9auXTtg20033aSPPvoopHkJYwCALbkU2rnUWHqSBWEMALClWLiAK1xiqVYAAOISnTEAwJac1BkTxgAAW7LiamqrxNIXBwAA4hKdMQDAllimBgDAYk4K41iqFQCAuERnDACwJSddwEUYAwBsyUnL1IQxAMCWnPQ4zFj64gAAQFyiMwYA2BLL1AAAWMxJF3AF9cWhpqZGOTk5SklJUV5ennbv3h3uugAAcAzTYbxhwwZVVFRoyZIlampqUlFRkUpKStTS0hKJ+gAADpUQhhErTNe6cuVKzZs3T/Pnz9ekSZNUXV0tj8ej2traSNQHAHAowngIvb29amxsVHFxccD24uJi7dmzZ9BjfD6furu7AwYAAPgfpsK4s7NTfX19ysjICNiekZGh9vb2QY/xer1KT0/3D4/HE3y1AADHoDM+D5cr8FZqwzAGbDurqqpKXV1d/tHa2hrMlAAAh0kMw4gVpm5tGjNmjBITEwd0wR0dHQO65bPcbrfcbnfwFQIAEOdMdcbJycnKy8tTfX19wPb6+noVFhaGtTAAgLM5aZna9EM/KisrNXv2bOXn56ugoEB1dXVqaWlRaWlpJOoDADiUk55NbTqMZ82apRMnTmj58uVqa2tTbm6utm7dquzs7EjUBwBwKCc9gSuox2GWlZWprKws3LUAAOBIPJsaAGBLvCgCAACLJbikhBASNSGGThrH0hcHAADiEp0xAMCWEhJC7IxjqN0kjAEAtpToOjNCOT5WxND3BgAA4hOdMQDAllimBgDAYokJZ0Yox8eKGCoVAID4RGcMALAnBz31gzAGANgTYQwAgMUcFMYxVCoAAPGJzhgAYE8O6owJYwCAPbm+GaEcHyNi6HsDAADxic4YAGBPLoXWMsZQZ0wYAwDsyUHnjGOoVAAA4pOFnfHlklKtmz7crs+wuoLwy7K6gDDrH2l1BeG3+WarK4iA/7K6gAjotLqAMDodvakc1BmzTA0AsCcHhXEMlQoAQHyiMwYA2JODOmPCGABgTw566AdhDACwJwd1xjFUKgAA8YnOGABgTw7qjAljAIA9OSiMY6hUAADiE50xAMCeeFEEAAAWY5kaAABEC50xAMCeHNQZE8YAAHty0BO4Yuh7AwAA8YnOGABgTyxTAwBgMQeFcQyVCgBwlIQwjCDU1NQoJydHKSkpysvL0+7du8+5/xtvvKGpU6fqoosuUmZmph555BGdOHHC1JyEMQAA39iwYYMqKiq0ZMkSNTU1qaioSCUlJWppaRl0/w8//FBz5szRvHnzdPDgQb399tvat2+f5s+fb2pewhgAYE8WdMYrV67UvHnzNH/+fE2aNEnV1dXyeDyqra0ddP+9e/fqsssu04IFC5STk6MbbrhBjz76qPbv32/6owIAYD9hCuPu7u6A4fP5Bp2ut7dXjY2NKi4uDtheXFysPXv2DHpMYWGhPv/8c23dulWGYejLL7/Ub37zG911112mPyoAAHHL4/EoPT3dP7xe76D7dXZ2qq+vTxkZGQHbMzIy1N7ePugxhYWFeuONNzRr1iwlJydr3Lhxuvjii/XP//zPpmo0Hca7du3SjBkzlJWVJZfLpXfffdfsrwAA4PzC1Bm3traqq6vLP6qqqs45rcsV+LQQwzAGbDvr0KFDWrBggf7hH/5BjY2N2rZtm44dO6bS0lJTH9X0rU09PT2aOnWqHnnkEc2cOdPs4QAADE+YnsCVlpamtLS08+4+ZswYJSYmDuiCOzo6BnTLZ3m9Xk2fPl0///nPJUlTpkzRiBEjVFRUpKefflqZmZnDKtV0GJeUlKikpMTsYQAA2FpycrLy8vJUX1+v++67z7+9vr5e99xzz6DH/PWvf1VSUmCUJiYmSjrTUQ9XxB/64fP5Ak6Wd3d3R3pKAEA8sOB9xpWVlZo9e7by8/NVUFCguro6tbS0+Jedq6qqdPz4ca1bt06SNGPGDP3sZz9TbW2tfvjDH6qtrU0VFRX6wQ9+oKysrGHPG/Ew9nq9+sUvfhHpaQAA8caCJ3DNmjVLJ06c0PLly9XW1qbc3Fxt3bpV2dnZkqS2traAe44ffvhhnTx5Ui+++KL+/u//XhdffLFuvfVWPfvss6bmdRlm+uhvH+xyadOmTbr33nuH3Gewztjj8ejJJw8pJSU12Knt5/rxVlcQfsP/Uhcb+q0uIAI2W11AJPyX1QVEQKfVBYTN11/36Jln7lZXV9ewzsMGo7u7W+np6era9KTSRriD/z09PqXf90xEaw2XiHfGbrdbbnfw/2MCABzKQc+m5kURAAB7IoyHdurUKX366af+n48dO6bm5maNGjVKEyZMCGtxAAAHI4yHtn//ft1yyy3+nysrKyVJc+fO1dq1a8NWGAAATmE6jG+++WZT904BABAUOmMAACwWpidwxYIY+t4AAEB8ojMGANgTy9QAAFjMQWEcQ6UCABCf6IwBAPZkwYsirEIYAwDsiWVqAAAQLXTGAAB7clBnTBgDAOzJQQ/9IIwBAPbkoM44hkoFACA+0RkDAOzJQZ0xYQwAsCcHhXEMlQoAQHyiMwYA2JODOmPCGABgTw4K4xgqFQCA+ERnDACwJwd1xhaGcZakNOumD7P7/s+/WF1C2E3UEatLCKv+WPqbOUy/7K6yuoTw++AyqyuIAJ/VBYRRlB9rFUNP0QpF/P3rBABAjGGZGgBgTyxTAwBgMcIYAACLOSiMY6hUAADiE50xAMCeHNQZE8YAAHtyUBjHUKkAAMQnOmMAgD05qDMmjAEA9uRSaE/giqGnd8XQ9wYAAOITnTEAwJ5YpgYAwGIOCuMYKhUAgPhEZwwAsCeXQmsZY+gCLsIYAGBPDlqmJowBAPbkoDCOoVIBAIhPdMYAAHtyUGdMGAMAbMlwnRmhHB8rYuh7AwAA8YnOGABgS/0JZ0Yox8cKU6V6vV5dd911Sk1N1dixY3Xvvffq448/jlRtAAAHMxJCH7HCVKkNDQ0qLy/X3r17VV9fr9OnT6u4uFg9PT2Rqg8AgLhnapl627ZtAT+/9tprGjt2rBobG3XjjTeGtTAAgLOdWaYO/iqsWFqmDumccVdXlyRp1KhRQ+7j8/nk8/n8P3d3d4cyJQDAIfoTEtSfEHyihnJstAVdqWEYqqys1A033KDc3Nwh9/N6vUpPT/cPj8cT7JQAAMSloMP4scce0+9//3u99dZb59yvqqpKXV1d/tHa2hrslAAABzESXCGPWBHUMvXjjz+uLVu2aNeuXRo/fvw593W73XK73UEVBwBwrn4lqD+Ex2GEcmy0mQpjwzD0+OOPa9OmTdq5c6dycnIiVRcAwOH65VJ/CO9BDOXYaDMVxuXl5XrzzTe1efNmpaamqr29XZKUnp6uCy+8MCIFAgAQ70z18LW1terq6tLNN9+szMxM/9iwYUOk6gMAOJShhJBHrDC9TA0AQDQ46Zxx7FQKAECc4kURAABbMuSSEcJFWKEcG22EMQDAlowQl6lj6Zxx7FQKAECcojMGANiSk+4zpjMGANiSVbc21dTUKCcnRykpKcrLy9Pu3bvPub/P59OSJUuUnZ0tt9ut7373u1qzZo2pOemMAQC2dKYzDuXWJvOd8YYNG1RRUaGamhpNnz5dr7zyikpKSnTo0CFNmDBh0GMeeOABffnll1q9erWuuOIKdXR06PTp06bmJYwBAPjGypUrNW/ePM2fP1+SVF1dre3bt6u2tlZer3fA/tu2bVNDQ4OOHj3qf53wZZddZnpelqkBALZ09tamUIYkdXd3BwyfzzfofL29vWpsbFRxcXHA9uLiYu3Zs2fQY7Zs2aL8/Hw999xzuvTSS/W9731PixYt0ldffWXqs9IZAwBsKVxP4PJ4PAHbly5dqmXLlg3Yv7OzU319fcrIyAjYnpGR4X8Xw7cdPXpUH374oVJSUrRp0yZ1dnaqrKxMf/rTn0ydNyaMAQBxrbW1VWlpaf6fz/daX5cr8FyzYRgDtp3V398vl8ulN954Q+np6ZLOLHX/7d/+rV566aVhv0SJMAYA2FK4OuO0tLSAMB7KmDFjlJiYOKAL7ujoGNAtn5WZmalLL73UH8SSNGnSJBmGoc8//1wTJ04cVq2cMwYA2FK4zhkPV3JysvLy8lRfXx+wvb6+XoWFhYMeM336dH3xxRc6deqUf9snn3yihIQEjR8/fthzE8YAAHyjsrJSr776qtasWaPDhw9r4cKFamlpUWlpqSSpqqpKc+bM8e//4IMPavTo0XrkkUd06NAh7dq1Sz//+c/105/+dNhL1BLL1AAAm7LiFYqzZs3SiRMntHz5crW1tSk3N1dbt25Vdna2JKmtrU0tLS3+/UeOHKn6+no9/vjjys/P1+jRo/XAAw/o6aefNjUvYQwAsCWr3tpUVlamsrKyQf/b2rVrB2y76qqrBixtm8UyNQAAFqMzBgDYkhXL1FaxLozzXdKI2HmjxvlM+cNhq0sIv3esLiDMrrK6gAjIt7qACPjA3JOLYsNJqwsIo56ozeSk9xnTGQMAbMmqc8ZWiJ2vDQAAxCk6YwCALXHOGAAAi515n3HwS82hHBttsfO1AQCAOEVnDACwpTMXcIVyNXXsdMaEMQDAlpx0zjh2KgUAIE7RGQMAbMlJ9xkTxgAAW2KZGgAARA2dMQDAlpzUGRPGAABb4pwxAAAWc1JnHDuVAgAQp+iMAQC2xDI1AAAWM0Jcpg7lUZrRFjuVAgAQp+iMAQC25KQLuAhjAIAtOemccex8bQAAIE7RGQMAbKlfrhCXqWOnMyaMAQC2dCaMgw/UWApjU185amtrNWXKFKWlpSktLU0FBQV6//33I1UbAACOYKozHj9+vJ555hldccUVkqTXX39d99xzj5qamnTNNddEpEAAgDMZSgjpXuFYus/YVBjPmDEj4Od/+qd/Um1trfbu3TtkGPt8Pvl8Pv/P3d3dQZQJAHAaJ93aFHSlfX19Wr9+vXp6elRQUDDkfl6vV+np6f7h8XiCnRIA4CBnb20KZcQK02F84MABjRw5Um63W6Wlpdq0aZOuvvrqIfevqqpSV1eXf7S2toZUMAAA8cb01dRXXnmlmpub9Ze//EUbN27U3Llz1dDQMGQgu91uud3ukAsFADiLk5apTYdxcnKy/wKu/Px87du3Ty+88IJeeeWVsBcHAHAubm0ywTCMgAu0AACAOaY646eeekolJSXyeDw6efKk1q9fr507d2rbtm2Rqg8A4FDc2jSEL7/8UrNnz1ZbW5vS09M1ZcoUbdu2TXfccUek6gMAOJST3mdsKoxXr14dqToAAHAsnk0NALAlJ71CkTAGANiSk25tip1KAQCIU3TGAABb4n3GAABYjHPGAABYjHPGAAAgauiMAQC2xDI1AAAWY5kaAABEDZ0xAMCWnNQZE8YAAFty0jnj2PnaAABAnKIzBgDYEsvUAABYzJArpEdaskwNAACGjc4YAGBLhhJkhNAzhnJstBHGAABb4pxxNKRJGmHZ7OEXO/8/H7adJ62uILxu+i+rKwi/yXc2Wl1C2B3QtVaXEAGjrC4gjJKjNhO3NgEAgKhhmRoAYEv9coW4TB07nTFhDACwJSedM46dSgEAiFN0xgAAW3LSBVyEMQDAllimBgAAUUMYAwBs6ewydSgjGDU1NcrJyVFKSory8vK0e/fuYR337//+70pKStK1115rek7CGABgS2eXqUMZZm3YsEEVFRVasmSJmpqaVFRUpJKSErW0tJzzuK6uLs2ZM0e33XZbUJ+VMAYAxLXu7u6A4fP5htx35cqVmjdvnubPn69JkyapurpaHo9HtbW155zj0Ucf1YMPPqiCgoKgaiSMAQC2FK7O2OPxKD093T+8Xu+g8/X29qqxsVHFxcUB24uLi7Vnz54h63zttdf02WefaenSpUF/Vq6mBgDYUrhubWptbVVaWpp/u9vtHnT/zs5O9fX1KSMjI2B7RkaG2tvbBz3myJEjevLJJ7V7924lJQUfqYQxAMCWjBBvbTr7CsW0tLSAMD4flyvwC4BhGAO2SVJfX58efPBB/eIXv9D3vve9oOuUCGMAACRJY8aMUWJi4oAuuKOjY0C3LEknT57U/v371dTUpMcee0yS1N/fL8MwlJSUpB07dujWW28d1tyEMQDAls68KCL4ZWqzxyYnJysvL0/19fW67777/Nvr6+t1zz33DNg/LS1NBw4cCNhWU1Oj3/72t/rNb36jnJycYc9NGAMAbMlQgn+pOdjjzaqsrNTs2bOVn5+vgoIC1dXVqaWlRaWlpZKkqqoqHT9+XOvWrVNCQoJyc3MDjh87dqxSUlIGbD8fwhgAgG/MmjVLJ06c0PLly9XW1qbc3Fxt3bpV2dnZkqS2trbz3nMcDMIYAGBLVr3PuKysTGVlZYP+t7Vr157z2GXLlmnZsmWm5ySMAQC25KS3NvHQDwAALEZnDACwpf7+BPX3h7BMHcKx0UYYAwBsqb/fpf7+EG5tCuHYaIudrw0AAMSpkMLY6/XK5XKpoqIiTOUAAHCG0Z8Q8ogVQS9T79u3T3V1dZoyZUo46wEAQJKzzhkHVempU6f00EMPadWqVfrOd75zzn19Pt+Ad0kCAHA+Rr8r5BErggrj8vJy3XXXXbr99tvPu6/X6w14j6TH4wlmSgAA4pbpZer169fro48+0r59+4a1f1VVlSorK/0/d3d3E8gAgPNy0jK1qTBubW3VE088oR07diglJWVYx7jd7iFf5AwAwJBCvQgrXsO4sbFRHR0dysvL82/r6+vTrl279OKLL8rn8ykxMTHsRQIAEM9MhfFtt9024N2NjzzyiK666iotXryYIAYAhE+/68wI5fgYYSqMU1NTB7yjccSIERo9erTpdzcCAHBO/QmhLTXH0DJ17FQKAECcCvnZ1Dt37gxDGQAAfIsR4jK1EafL1AAARE3/NyOU42MEy9QAAFiMzhgAYE8O6owJYwCAPRHGAABYzEFhzDljAAAsRmcMALAnB3XGhDEAwJ4cFMYsUwMAYDE6YwCAPTmoMyaMAQD25KAwZpkaAACL0RkDAOzJUGjdrRGuQiKPMAYA2BPL1AAAIFrojAEA9uSgzpgwBgDYE2EMAIDFCOMoOKWYutLtfJ4bv9DqEsLuif/7gtUlhFVzwtVWlxB2bcqyuoQIiMdLWf5kdQFh1GN1AXGJzhgAYE90xgAAWMxBYRyP60EAAMQUOmMAgD05qDMmjAEA9uSgMGaZGgAAi9EZAwDsiRdFAABgMZapAQBAtNAZAwDsyUGdMWEMALAnwhgAAIs5KIw5ZwwAgMXojAEA9uSgzpgwBgDYk4PCmGVqAAAsRmcMALAnB3XGhDEAwJ4cFMYsUwMAYDE6YwCAPfGiCAAALMYyNQAAiBZTYbxs2TK5XK6AMW7cuEjVBgBwsv4wjBhhepn6mmuu0b/927/5f05MTAxrQQAASHLUMrXpME5KSqIbBgBEnoPC2PQ54yNHjigrK0s5OTn68Y9/rKNHj55zf5/Pp+7u7oABAAD+h6kwvv7667Vu3Tpt375dq1atUnt7uwoLC3XixIkhj/F6vUpPT/cPj8cTctEAAAdw0DljU2FcUlKimTNnavLkybr99tv1r//6r5Kk119/fchjqqqq1NXV5R+tra2hVQwAcAbCeHhGjBihyZMn68iRI0Pu43a7lZaWFjAAALCrmpoa5eTkKCUlRXl5edq9e/eQ+77zzju64447dMkllygtLU0FBQXavn276TlDCmOfz6fDhw8rMzMzlF8DAMBAFnTGGzZsUEVFhZYsWaKmpiYVFRWppKRELS0tg+6/a9cu3XHHHdq6dasaGxt1yy23aMaMGWpqajI1r6mrqRctWqQZM2ZowoQJ6ujo0NNPP63u7m7NnTvX1KQAAJxXmK6m/vaFw263W263e9BDVq5cqXnz5mn+/PmSpOrqam3fvl21tbXyer0D9q+urg74ecWKFdq8ebPee+89TZs2bdilmuqMP//8c/3d3/2drrzySv3oRz9ScnKy9u7dq+zsbDO/BgCAqPF4PAEXEg8WqpLU29urxsZGFRcXB2wvLi7Wnj17hjVXf3+/Tp48qVGjRpmq0VRnvH79elO/HACAoIXpRRGtra0B1ysN1RV3dnaqr69PGRkZAdszMjLU3t4+rCl/9atfqaenRw888ICpUnlRBADAnsK0TG324mGXyxXws2EYA7YN5q233tKyZcu0efNmjR071lSphDEAAJLGjBmjxMTEAV1wR0fHgG752zZs2KB58+bp7bff1u233256bt7aBACwpyhfTZ2cnKy8vDzV19cHbK+vr1dhYeGQx7311lt6+OGH9eabb+quu+4yN+k36IwBAPZkwbOpKysrNXv2bOXn56ugoEB1dXVqaWlRaWmppDMPsjp+/LjWrVsn6UwQz5kzRy+88IL+5m/+xt9VX3jhhUpPTx/2vIQxAMCeLAjjWbNm6cSJE1q+fLna2tqUm5urrVu3+u8aamtrC7jn+JVXXtHp06dVXl6u8vJy//a5c+dq7dq1w56XMAYA4H8pKytTWVnZoP/t2wG7c+fOsMxJGAMA7MlBr1AkjAEA9uSgMOZqagAALEZnDACwJwd1xoQxAMCeHBTGLFMDAGAxOmMAgD2F6UURsYAwBgDYE8vUAAAgWuiMAQD25KDOmDAGANgTYQwAgMUcFMacMwYAwGLWdcafSbrQstnD7qsTaVaXEHbPzlhsdQlhZfTH4XfP5nhc3Pp/VhcQAfH0Zy+Kn8VBnXE8/k0GAMQDB4VxPH1dAwAgJtEZAwDsyUGdMWEMALAnB4Uxy9QAAFiMzhgAYE8OelEEnTEAABYjjAEAsBhhDACAxQhjAAAsRhgDAGAxwhgAAItxaxMAwKb6vhmhHB8bCGMAgE055xFcLFMDAGAxOmMAgE2xTA0AgMVYpgYAAFFCZwwAsCnndMaEMQDAppxzzphlagAALEZnDACwKecsU5vujI8fP66f/OQnGj16tC666CJde+21amxsjERtAABHM/Q/gRzMMKJfcpBMdcZ//vOfNX36dN1yyy16//33NXbsWH322We6+OKLI1QeAMC5nNMZmwrjZ599Vh6PR6+99pp/22WXXRbumgAAcBRTy9RbtmxRfn6+7r//fo0dO1bTpk3TqlWrznmMz+dTd3d3wAAA4Pz6wjBig6kwPnr0qGprazVx4kRt375dpaWlWrBggdatWzfkMV6vV+np6f7h8XhCLhoA4AShnC8OdYk7ukyFcX9/v77//e9rxYoVmjZtmh599FH97Gc/U21t7ZDHVFVVqauryz9aW1tDLhoAgHhi6pxxZmamrr766oBtkyZN0saNG4c8xu12y+12B1cdAMDBuIBrUNOnT9fHH38csO2TTz5RdnZ2WIsCAMBJYWxqmXrhwoXau3evVqxYoU8//VRvvvmm6urqVF5eHqn6AACIe6bC+LrrrtOmTZv01ltvKTc3V//4j/+o6upqPfTQQ5GqDwDgWM65mtr04zDvvvtu3X333ZGoBQCA/4VlagAAECW8KAIAYFNnn00dyvGxgTAGANiUc5apCWMAgE2FehFW7FzAxTljAAAsRmcMALAplqkBALCYc8KYZWoAACxGZwwAsCnnXMBFGAMAbIplagAAECV0xgAAm3JOZ0wYAwBsyjmPw2SZGgAAi9EZAwBsiqupAQCwmHPOGbNMDQCwqf4wDPNqamqUk5OjlJQU5eXlaffu3efcv6GhQXl5eUpJSdHll1+ul19+2fSchDEAAN/YsGGDKioqtGTJEjU1NamoqEglJSVqaWkZdP9jx47pzjvvVFFRkZqamvTUU09pwYIF2rhxo6l5o75MbRhnrm7zfd0d7akj669WFxB+ru5eq0sIK6M/Dr979sThmaave6yuIAJ8VhcQNj7fmX/szv5bHtm5TimUpeaztXZ3B+aN2+2W2+0e9JiVK1dq3rx5mj9/viSpurpa27dvV21trbxe74D9X375ZU2YMEHV1dWSpEmTJmn//v365S9/qZkzZw6/WCPKWltbDZ253pzBYDAYMTpaW1sjlhNfffWVMW7cuLDUOXLkyAHbli5dOui8Pp/PSExMNN55552A7QsWLDBuvPHGQY8pKioyFixYELDtnXfeMZKSkoze3t5hf+aof63OyspSa2urUlNT5XK5IjZPd3e3PB6PWltblZaWFrF5oonPZH/x9nkkPlOsiNZnMgxDJ0+eVFZWVsTmSElJ0bFjx9TbG/rqnGEYA7JmqK64s7NTfX19ysjICNiekZGh9vb2QY9pb28fdP/Tp0+rs7NTmZmZw6oz6mGckJCg8ePHR22+tLS0uPnLdhafyf7i7fNIfKZYEY3PlJ6eHtHfL50J5JSUlIjPM5hvh/dggX6+/Qfbfi5xeBINAADzxowZo8TExAFdcEdHx4Du96xx48YNun9SUpJGjx497LkJYwAAJCUnJysvL0/19fUB2+vr61VYWDjoMQUFBQP237Fjh/Lz83XBBRcMe+64DWO3262lS5cOeW4gFvGZ7C/ePo/EZ4oV8fiZrFBZWalXX31Va9as0eHDh7Vw4UK1tLSotLRUklRVVaU5c+b49y8tLdUf//hHVVZW6vDhw1qzZo1Wr16tRYsWmZrXZRhRuD4dAIAYUVNTo+eee05tbW3Kzc3V888/rxtvvFGS9PDDD+sPf/iDdu7c6d+/oaFBCxcu1MGDB5WVlaXFixf7w3u4CGMAACwWt8vUAADECsIYAACLEcYAAFiMMAYAwGJxGcZmX39ld7t27dKMGTOUlZUll8uld9991+qSQuL1enXdddcpNTVVY8eO1b333quPP/7Y6rJCUltbqylTpvifflRQUKD333/f6rLCxuv1yuVyqaKiwupSQrJs2TK5XK6AMW7cOKvLCsnx48f1k5/8RKNHj9ZFF12ka6+9Vo2NjVaXBZPiLozNvv4qFvT09Gjq1Kl68cUXrS4lLBoaGlReXq69e/eqvr5ep0+fVnFxsXp6YvdtPePHj9czzzyj/fv3a//+/br11lt1zz336ODBg1aXFrJ9+/aprq5OU6ZMsbqUsLjmmmvU1tbmHwcOHLC6pKD9+c9/1vTp03XBBRfo/fff16FDh/SrX/1KF198sdWlwaxhv1IiRvzgBz8wSktLA7ZdddVVxpNPPmlRReElydi0aZPVZYRVR0eHIcloaGiwupSw+s53vmO8+uqrVpcRkpMnTxoTJ0406uvrjZtuusl44oknrC4pJEuXLjWmTp1qdRlhs3jxYuOGG26wugyEQVx1xr29vWpsbFRxcXHA9uLiYu3Zs8eiqnA+XV1dkqRRo0ZZXEl49PX1af369erp6VFBQYHV5YSkvLxcd911l26//XarSwmbI0eOKCsrSzk5Ofrxj3+so0ePWl1S0LZs2aL8/Hzdf//9Gjt2rKZNm6ZVq1ZZXRaCEFdhHMzrr2AtwzBUWVmpG264Qbm5uVaXE5IDBw5o5MiRcrvdKi0t1aZNm3T11VdbXVbQ1q9fr48++mjQF6rHquuvv17r1q3T9u3btWrVKrW3t6uwsFAnTpywurSgHD16VLW1tZo4caK2b9+u0tJSLViwQOvWrbO6NJgU9VcoRoPZ11/BOo899ph+//vf68MPP7S6lJBdeeWVam5u1l/+8hdt3LhRc+fOVUNDQ0wGcmtrq5544gnt2LHDstfYRUJJSYn//548ebIKCgr03e9+V6+//roqKystrCw4/f39ys/P14oVKyRJ06ZN08GDB1VbWxvw/GTYX1x1xsG8/grWefzxx7VlyxZ98MEHUX3HdaQkJyfriiuuUH5+vrxer6ZOnaoXXnjB6rKC0tjYqI6ODuXl5SkpKUlJSUlqaGjQr3/9ayUlJamvr8/qEsNixIgRmjx5so4cOWJ1KUHJzMwc8GVv0qRJMX3BqlPFVRgH8/orRJ9hGHrsscf0zjvv6Le//a1ycnKsLikiDMOQz+ezuoyg3HbbbTpw4ICam5v9Iz8/Xw899JCam5uVmJhodYlh4fP5dPjwYWVmZlpdSlCmT58+4LbATz75RNnZ2RZVhGDF3TJ1ZWWlZs+erfz8fBUUFKiuri7g9Vex6NSpU/r000/9Px87dkzNzc0aNWqUJkyYYGFlwSkvL9ebb76pzZs3KzU11b+SkZ6ergsvvNDi6oLz1FNPqaSkRB6PRydPntT69eu1c+dObdu2zerSgpKamjrgHP6IESM0evTomD63v2jRIs2YMUMTJkxQR0eHnn76aXV3d2vu3LlWlxaUhQsXqrCwUCtWrNADDzyg//iP/1BdXZ3q6uqsLg1mWXsxd2S89NJLRnZ2tpGcnGx8//vfj/lbZj744AND0oAxd+5cq0sLymCfRZLx2muvWV1a0H7605/6/8xdcsklxm233Wbs2LHD6rLCKh5ubZo1a5aRmZlpXHDBBUZWVpbxox/9yDh48KDVZYXkvffeM3Jzcw23221cddVVRl1dndUlIQi8QhEAAIvF1TljAABiEWEMAIDFCGMAACxGGAMAYDHCGAAAixHGAABYjDAGAMBihDEAABYjjAEAsBhhDACAxQhjAAAs9v8BgaAE1wrx0+MAAAAASUVORK5CYII=", "text/plain": [ "
" ] }, "metadata": {}, "output_type": "display_data" }, { "ename": "ValueError", "evalue": "`decode_predictions` expects a batch of predictions (i.e. a 2D array of shape (samples, 1000)). Received array with shape: (1,)", "output_type": "error", "traceback": [ "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m", "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", "Cell \u001b[1;32mIn[16], line 54\u001b[0m\n\u001b[0;32m 51\u001b[0m plt\u001b[38;5;241m.\u001b[39mshow()\n\u001b[0;32m 53\u001b[0m \u001b[38;5;66;03m# Print the predicted class and its index\u001b[39;00m\n\u001b[1;32m---> 54\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPredicted Class:\u001b[39m\u001b[38;5;124m'\u001b[39m, decode_predictions(np\u001b[38;5;241m.\u001b[39marray([class_idx]))[\u001b[38;5;241m0\u001b[39m][\u001b[38;5;241m0\u001b[39m][\u001b[38;5;241m1\u001b[39m])\n\u001b[0;32m 55\u001b[0m \u001b[38;5;28mprint\u001b[39m(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124mPredicted Class Index:\u001b[39m\u001b[38;5;124m'\u001b[39m, class_idx)\n", "File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\keras\\src\\applications\\densenet.py:419\u001b[0m, in \u001b[0;36mdecode_predictions\u001b[1;34m(preds, top)\u001b[0m\n\u001b[0;32m 417\u001b[0m \u001b[38;5;129m@keras_export\u001b[39m(\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mkeras.applications.densenet.decode_predictions\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n\u001b[0;32m 418\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21mdecode_predictions\u001b[39m(preds, top\u001b[38;5;241m=\u001b[39m\u001b[38;5;241m5\u001b[39m):\n\u001b[1;32m--> 419\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m imagenet_utils\u001b[38;5;241m.\u001b[39mdecode_predictions(preds, top\u001b[38;5;241m=\u001b[39mtop)\n", "File \u001b[1;32m~\\anaconda3\\Lib\\site-packages\\keras\\src\\applications\\imagenet_utils.py:136\u001b[0m, in \u001b[0;36mdecode_predictions\u001b[1;34m(preds, top)\u001b[0m\n\u001b[0;32m 133\u001b[0m \u001b[38;5;28;01mglobal\u001b[39;00m CLASS_INDEX\n\u001b[0;32m 135\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mlen\u001b[39m(preds\u001b[38;5;241m.\u001b[39mshape) \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m2\u001b[39m \u001b[38;5;129;01mor\u001b[39;00m preds\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m1\u001b[39m] \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m1000\u001b[39m:\n\u001b[1;32m--> 136\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\n\u001b[0;32m 137\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m`decode_predictions` expects \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 138\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124ma batch of predictions \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 139\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m(i.e. a 2D array of shape (samples, 1000)). \u001b[39m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 140\u001b[0m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mReceived array with shape: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00mpreds\u001b[38;5;241m.\u001b[39mshape\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\n\u001b[0;32m 141\u001b[0m )\n\u001b[0;32m 142\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m CLASS_INDEX \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[0;32m 143\u001b[0m fpath \u001b[38;5;241m=\u001b[39m file_utils\u001b[38;5;241m.\u001b[39mget_file(\n\u001b[0;32m 144\u001b[0m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mimagenet_class_index.json\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 145\u001b[0m CLASS_INDEX_PATH,\n\u001b[0;32m 146\u001b[0m cache_subdir\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mmodels\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 147\u001b[0m file_hash\u001b[38;5;241m=\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mc2c37ea517e94d9795004a39431a14cb\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m 148\u001b[0m )\n", "\u001b[1;31mValueError\u001b[0m: `decode_predictions` expects a batch of predictions (i.e. a 2D array of shape (samples, 1000)). Received array with shape: (1,)" ] } ], "source": [ "from tensorflow.keras.preprocessing.image import load_img, img_to_array\n", "from tensorflow.keras.applications.densenet import preprocess_input, decode_predictions\n", "from tensorflow.keras.models import Model\n", "\n", "def preprocess_image(image_path):\n", " img = image.load_img(image_path, target_size=(224, 224))\n", " img_array = image.img_to_array(img)\n", " img_array = np.expand_dims(img_array, axis=0) # Add batch dimension\n", " return tf.keras.applications.densenet.preprocess_input(img_array)\n", "\n", "\n", "\n", "def get_gradcam(model, image_path, layer_name):\n", " img = preprocess_image(image_path)\n", " grad_model = Model(inputs=model.inputs, outputs=[model.get_layer(layer_name).output, model.output])\n", "\n", " with tf.GradientTape() as tape:\n", " conv_outputs, predictions = grad_model(img)\n", " class_idx = tf.argmax(predictions[0])\n", "\n", " output = conv_outputs[0]\n", " grads = tape.gradient(predictions, conv_outputs)[0]\n", " guided_grads = tf.cast(output > 0, 'float32') * tf.cast(grads > 0, 'float32') * grads\n", "\n", " weights = tf.reduce_mean(guided_grads, axis=(0, 1))\n", " cam = tf.reduce_sum(tf.multiply(weights, output), axis=-1)\n", " heatmap = np.maximum(cam, 0)\n", " heatmap /= tf.reduce_max(heatmap)\n", " return heatmap.numpy(), class_idx.numpy()\n", "\n", "\n", "\n", "# Path to the image\n", "image_path = r\"C:\\Users\\Uskou\\Images\\00000013_010.png\"\n", "preprocessed_image = preprocess_image(image_path)\n", "\n", "# Layer name for Grad-CAM\n", "layer_name = 'conv5_block16_concat'\n", "\n", "# Generate Grad-CAM and get predicted class index\n", "heatmap, class_idx = get_gradcam(model, image_path, layer_name)\n", "\n", "# Display the image\n", "plt.imshow(load_img(image_path))\n", "plt.axis('off')\n", "plt.show()\n", "\n", "# Display the heatmap\n", "plt.imshow(heatmap, cmap='jet', alpha=0.5)\n", "plt.colorbar()\n", "plt.show()\n", "\n", "# Print the predicted class and its index\n", "print('Predicted Class:', decode_predictions(np.array([class_idx]))[0][0][1])\n", "print('Predicted Class Index:', class_idx)" ] }, { "cell_type": "code", "execution_count": 108, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m0s\u001b[0m 87ms/step\n", "[[1.000000e+00 0.000000e+00 1.000000e+00 9.966894e-01 1.489017e-32\n", " 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00 0.000000e+00\n", " 0.000000e+00 0.000000e+00 1.000000e+00 0.000000e+00]]\n" ] } ], "source": [ "img = image.load_img(r\"C:\\Users\\Uskou\\Images\\00005410_000.png\", target_size=(224, 224))\n", "img_array = image.img_to_array(img)\n", "img_array = np.expand_dims(img_array, axis=0) # Add batch dimension\n", "\n", "# Predict using the preprocessed image\n", "predictions = model.predict(img_array)\n", "print(predictions)\n", "\n", "\n", "def example(image):\n", " image = image.reshape((-1, 224, 224, 3)),\n", " prediction = model.predict(image).flatten(),\n", " return {class_names[i]: float(prediction[i]) for i in range(4)}\n", "class_names = ['Cardiomegaly', \n", " 'Emphysema', \n", " 'Effusion', \n", " 'Hernia', \n", " 'Infiltration', \n", " 'Mass', \n", " 'Nodule', \n", " 'Atelectasis',\n", " 'Pneumothorax',\n", " 'Pleural_Thickening', \n", " 'Pneumonia', \n", " 'Fibrosis', \n", " 'Edema', \n", " 'Consolidation']\n", "\n" ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [], "source": [ "class_names = ['Cardiomegaly', \n", " 'Emphysema', \n", " 'Effusion', \n", " 'Hernia', \n", " 'Infiltration', \n", " 'Mass', \n", " 'Nodule', \n", " 'Atelectasis',\n", " 'Pneumothorax',\n", " 'Pleural_Thickening', \n", " 'Pneumonia', \n", " 'Fibrosis', \n", " 'Edema', \n", " 'Consolidation']" ] }, { "cell_type": "code", "execution_count": 105, "metadata": {}, "outputs": [], "source": [ "import gradio as gr" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [], "source": [ "\n" ] }, { "cell_type": "code", "execution_count": 27, "metadata": { "scrolled": true }, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Running on local URL: http://127.0.0.1:7868\n", "Running on public URL: https://cb47643531a27d2505.gradio.live\n", "\n", "This share link expires in 72 hours. For free permanent hosting and GPU upgrades, run `gradio deploy` from Terminal to deploy to Spaces (https://huggingface.co/spaces)\n" ] }, { "data": { "text/html": [ "
" ], "text/plain": [ "" ] }, "metadata": {}, "output_type": "display_data" }, { "data": { "text/plain": [] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" }, { "name": "stdout", "output_type": "stream", "text": [ "\u001b[1m1/1\u001b[0m \u001b[32m━━━━━━━━━━━━━━━━━━━━\u001b[0m\u001b[37m\u001b[0m \u001b[1m1s\u001b[0m 912ms/step\n" ] } ], "source": [ "def custom_decode_predictions(predictions, class_labels):\n", " \n", " decoded_predictions = []\n", " for pred in predictions:\n", " # Get indices of top predicted classes\n", " top_indices = pred.argsort()[-3:][::-1] # Change 5 to the number of top classes you want to retrieve\n", " # Decode each top predicted class\n", " decoded_pred = [(class_labels[i], pred[i]) for i in top_indices]\n", " decoded_predictions.append(decoded_pred)\n", " return decoded_predictions\n", "\n", "def classify_image(img):\n", " img_array = image.img_to_array(img)\n", " img_array = np.expand_dims(img_array, axis=0)\n", " img_array = preprocess_input(img_array)\n", "\n", "\n", " predictions1 = model.predict(img_array)\n", " decoded_predictions = custom_decode_predictions(predictions1, class_names)\n", " return decoded_predictions\n", "\n", "# Gradio interface\n", "iface = gr.Interface(\n", " fn=classify_image, \n", " inputs=\"image\", \n", " outputs=\"text\", \n", " title=\"Image Classification\",\n", " description=\"Classify images using your pre-trained model.\"\n", ")\n", "\n", "# Launch the interface\n", "iface.launch(share = True)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "accelerator": "GPU", "colab": { "collapsed_sections": [ "G5aZAlVbn5yz" ], "include_colab_link": true, "name": "C1M2_Assignment.ipynb", "provenance": [], "toc_visible": true }, "coursera": { "schema_names": [ "AI4MC1-1" ] }, "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.11.7" } }, "nbformat": 4, "nbformat_minor": 4 }