Merge branch 'elisa'
Browse files- .gitignore +4 -0
- README.md +0 -1
- app.py +50 -41
- daily_api__pollution.py +0 -0
- requirements.txt +2 -1
- scalers/target_scaler_NO2.joblib +3 -0
- scalers/target_scaler_O3.joblib +3 -0
- src/daily_api__pollution.py +161 -0
- data_loading.py → src/data_loading.py +0 -0
- helper_functions.py → src/helper_functions.py +0 -18
- src/models_loading.py +37 -0
.gitignore
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
.venv/
|
| 2 |
+
.env
|
| 3 |
+
__pycache__/
|
| 4 |
+
*.pyc
|
README.md
CHANGED
|
@@ -11,4 +11,3 @@ short_description: 'Demo: Model to predict O3 and NO2 concentrations in Utrecht'
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
| 14 |
-
hhhrhehheehehehe
|
|
|
|
| 11 |
---
|
| 12 |
|
| 13 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
app.py
CHANGED
|
@@ -1,35 +1,32 @@
|
|
| 1 |
-
import time
|
| 2 |
import altair as alt
|
| 3 |
-
import joblib
|
| 4 |
-
import numpy as np
|
| 5 |
import pandas as pd
|
| 6 |
-
import streamlit as st
|
| 7 |
-
from sklearn.linear_model import LinearRegression
|
| 8 |
-
import matplotlib.pyplot as plt
|
| 9 |
import plotly.graph_objects as go
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
from data_api_calls import get_data
|
| 12 |
|
| 13 |
st.set_page_config(
|
| 14 |
page_title="Utrecht Pollution Dashboard",
|
| 15 |
page_icon="🏂��🌱",
|
| 16 |
layout="wide",
|
| 17 |
-
initial_sidebar_state="expanded"
|
|
|
|
| 18 |
|
| 19 |
alt.themes.enable("dark")
|
| 20 |
|
| 21 |
-
|
| 22 |
get_data()
|
| 23 |
|
| 24 |
data = pd.read_csv("dataset.csv")
|
| 25 |
|
| 26 |
# App Title
|
| 27 |
-
st.title("Utrecht Pollution Dashboard
|
| 28 |
|
| 29 |
-
col1, col2 = st.columns((1,1))
|
| 30 |
# Create a 3-column layout
|
| 31 |
with col1:
|
| 32 |
-
st.subheader(
|
| 33 |
col1, col2, col3 = st.columns(3)
|
| 34 |
|
| 35 |
# First column
|
|
@@ -47,10 +44,10 @@ with col1:
|
|
| 47 |
custom_metric_box(label="Solar Radiation", value="200 W/m²", delta="-20 W/m²")
|
| 48 |
custom_metric_box(label="Wind Speed", value="15 km/h", delta="-2 km/h")
|
| 49 |
|
| 50 |
-
st.subheader(
|
| 51 |
-
col1, col2 = st.columns((1,1))
|
| 52 |
# Display the prediction
|
| 53 |
-
#st.write(f'Predicted Pollution Level: {prediction[0]:.2f}')
|
| 54 |
with col1:
|
| 55 |
pollution_box(label="O<sub>3</sub>", value="37 µg/m³", delta="+2 µg/m³")
|
| 56 |
with col2:
|
|
@@ -58,7 +55,9 @@ with col1:
|
|
| 58 |
|
| 59 |
# Sample data (replace with your actual data)
|
| 60 |
dates_past = pd.date_range(end=pd.Timestamp.today(), periods=7).to_list()
|
| 61 |
-
dates_future = pd.date_range(
|
|
|
|
|
|
|
| 62 |
|
| 63 |
# O3 and NO2 values for the past 7 days
|
| 64 |
o3_past_values = [30, 32, 34, 33, 31, 35, 36]
|
|
@@ -74,61 +73,71 @@ o3_values = o3_past_values + o3_future_values
|
|
| 74 |
no2_values = no2_past_values + no2_future_values
|
| 75 |
|
| 76 |
# Create a DataFrame
|
| 77 |
-
df = pd.DataFrame({
|
| 78 |
-
'Date': dates,
|
| 79 |
-
'O3': o3_values,
|
| 80 |
-
'NO2': no2_values
|
| 81 |
-
})
|
| 82 |
|
| 83 |
-
st.subheader(
|
| 84 |
# Create two columns for two separate graphs
|
| 85 |
subcol1, subcol2 = st.columns(2)
|
| 86 |
# Plot O3 in the first subcolumn
|
| 87 |
with subcol1:
|
| 88 |
fig_o3 = go.Figure()
|
| 89 |
-
fig_o3.add_trace(
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
# Add a vertical line for predictions (today's date)
|
| 94 |
fig_o3.add_shape(
|
| 95 |
dict(
|
| 96 |
type="line",
|
| 97 |
-
x0=pd.Timestamp.today(),
|
| 98 |
-
|
|
|
|
|
|
|
| 99 |
line=dict(color="White", width=3, dash="dash"),
|
| 100 |
)
|
| 101 |
)
|
| 102 |
fig_o3.update_layout(
|
| 103 |
-
plot_bgcolor=
|
| 104 |
-
paper_bgcolor=
|
| 105 |
yaxis_title="O3 Concentration (µg/m³)",
|
| 106 |
font=dict(size=14),
|
| 107 |
-
hovermode="x unified"
|
| 108 |
)
|
| 109 |
st.plotly_chart(fig_o3)
|
| 110 |
|
| 111 |
# Plot NO2 in the second subcolumn
|
| 112 |
with subcol2:
|
| 113 |
fig_no2 = go.Figure()
|
| 114 |
-
fig_no2.add_trace(
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
# Add a vertical line for predictions (today's date)
|
| 119 |
fig_no2.add_shape(
|
| 120 |
dict(
|
| 121 |
type="line",
|
| 122 |
-
x0=pd.Timestamp.today(),
|
| 123 |
-
|
|
|
|
|
|
|
| 124 |
line=dict(color="White", width=3, dash="dash"),
|
| 125 |
)
|
| 126 |
)
|
| 127 |
fig_no2.update_layout(
|
| 128 |
-
plot_bgcolor=
|
| 129 |
-
paper_bgcolor=
|
| 130 |
yaxis_title="NO2 Concentration (µg/m³)",
|
| 131 |
font=dict(size=14),
|
| 132 |
-
hovermode="x unified"
|
| 133 |
)
|
| 134 |
-
st.plotly_chart(fig_no2)
|
|
|
|
|
|
|
| 1 |
import altair as alt
|
|
|
|
|
|
|
| 2 |
import pandas as pd
|
|
|
|
|
|
|
|
|
|
| 3 |
import plotly.graph_objects as go
|
| 4 |
+
import streamlit as st
|
| 5 |
+
from src.helper_functions import custom_metric_box, pollution_box
|
| 6 |
+
from src.models_loading import run_model
|
| 7 |
from data_api_calls import get_data
|
| 8 |
|
| 9 |
st.set_page_config(
|
| 10 |
page_title="Utrecht Pollution Dashboard",
|
| 11 |
page_icon="🏂��🌱",
|
| 12 |
layout="wide",
|
| 13 |
+
initial_sidebar_state="expanded",
|
| 14 |
+
)
|
| 15 |
|
| 16 |
alt.themes.enable("dark")
|
| 17 |
|
| 18 |
+
test_predictions = run_model("O3")
|
| 19 |
get_data()
|
| 20 |
|
| 21 |
data = pd.read_csv("dataset.csv")
|
| 22 |
|
| 23 |
# App Title
|
| 24 |
+
st.title("Utrecht Pollution Dashboard🌱")
|
| 25 |
|
| 26 |
+
col1, col2 = st.columns((1, 1))
|
| 27 |
# Create a 3-column layout
|
| 28 |
with col1:
|
| 29 |
+
st.subheader("Current Weather")
|
| 30 |
col1, col2, col3 = st.columns(3)
|
| 31 |
|
| 32 |
# First column
|
|
|
|
| 44 |
custom_metric_box(label="Solar Radiation", value="200 W/m²", delta="-20 W/m²")
|
| 45 |
custom_metric_box(label="Wind Speed", value="15 km/h", delta="-2 km/h")
|
| 46 |
|
| 47 |
+
st.subheader("Current Pollution Levels")
|
| 48 |
+
col1, col2 = st.columns((1, 1))
|
| 49 |
# Display the prediction
|
| 50 |
+
# st.write(f'Predicted Pollution Level: {prediction[0]:.2f}')
|
| 51 |
with col1:
|
| 52 |
pollution_box(label="O<sub>3</sub>", value="37 µg/m³", delta="+2 µg/m³")
|
| 53 |
with col2:
|
|
|
|
| 55 |
|
| 56 |
# Sample data (replace with your actual data)
|
| 57 |
dates_past = pd.date_range(end=pd.Timestamp.today(), periods=7).to_list()
|
| 58 |
+
dates_future = pd.date_range(
|
| 59 |
+
start=pd.Timestamp.today() + pd.Timedelta(days=1), periods=3
|
| 60 |
+
).to_list()
|
| 61 |
|
| 62 |
# O3 and NO2 values for the past 7 days
|
| 63 |
o3_past_values = [30, 32, 34, 33, 31, 35, 36]
|
|
|
|
| 73 |
no2_values = no2_past_values + no2_future_values
|
| 74 |
|
| 75 |
# Create a DataFrame
|
| 76 |
+
df = pd.DataFrame({"Date": dates, "O3": o3_values, "NO2": no2_values})
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
+
st.subheader("O3 and NO2 Prediction")
|
| 79 |
# Create two columns for two separate graphs
|
| 80 |
subcol1, subcol2 = st.columns(2)
|
| 81 |
# Plot O3 in the first subcolumn
|
| 82 |
with subcol1:
|
| 83 |
fig_o3 = go.Figure()
|
| 84 |
+
fig_o3.add_trace(
|
| 85 |
+
go.Scatter(
|
| 86 |
+
x=df["Date"],
|
| 87 |
+
y=df["O3"],
|
| 88 |
+
mode="lines+markers",
|
| 89 |
+
name="O3",
|
| 90 |
+
line=dict(color="rgb(0, 191, 255)", width=4),
|
| 91 |
+
)
|
| 92 |
+
) # Bright blue
|
| 93 |
# Add a vertical line for predictions (today's date)
|
| 94 |
fig_o3.add_shape(
|
| 95 |
dict(
|
| 96 |
type="line",
|
| 97 |
+
x0=pd.Timestamp.today(),
|
| 98 |
+
x1=pd.Timestamp.today(),
|
| 99 |
+
y0=min(o3_values),
|
| 100 |
+
y1=max(o3_values),
|
| 101 |
line=dict(color="White", width=3, dash="dash"),
|
| 102 |
)
|
| 103 |
)
|
| 104 |
fig_o3.update_layout(
|
| 105 |
+
plot_bgcolor="rgba(0, 0, 0, 0)", # Transparent background
|
| 106 |
+
paper_bgcolor="rgba(0, 0, 0, 0)", # Transparent paper background
|
| 107 |
yaxis_title="O3 Concentration (µg/m³)",
|
| 108 |
font=dict(size=14),
|
| 109 |
+
hovermode="x unified",
|
| 110 |
)
|
| 111 |
st.plotly_chart(fig_o3)
|
| 112 |
|
| 113 |
# Plot NO2 in the second subcolumn
|
| 114 |
with subcol2:
|
| 115 |
fig_no2 = go.Figure()
|
| 116 |
+
fig_no2.add_trace(
|
| 117 |
+
go.Scatter(
|
| 118 |
+
x=df["Date"],
|
| 119 |
+
y=df["NO2"],
|
| 120 |
+
mode="lines+markers",
|
| 121 |
+
name="NO2",
|
| 122 |
+
line=dict(color="rgb(255, 20, 147)", width=4),
|
| 123 |
+
)
|
| 124 |
+
) # Bright pink
|
| 125 |
# Add a vertical line for predictions (today's date)
|
| 126 |
fig_no2.add_shape(
|
| 127 |
dict(
|
| 128 |
type="line",
|
| 129 |
+
x0=pd.Timestamp.today(),
|
| 130 |
+
x1=pd.Timestamp.today(),
|
| 131 |
+
y0=min(no2_values),
|
| 132 |
+
y1=max(no2_values),
|
| 133 |
line=dict(color="White", width=3, dash="dash"),
|
| 134 |
)
|
| 135 |
)
|
| 136 |
fig_no2.update_layout(
|
| 137 |
+
plot_bgcolor="rgba(0, 0, 0, 0)", # Transparent background
|
| 138 |
+
paper_bgcolor="rgba(0, 0, 0, 0)", # Transparent paper background
|
| 139 |
yaxis_title="NO2 Concentration (µg/m³)",
|
| 140 |
font=dict(size=14),
|
| 141 |
+
hovermode="x unified",
|
| 142 |
)
|
| 143 |
+
st.plotly_chart(fig_no2)
|
daily_api__pollution.py
ADDED
|
File without changes
|
requirements.txt
CHANGED
|
@@ -7,4 +7,5 @@ altair
|
|
| 7 |
matplotlib
|
| 8 |
plotly
|
| 9 |
http.client
|
| 10 |
-
datetime
|
|
|
|
|
|
| 7 |
matplotlib
|
| 8 |
plotly
|
| 9 |
http.client
|
| 10 |
+
datetime
|
| 11 |
+
huggingface-hub
|
scalers/target_scaler_NO2.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:255a0d1dd1d8673ce03e838e9fc1a7df4dab1248ca70f6cb73b66aea83ed6316
|
| 3 |
+
size 1023
|
scalers/target_scaler_O3.joblib
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2ad485897b59228f1c1efd8c76cc2fa771d10efd379297f163ceba32dbacbab6
|
| 3 |
+
size 1023
|
src/daily_api__pollution.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import http.client
|
| 2 |
+
from datetime import date, timedelta
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from io import StringIO
|
| 5 |
+
import os
|
| 6 |
+
import re
|
| 7 |
+
import csv
|
| 8 |
+
|
| 9 |
+
def api_call():
|
| 10 |
+
particles = ["NO2", "O3"]
|
| 11 |
+
stations = ["NL10636", "NL10639", "NL10643"]
|
| 12 |
+
all_dataframes = []
|
| 13 |
+
today = date.today().isoformat() + "T09:00:00Z"
|
| 14 |
+
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
|
| 15 |
+
latest_date = (date.today() - timedelta(7)).isoformat() + "T09:00:00Z"
|
| 16 |
+
days_today = 0
|
| 17 |
+
days_yesterday = 1
|
| 18 |
+
while(today != latest_date):
|
| 19 |
+
days_today += 1
|
| 20 |
+
days_yesterday += 1
|
| 21 |
+
for particle in particles:
|
| 22 |
+
for station in stations:
|
| 23 |
+
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
|
| 24 |
+
payload = ''
|
| 25 |
+
headers = {}
|
| 26 |
+
conn.request("GET", f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}", payload, headers)
|
| 27 |
+
res = conn.getresponse()
|
| 28 |
+
data = res.read()
|
| 29 |
+
decoded_data = data.decode("utf-8")
|
| 30 |
+
df = pd.read_csv(StringIO(decoded_data))
|
| 31 |
+
df = df.filter(like='value')
|
| 32 |
+
all_dataframes.append(df)
|
| 33 |
+
combined_data = pd.concat(all_dataframes, ignore_index=True)
|
| 34 |
+
combined_data.to_csv(f'{particle}_{today}.csv', index=False)
|
| 35 |
+
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
|
| 36 |
+
yesterday = (date.today() - timedelta(days_yesterday)).isoformat() + "T09:00:00Z"
|
| 37 |
+
|
| 38 |
+
def delete_csv(csvs):
|
| 39 |
+
for csv in csvs:
|
| 40 |
+
if(os.path.exists(csv) and os.path.isfile(csv)):
|
| 41 |
+
os.remove(csv)
|
| 42 |
+
|
| 43 |
+
def clean_values():
|
| 44 |
+
particles = ["NO2", "O3"]
|
| 45 |
+
csvs = []
|
| 46 |
+
NO2 = []
|
| 47 |
+
O3 = []
|
| 48 |
+
today = date.today().isoformat() + "T09:00:00Z"
|
| 49 |
+
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
|
| 50 |
+
latest_date = (date.today() - timedelta(7)).isoformat() + "T09:00:00Z"
|
| 51 |
+
days_today = 0
|
| 52 |
+
while(today != latest_date):
|
| 53 |
+
for particle in particles:
|
| 54 |
+
name = f'{particle}_{today}.csv'
|
| 55 |
+
csvs.append(name)
|
| 56 |
+
days_today += 1
|
| 57 |
+
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
|
| 58 |
+
for csv_file in csvs:
|
| 59 |
+
values = [] # Reset values for each CSV file
|
| 60 |
+
# Open the CSV file and read the values
|
| 61 |
+
with open(csv_file, 'r') as file:
|
| 62 |
+
reader = csv.reader(file)
|
| 63 |
+
for row in reader:
|
| 64 |
+
for value in row:
|
| 65 |
+
# Use regular expressions to extract numeric part
|
| 66 |
+
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", value)
|
| 67 |
+
if cleaned_value: # If we successfully extract a number
|
| 68 |
+
values.append(float(cleaned_value[0])) # Convert the first match to float
|
| 69 |
+
|
| 70 |
+
# Compute the average if the values list is not empty
|
| 71 |
+
if values:
|
| 72 |
+
avg = sum(values) / len(values)
|
| 73 |
+
if "NO2" in csv_file:
|
| 74 |
+
NO2.append(avg)
|
| 75 |
+
else:
|
| 76 |
+
O3.append(avg)
|
| 77 |
+
|
| 78 |
+
delete_csv(csvs)
|
| 79 |
+
|
| 80 |
+
return NO2, O3
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def add_columns():
|
| 84 |
+
file_path = 'weather_data.csv'
|
| 85 |
+
df = pd.read_csv(file_path)
|
| 86 |
+
|
| 87 |
+
df.insert(1, 'NO2', None)
|
| 88 |
+
df.insert(2, 'O3', None)
|
| 89 |
+
df.insert(10, 'weekday', None)
|
| 90 |
+
|
| 91 |
+
df.to_csv('combined_data.csv', index=False)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def scale():
|
| 95 |
+
file_path = 'combined_data.csv'
|
| 96 |
+
df = pd.read_csv(file_path)
|
| 97 |
+
columns = list(df.columns)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
columns.insert(3, columns.pop(6))
|
| 101 |
+
|
| 102 |
+
df = df[columns]
|
| 103 |
+
|
| 104 |
+
columns.insert(5, columns.pop(9))
|
| 105 |
+
|
| 106 |
+
df = df[columns]
|
| 107 |
+
|
| 108 |
+
columns.insert(9, columns.pop(6))
|
| 109 |
+
|
| 110 |
+
df = df[columns]
|
| 111 |
+
|
| 112 |
+
df = df.rename(columns={
|
| 113 |
+
'datetime':'date',
|
| 114 |
+
'windspeed': 'wind_speed',
|
| 115 |
+
'temp': 'mean_temp',
|
| 116 |
+
'solarradiation':'global_radiation',
|
| 117 |
+
'precip':'percipitation',
|
| 118 |
+
'sealevelpressure':'pressure',
|
| 119 |
+
'visibility':'minimum_visibility'
|
| 120 |
+
})
|
| 121 |
+
|
| 122 |
+
df['date'] = pd.to_datetime(df['date'])
|
| 123 |
+
df['weekday'] = df['date'].dt.day_name()
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
df['wind_speed'] = (df['wind_speed'] / 3.6) * 10
|
| 127 |
+
df['mean_temp'] = df['mean_temp'] * 10
|
| 128 |
+
df['minimum_visibility'] = df['minimum_visibility'] * 10
|
| 129 |
+
df['percipitation'] = df['percipitation'] * 10
|
| 130 |
+
df['pressure'] = df['pressure'] * 10
|
| 131 |
+
|
| 132 |
+
df['wind_speed'] = df['wind_speed'].astype(int)
|
| 133 |
+
df['mean_temp'] = df['mean_temp'].astype(int)
|
| 134 |
+
df['minimum_visibility'] = df['minimum_visibility'].astype(int)
|
| 135 |
+
df['percipitation'] = df['percipitation'].astype(int)
|
| 136 |
+
df['pressure'] = df['pressure'].astype(int)
|
| 137 |
+
df['humidity'] = df['humidity'].astype(int)
|
| 138 |
+
df['global_radiation'] = df['global_radiation'].astype(int)
|
| 139 |
+
|
| 140 |
+
df.to_csv('recorded_data.csv', index=False)
|
| 141 |
+
|
| 142 |
+
def insert_pollution(NO2, O3):
|
| 143 |
+
file_path = 'recorded_data.csv'
|
| 144 |
+
df = pd.read_csv(file_path)
|
| 145 |
+
start_index = 0
|
| 146 |
+
while NO2:
|
| 147 |
+
df.loc[start_index, 'NO2'] = NO2.pop()
|
| 148 |
+
start_index += 1
|
| 149 |
+
start_index = 0
|
| 150 |
+
while O3:
|
| 151 |
+
df.loc[start_index, 'O3'] = O3.pop()
|
| 152 |
+
start_index += 1
|
| 153 |
+
df.to_csv('recorded_data.csv', index=False)
|
| 154 |
+
|
| 155 |
+
api_call()
|
| 156 |
+
NO2, O3 = clean_values()
|
| 157 |
+
add_columns()
|
| 158 |
+
scale()
|
| 159 |
+
insert_pollution(NO2, O3)
|
| 160 |
+
os.remove('combined_data.csv')
|
| 161 |
+
os.remove('weather_data.csv')
|
data_loading.py → src/data_loading.py
RENAMED
|
File without changes
|
helper_functions.py → src/helper_functions.py
RENAMED
|
@@ -1,22 +1,4 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import joblib
|
| 3 |
-
import pandas as pd
|
| 4 |
-
|
| 5 |
-
@st.cache_resource(ttl=6*300) # Reruns every 6 hours
|
| 6 |
-
def run_model():
|
| 7 |
-
# Load or train your model (pretrained model in this case)
|
| 8 |
-
model = joblib.load("linear_regression_model.pkl")
|
| 9 |
-
|
| 10 |
-
# Static input values
|
| 11 |
-
input_data = pd.DataFrame({
|
| 12 |
-
'Temperature': [20.0],
|
| 13 |
-
'Wind Speed': [10.0],
|
| 14 |
-
'Humidity': [50.0]
|
| 15 |
-
})
|
| 16 |
-
|
| 17 |
-
# Run the model with static input
|
| 18 |
-
prediction = model.predict(input_data)
|
| 19 |
-
return prediction
|
| 20 |
|
| 21 |
# Custom function to create styled metric boxes with subscripts, smaller label, and larger metric
|
| 22 |
def custom_metric_box(label, value, delta):
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
# Custom function to create styled metric boxes with subscripts, smaller label, and larger metric
|
| 4 |
def custom_metric_box(label, value, delta):
|
src/models_loading.py
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import joblib
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import streamlit as st
|
| 6 |
+
from dotenv import load_dotenv
|
| 7 |
+
from huggingface_hub import hf_hub_download, login
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def load_model(particle):
|
| 11 |
+
load_dotenv()
|
| 12 |
+
login(token=os.getenv("HUGGINGFACE_DOWNLOAD_TOKEN"))
|
| 13 |
+
|
| 14 |
+
repo_id = f"elisaklunder/Utrecht-{particle}-Forecasting-Model"
|
| 15 |
+
if particle == "O3":
|
| 16 |
+
file_name = "O3_svr_model.pkl"
|
| 17 |
+
elif particle == "NO2":
|
| 18 |
+
file_name == "hehehe"
|
| 19 |
+
|
| 20 |
+
model_path = hf_hub_download(repo_id=repo_id, filename=file_name)
|
| 21 |
+
model = joblib.load(model_path)
|
| 22 |
+
|
| 23 |
+
return model
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
@st.cache_resource(ttl=6 * 300) # Reruns every 6 hours
|
| 27 |
+
def run_model(particle):
|
| 28 |
+
model = load_model(particle)
|
| 29 |
+
|
| 30 |
+
# Static input values
|
| 31 |
+
input_data = pd.DataFrame(
|
| 32 |
+
{"Temperature": [20.0], "Wind Speed": [10.0], "Humidity": [50.0]}
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
# Run the model with static input
|
| 36 |
+
prediction = model.predict(input_data)
|
| 37 |
+
return prediction
|