import tensorflow as tf from tensorflow.keras.models import Model from keras.models import load_model import gradio as gr from tensorflow.keras.preprocessing.image import load_img, img_to_array from tensorflow.keras.applications.densenet import preprocess_input, decode_predictions import numpy as np from scipy import ndimage from skimage import exposure from skimage.transform import resize from PIL import Image import matplotlib.pyplot as plt import cv2 model = load_model('Densenet.h5') model.load_weights("pretrained_model.h5") layer_name = 'conv5_block16_concat' class_names = ['Cardiomegaly', 'Emphysema', 'Effusion', 'Hernia', 'Infiltration', 'Mass', 'Nodule', 'Atelectasis', 'Pneumothorax', 'Pleural_Thickening', 'Pneumonia', 'Fibrosis', 'Edema', 'Consolidation', 'No Finding'] def get_gradcam(model, img, layer_name): img_array = img_to_array(img) img_array = np.expand_dims(img_array, axis=0) img_array = preprocess_input(img_array) grad_model = Model(inputs=model.inputs, outputs=[model.get_layer(layer_name).output, model.output]) with tf.GradientTape() as tape: conv_outputs, predictions = grad_model(img_array) class_idx = tf.argmax(predictions[0]) output = conv_outputs[0] grads = tape.gradient(predictions, conv_outputs)[0] guided_grads = tf.cast(output > 0, 'float32') * tf.cast(grads > 0, 'float32') * grads weights = tf.reduce_mean(guided_grads, axis=(0, 1)) cam = tf.reduce_sum(tf.multiply(weights, output), axis=-1) heatmap = np.maximum(cam, 0) heatmap /= tf.reduce_max(heatmap) heatmap_img = plt.cm.jet(heatmap)[..., :3] # Load the original image original_img = Image.fromarray(img) # Resize the heatmap to match the original image size heatmap_img = Image.fromarray((heatmap_img * 255).astype(np.uint8)) heatmap_img = heatmap_img.resize(original_img.size) # Overlay the heatmap on the original image overlay_img = Image.blend(original_img, heatmap_img, 0.5) # Return the overlayed image return overlay_img def custom_decode_predictions(predictions, class_labels): decoded_predictions = [] for pred in predictions: # Get indices of top predicted classes top_indices = pred.argsort()[-4:][::-1] # Change 5 to the number of top classes you want to retrieve # Decode each top predicted class decoded_pred = [(class_labels[i], pred[i]) for i in top_indices] decoded_predictions.append(decoded_pred) return decoded_predictions def classify_image(img): img = cv2.resize(img, (540, 540), interpolation=cv2.INTER_AREA) img_array = img_to_array(img) #img_array = exposure.equalize_hist(img_array) img_array = np.expand_dims(img_array, axis=0) img_array = preprocess_input(img_array) predictions1 = model.predict(img_array) decoded_predictions = custom_decode_predictions(predictions1, class_names) overlay_img = get_gradcam(model, img, layer_name) # Return the decoded predictions and the overlayed image return decoded_predictions, overlay_img # Gradio interface iface = gr.Interface( fn=classify_image, inputs="image", outputs=["text", "image"], # Add an "image" output for the overlayed image title="Xray Classification - KIMS", description="Classify cxr into 'Cardiomegaly', 'Emphysema', 'Effusion', 'Hernia', 'Infiltration', 'Mass', 'Nodule', 'Atelectasis', 'Pneumothorax', 'Pleural_Thickening', 'Pneumonia', 'Fibrosis', 'Edema', 'Consolidation', 'No Finding'. Built by Dr Sai Koundinya") # Launch the interface, iface.launch( share=True)