added daily_api_pollution.py and data_loading files to the repo; data_loading needs to be modified for inference
Browse files- daily_api__pollution.py +161 -0
- data_loading.py +276 -0
daily_api__pollution.py
ADDED
|
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import http.client
|
| 2 |
+
from datetime import date, timedelta
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from io import StringIO
|
| 5 |
+
import os
|
| 6 |
+
import re
|
| 7 |
+
import csv
|
| 8 |
+
|
| 9 |
+
def api_call():
|
| 10 |
+
particles = ["NO2", "O3"]
|
| 11 |
+
stations = ["NL10636", "NL10639", "NL10643"]
|
| 12 |
+
all_dataframes = []
|
| 13 |
+
today = date.today().isoformat() + "T09:00:00Z"
|
| 14 |
+
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
|
| 15 |
+
latest_date = (date.today() - timedelta(7)).isoformat() + "T09:00:00Z"
|
| 16 |
+
days_today = 0
|
| 17 |
+
days_yesterday = 1
|
| 18 |
+
while(today != latest_date):
|
| 19 |
+
days_today += 1
|
| 20 |
+
days_yesterday += 1
|
| 21 |
+
for particle in particles:
|
| 22 |
+
for station in stations:
|
| 23 |
+
conn = http.client.HTTPSConnection("api.luchtmeetnet.nl")
|
| 24 |
+
payload = ''
|
| 25 |
+
headers = {}
|
| 26 |
+
conn.request("GET", f"/open_api/measurements?station_number={station}&formula={particle}&page=1&order_by=timestamp_measured&order_direction=desc&end={today}&start={yesterday}", payload, headers)
|
| 27 |
+
res = conn.getresponse()
|
| 28 |
+
data = res.read()
|
| 29 |
+
decoded_data = data.decode("utf-8")
|
| 30 |
+
df = pd.read_csv(StringIO(decoded_data))
|
| 31 |
+
df = df.filter(like='value')
|
| 32 |
+
all_dataframes.append(df)
|
| 33 |
+
combined_data = pd.concat(all_dataframes, ignore_index=True)
|
| 34 |
+
combined_data.to_csv(f'{particle}_{today}.csv', index=False)
|
| 35 |
+
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
|
| 36 |
+
yesterday = (date.today() - timedelta(days_yesterday)).isoformat() + "T09:00:00Z"
|
| 37 |
+
|
| 38 |
+
def delete_csv(csvs):
|
| 39 |
+
for csv in csvs:
|
| 40 |
+
if(os.path.exists(csv) and os.path.isfile(csv)):
|
| 41 |
+
os.remove(csv)
|
| 42 |
+
|
| 43 |
+
def clean_values():
|
| 44 |
+
particles = ["NO2", "O3"]
|
| 45 |
+
csvs = []
|
| 46 |
+
NO2 = []
|
| 47 |
+
O3 = []
|
| 48 |
+
today = date.today().isoformat() + "T09:00:00Z"
|
| 49 |
+
yesterday = (date.today() - timedelta(1)).isoformat() + "T09:00:00Z"
|
| 50 |
+
latest_date = (date.today() - timedelta(7)).isoformat() + "T09:00:00Z"
|
| 51 |
+
days_today = 0
|
| 52 |
+
while(today != latest_date):
|
| 53 |
+
for particle in particles:
|
| 54 |
+
name = f'{particle}_{today}.csv'
|
| 55 |
+
csvs.append(name)
|
| 56 |
+
days_today += 1
|
| 57 |
+
today = (date.today() - timedelta(days_today)).isoformat() + "T09:00:00Z"
|
| 58 |
+
for csv_file in csvs:
|
| 59 |
+
values = [] # Reset values for each CSV file
|
| 60 |
+
# Open the CSV file and read the values
|
| 61 |
+
with open(csv_file, 'r') as file:
|
| 62 |
+
reader = csv.reader(file)
|
| 63 |
+
for row in reader:
|
| 64 |
+
for value in row:
|
| 65 |
+
# Use regular expressions to extract numeric part
|
| 66 |
+
cleaned_value = re.findall(r"[-+]?\d*\.\d+|\d+", value)
|
| 67 |
+
if cleaned_value: # If we successfully extract a number
|
| 68 |
+
values.append(float(cleaned_value[0])) # Convert the first match to float
|
| 69 |
+
|
| 70 |
+
# Compute the average if the values list is not empty
|
| 71 |
+
if values:
|
| 72 |
+
avg = sum(values) / len(values)
|
| 73 |
+
if "NO2" in csv_file:
|
| 74 |
+
NO2.append(avg)
|
| 75 |
+
else:
|
| 76 |
+
O3.append(avg)
|
| 77 |
+
|
| 78 |
+
delete_csv(csvs)
|
| 79 |
+
|
| 80 |
+
return NO2, O3
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def add_columns():
|
| 84 |
+
file_path = 'weather_data.csv'
|
| 85 |
+
df = pd.read_csv(file_path)
|
| 86 |
+
|
| 87 |
+
df.insert(1, 'NO2', None)
|
| 88 |
+
df.insert(2, 'O3', None)
|
| 89 |
+
df.insert(10, 'weekday', None)
|
| 90 |
+
|
| 91 |
+
df.to_csv('combined_data.csv', index=False)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
def scale():
|
| 95 |
+
file_path = 'combined_data.csv'
|
| 96 |
+
df = pd.read_csv(file_path)
|
| 97 |
+
columns = list(df.columns)
|
| 98 |
+
|
| 99 |
+
|
| 100 |
+
columns.insert(3, columns.pop(6))
|
| 101 |
+
|
| 102 |
+
df = df[columns]
|
| 103 |
+
|
| 104 |
+
columns.insert(5, columns.pop(9))
|
| 105 |
+
|
| 106 |
+
df = df[columns]
|
| 107 |
+
|
| 108 |
+
columns.insert(9, columns.pop(6))
|
| 109 |
+
|
| 110 |
+
df = df[columns]
|
| 111 |
+
|
| 112 |
+
df = df.rename(columns={
|
| 113 |
+
'datetime':'date',
|
| 114 |
+
'windspeed': 'wind_speed',
|
| 115 |
+
'temp': 'mean_temp',
|
| 116 |
+
'solarradiation':'global_radiation',
|
| 117 |
+
'precip':'percipitation',
|
| 118 |
+
'sealevelpressure':'pressure',
|
| 119 |
+
'visibility':'minimum_visibility'
|
| 120 |
+
})
|
| 121 |
+
|
| 122 |
+
df['date'] = pd.to_datetime(df['date'])
|
| 123 |
+
df['weekday'] = df['date'].dt.day_name()
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
df['wind_speed'] = (df['wind_speed'] / 3.6) * 10
|
| 127 |
+
df['mean_temp'] = df['mean_temp'] * 10
|
| 128 |
+
df['minimum_visibility'] = df['minimum_visibility'] * 10
|
| 129 |
+
df['percipitation'] = df['percipitation'] * 10
|
| 130 |
+
df['pressure'] = df['pressure'] * 10
|
| 131 |
+
|
| 132 |
+
df['wind_speed'] = df['wind_speed'].astype(int)
|
| 133 |
+
df['mean_temp'] = df['mean_temp'].astype(int)
|
| 134 |
+
df['minimum_visibility'] = df['minimum_visibility'].astype(int)
|
| 135 |
+
df['percipitation'] = df['percipitation'].astype(int)
|
| 136 |
+
df['pressure'] = df['pressure'].astype(int)
|
| 137 |
+
df['humidity'] = df['humidity'].astype(int)
|
| 138 |
+
df['global_radiation'] = df['global_radiation'].astype(int)
|
| 139 |
+
|
| 140 |
+
df.to_csv('recorded_data.csv', index=False)
|
| 141 |
+
|
| 142 |
+
def insert_pollution(NO2, O3):
|
| 143 |
+
file_path = 'recorded_data.csv'
|
| 144 |
+
df = pd.read_csv(file_path)
|
| 145 |
+
start_index = 0
|
| 146 |
+
while NO2:
|
| 147 |
+
df.loc[start_index, 'NO2'] = NO2.pop()
|
| 148 |
+
start_index += 1
|
| 149 |
+
start_index = 0
|
| 150 |
+
while O3:
|
| 151 |
+
df.loc[start_index, 'O3'] = O3.pop()
|
| 152 |
+
start_index += 1
|
| 153 |
+
df.to_csv('recorded_data.csv', index=False)
|
| 154 |
+
|
| 155 |
+
api_call()
|
| 156 |
+
NO2, O3 = clean_values()
|
| 157 |
+
add_columns()
|
| 158 |
+
scale()
|
| 159 |
+
insert_pollution(NO2, O3)
|
| 160 |
+
os.remove('combined_data.csv')
|
| 161 |
+
os.remove('weather_data.csv')
|
data_loading.py
ADDED
|
@@ -0,0 +1,276 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import numpy as np
|
| 2 |
+
import pandas as pd
|
| 3 |
+
|
| 4 |
+
|
| 5 |
+
def create_lag_features_for_single_day(data, random_index, lag_days):
|
| 6 |
+
lag_features = [
|
| 7 |
+
column
|
| 8 |
+
for column in data.columns
|
| 9 |
+
if column
|
| 10 |
+
in [
|
| 11 |
+
"O3",
|
| 12 |
+
"NO2",
|
| 13 |
+
"wind_speed",
|
| 14 |
+
"mean_temp",
|
| 15 |
+
"global_radiation",
|
| 16 |
+
"percipitation",
|
| 17 |
+
"pressure",
|
| 18 |
+
"minimum_visibility",
|
| 19 |
+
"humidity",
|
| 20 |
+
]
|
| 21 |
+
]
|
| 22 |
+
lagged_data = {}
|
| 23 |
+
for feature in lag_features:
|
| 24 |
+
for lag in range(1, lag_days + 1):
|
| 25 |
+
try:
|
| 26 |
+
lagged_value = data.loc[random_index - lag, feature]
|
| 27 |
+
lagged_data[f"{feature}_lag_{lag}"] = lagged_value
|
| 28 |
+
except IndexError:
|
| 29 |
+
print(
|
| 30 |
+
f"Value not found for feature {feature} lagged by {lag} from day {random_index}"
|
| 31 |
+
)
|
| 32 |
+
continue
|
| 33 |
+
|
| 34 |
+
# Add together lagged features, non-lagged features and date
|
| 35 |
+
current_data = data.iloc[random_index].to_dict()
|
| 36 |
+
current_data.update(lagged_data)
|
| 37 |
+
return pd.DataFrame([current_data])
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
def create_targets_for_single_day(data, random_index, target_column, days_ahead):
|
| 41 |
+
targets = {}
|
| 42 |
+
for day in range(1, days_ahead + 1):
|
| 43 |
+
future_index = random_index + day
|
| 44 |
+
try:
|
| 45 |
+
targets[f"{target_column}_{day}_days_ahead"] = data.loc[
|
| 46 |
+
future_index, target_column
|
| 47 |
+
]
|
| 48 |
+
except IndexError:
|
| 49 |
+
print(
|
| 50 |
+
f"Value not found for particle {target_column} forwarded by {day} day"
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
return pd.DataFrame([targets])
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
def load_data_batch(data, target_particle, lag_days):
|
| 57 |
+
data["date"] = pd.to_datetime(data["date"])
|
| 58 |
+
|
| 59 |
+
# Exclude period with missing O3 data + buffer before and after for targets and lag features
|
| 60 |
+
start_exclusion = pd.to_datetime("2022-01-01") - pd.Timedelta(days=3)
|
| 61 |
+
end_exclusion = pd.to_datetime("2022-04-27") + pd.Timedelta(days=lag_days)
|
| 62 |
+
valid_data = data[
|
| 63 |
+
~((data["date"] >= start_exclusion) & (data["date"] <= end_exclusion))
|
| 64 |
+
]
|
| 65 |
+
valid_data = valid_data[
|
| 66 |
+
lag_days:-3
|
| 67 |
+
] # also exclude first seven and last three days of the dataset
|
| 68 |
+
|
| 69 |
+
# Get random day in the valid data
|
| 70 |
+
random_index = np.random.choice(valid_data.index, 1)[0]
|
| 71 |
+
|
| 72 |
+
# Create lag features for the selected day
|
| 73 |
+
train_data = create_lag_features_for_single_day(data, random_index, lag_days)
|
| 74 |
+
targets = create_targets_for_single_day(
|
| 75 |
+
data, random_index, target_particle, days_ahead=3
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
return train_data, targets
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
def create_features_and_targets(
|
| 82 |
+
data,
|
| 83 |
+
target_particle, # Added this parameter
|
| 84 |
+
lag_days=7,
|
| 85 |
+
sma_days=7,
|
| 86 |
+
days_ahead=3,
|
| 87 |
+
):
|
| 88 |
+
"""
|
| 89 |
+
Creates lagged features, SMA features, last year's particle data (NO2 and O3) for specific days,
|
| 90 |
+
sine and cosine transformations for 'weekday' and 'month', and target variables for the specified
|
| 91 |
+
particle ('O3' or 'NO2') for the next 'days_ahead' days. Scales features and targets without
|
| 92 |
+
disregarding outliers and saves the scalers for inverse scaling. Splits the data into train,
|
| 93 |
+
validation, and test sets using the most recent dates. Prints the number of rows with missing
|
| 94 |
+
values dropped from the dataset.
|
| 95 |
+
|
| 96 |
+
Parameters:
|
| 97 |
+
- data (pd.DataFrame): The input time-series dataset.
|
| 98 |
+
- target_particle (str): The target particle ('O3' or 'NO2') for which targets are created.
|
| 99 |
+
- lag_days (int): Number of lag days to create features for (default 7).
|
| 100 |
+
- sma_days (int): Window size for Simple Moving Average (default 7).
|
| 101 |
+
- days_ahead (int): Number of days ahead to create target variables for (default 3).
|
| 102 |
+
|
| 103 |
+
Returns:
|
| 104 |
+
- X_train_scaled (pd.DataFrame): Scaled training features.
|
| 105 |
+
- y_train_scaled (pd.DataFrame): Scaled training targets.
|
| 106 |
+
- X_val_scaled (pd.DataFrame): Scaled validation features (365 days).
|
| 107 |
+
- y_val_scaled (pd.DataFrame): Scaled validation targets (365 days).
|
| 108 |
+
- X_test_scaled (pd.DataFrame): Scaled test features (365 days).
|
| 109 |
+
- y_test_scaled (pd.DataFrame): Scaled test targets (365 days).
|
| 110 |
+
"""
|
| 111 |
+
import warnings
|
| 112 |
+
|
| 113 |
+
import joblib
|
| 114 |
+
import numpy as np
|
| 115 |
+
import pandas as pd
|
| 116 |
+
from sklearn.preprocessing import StandardScaler
|
| 117 |
+
|
| 118 |
+
warnings.filterwarnings("ignore")
|
| 119 |
+
|
| 120 |
+
lag_features = [
|
| 121 |
+
"NO2",
|
| 122 |
+
"O3",
|
| 123 |
+
"wind_speed",
|
| 124 |
+
"mean_temp",
|
| 125 |
+
"global_radiation",
|
| 126 |
+
"minimum_visibility",
|
| 127 |
+
"humidity",
|
| 128 |
+
]
|
| 129 |
+
if target_particle == "NO2":
|
| 130 |
+
lag_features = lag_features + ["percipitation", "pressure"]
|
| 131 |
+
|
| 132 |
+
if target_particle not in ["O3", "NO2"]:
|
| 133 |
+
raise ValueError("target_particle must be 'O3' or 'NO2'")
|
| 134 |
+
|
| 135 |
+
data = data.copy()
|
| 136 |
+
data["date"] = pd.to_datetime(data["date"])
|
| 137 |
+
data = data.sort_values("date").reset_index(drop=True)
|
| 138 |
+
|
| 139 |
+
# Extract 'weekday' and 'month' from 'date' if not present
|
| 140 |
+
if "weekday" not in data.columns or data["weekday"].dtype == object:
|
| 141 |
+
data["weekday"] = data["date"].dt.weekday # Monday=0, Sunday=6
|
| 142 |
+
if "month" not in data.columns:
|
| 143 |
+
data["month"] = data["date"].dt.month # 1 to 12
|
| 144 |
+
|
| 145 |
+
# Create sine and cosine transformations for 'weekday' and 'month'
|
| 146 |
+
data["weekday_sin"] = np.sin(2 * np.pi * data["weekday"] / 7)
|
| 147 |
+
data["weekday_cos"] = np.cos(2 * np.pi * data["weekday"] / 7)
|
| 148 |
+
data["month_sin"] = np.sin(
|
| 149 |
+
2 * np.pi * (data["month"] - 1) / 12
|
| 150 |
+
) # Adjust month to 0-11
|
| 151 |
+
data["month_cos"] = np.cos(2 * np.pi * (data["month"] - 1) / 12)
|
| 152 |
+
|
| 153 |
+
# Create lagged features for the specified lag days
|
| 154 |
+
for feature in lag_features:
|
| 155 |
+
for lag in range(1, lag_days + 1):
|
| 156 |
+
data[f"{feature}_lag_{lag}"] = data[feature].shift(lag)
|
| 157 |
+
|
| 158 |
+
# Create SMA features
|
| 159 |
+
for feature in lag_features:
|
| 160 |
+
data[f"{feature}_sma_{sma_days}"] = (
|
| 161 |
+
data[feature].rolling(window=sma_days).mean()
|
| 162 |
+
)
|
| 163 |
+
|
| 164 |
+
# Create particle data (NO2 and O3) from the same time last year
|
| 165 |
+
# Today last year
|
| 166 |
+
data["O3_last_year"] = data["O3"].shift(365)
|
| 167 |
+
data["NO2_last_year"] = data["NO2"].shift(365)
|
| 168 |
+
|
| 169 |
+
# 7 days before today last year
|
| 170 |
+
for i in range(1, lag_days + 1):
|
| 171 |
+
data[f"O3_last_year_{i}_days_before"] = data["O3"].shift(365 + i)
|
| 172 |
+
data[f"NO2_last_year_{i}_days_before"] = data["NO2"].shift(365 + i)
|
| 173 |
+
|
| 174 |
+
# 3 days after today last year
|
| 175 |
+
data["O3_last_year_3_days_after"] = data["O3"].shift(365 - 3)
|
| 176 |
+
data["NO2_last_year_3_days_after"] = data["NO2"].shift(365 - 3)
|
| 177 |
+
|
| 178 |
+
# Create targets only for the specified particle for the next 'days_ahead' days
|
| 179 |
+
for day in range(1, days_ahead + 1):
|
| 180 |
+
data[f"{target_particle}_plus_{day}_day"] = data[target_particle].shift(-day)
|
| 181 |
+
|
| 182 |
+
# Calculate the number of rows before dropping missing values
|
| 183 |
+
rows_before = data.shape[0]
|
| 184 |
+
|
| 185 |
+
# Drop missing values
|
| 186 |
+
data = data.dropna().reset_index(drop=True)
|
| 187 |
+
|
| 188 |
+
# Calculate the number of rows after dropping missing values
|
| 189 |
+
rows_after = data.shape[0]
|
| 190 |
+
|
| 191 |
+
# Calculate and print the number of rows dropped
|
| 192 |
+
rows_dropped = rows_before - rows_after
|
| 193 |
+
print(f"Number of rows with missing values dropped: {rows_dropped}")
|
| 194 |
+
|
| 195 |
+
# Now, split data into train, validation, and test sets using the most recent dates
|
| 196 |
+
total_days = data.shape[0]
|
| 197 |
+
test_size = 365
|
| 198 |
+
val_size = 365
|
| 199 |
+
|
| 200 |
+
if total_days < test_size + val_size:
|
| 201 |
+
raise ValueError(
|
| 202 |
+
"Not enough data to create validation and test sets of 365 days each."
|
| 203 |
+
)
|
| 204 |
+
|
| 205 |
+
# Ensure the data is sorted by date in ascending order
|
| 206 |
+
data = data.sort_values("date").reset_index(drop=True)
|
| 207 |
+
|
| 208 |
+
# Split data
|
| 209 |
+
train_data = data.iloc[: -(val_size + test_size)]
|
| 210 |
+
val_data = data.iloc[-(val_size + test_size) : -test_size]
|
| 211 |
+
test_data = data.iloc[-test_size:]
|
| 212 |
+
|
| 213 |
+
# Define target columns for the specified particle
|
| 214 |
+
target_cols = [
|
| 215 |
+
f"{target_particle}_plus_{day}_day" for day in range(1, days_ahead + 1)
|
| 216 |
+
]
|
| 217 |
+
|
| 218 |
+
# Define feature columns
|
| 219 |
+
exclude_cols = ["date", "weekday", "month"] + target_cols
|
| 220 |
+
feature_cols = [col for col in data.columns if col not in exclude_cols]
|
| 221 |
+
|
| 222 |
+
# Split features and targets
|
| 223 |
+
X_train = train_data[feature_cols]
|
| 224 |
+
y_train = train_data[target_cols]
|
| 225 |
+
|
| 226 |
+
X_val = val_data[feature_cols]
|
| 227 |
+
y_val = val_data[target_cols]
|
| 228 |
+
|
| 229 |
+
X_test = test_data[feature_cols]
|
| 230 |
+
y_test = test_data[target_cols]
|
| 231 |
+
|
| 232 |
+
# Initialize scalers
|
| 233 |
+
feature_scaler = StandardScaler()
|
| 234 |
+
target_scaler = StandardScaler()
|
| 235 |
+
|
| 236 |
+
# Fit the scalers on the training data
|
| 237 |
+
X_train_scaled = feature_scaler.fit_transform(X_train)
|
| 238 |
+
y_train_scaled = target_scaler.fit_transform(y_train)
|
| 239 |
+
|
| 240 |
+
# Apply the scalers to validation and test data
|
| 241 |
+
X_val_scaled = feature_scaler.transform(X_val)
|
| 242 |
+
y_val_scaled = target_scaler.transform(y_val)
|
| 243 |
+
|
| 244 |
+
X_test_scaled = feature_scaler.transform(X_test)
|
| 245 |
+
y_test_scaled = target_scaler.transform(y_test)
|
| 246 |
+
|
| 247 |
+
# Convert scaled data back to DataFrame for consistency
|
| 248 |
+
X_train_scaled = pd.DataFrame(
|
| 249 |
+
X_train_scaled, columns=feature_cols, index=X_train.index
|
| 250 |
+
)
|
| 251 |
+
y_train_scaled = pd.DataFrame(
|
| 252 |
+
y_train_scaled, columns=target_cols, index=y_train.index
|
| 253 |
+
)
|
| 254 |
+
|
| 255 |
+
X_val_scaled = pd.DataFrame(X_val_scaled, columns=feature_cols, index=X_val.index)
|
| 256 |
+
y_val_scaled = pd.DataFrame(y_val_scaled, columns=target_cols, index=y_val.index)
|
| 257 |
+
|
| 258 |
+
X_test_scaled = pd.DataFrame(
|
| 259 |
+
X_test_scaled, columns=feature_cols, index=X_test.index
|
| 260 |
+
)
|
| 261 |
+
y_test_scaled = pd.DataFrame(y_test_scaled, columns=target_cols, index=y_test.index)
|
| 262 |
+
|
| 263 |
+
# Save the scalers to files
|
| 264 |
+
joblib.dump(feature_scaler, "feature_scaler.joblib")
|
| 265 |
+
# Save the target scaler with the particle name to distinguish
|
| 266 |
+
target_scaler_filename = f"target_scaler_{target_particle}.joblib"
|
| 267 |
+
joblib.dump(target_scaler, target_scaler_filename)
|
| 268 |
+
|
| 269 |
+
return (
|
| 270 |
+
X_train_scaled,
|
| 271 |
+
y_train_scaled,
|
| 272 |
+
X_val_scaled,
|
| 273 |
+
y_val_scaled,
|
| 274 |
+
X_test_scaled,
|
| 275 |
+
y_test_scaled,
|
| 276 |
+
)
|