Spaces:
Runtime error
Runtime error
Commit
·
0b935c0
1
Parent(s):
03cd034
Upload EDAapp.py
Browse files
EDAapp.py
ADDED
@@ -0,0 +1,75 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# importing the libraries
|
2 |
+
import numpy as np
|
3 |
+
import pandas as pd
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
import seaborn as sns
|
6 |
+
import plotly.express as px
|
7 |
+
import streamlit as st
|
8 |
+
|
9 |
+
# Title and Markdown
|
10 |
+
st.title("AN EXAMPLE EDA APP")
|
11 |
+
st.markdown(''' <h3>This is an example of how to do EDA in streamlit app</h3>''',unsafe_allow_html=True)
|
12 |
+
|
13 |
+
# File upload
|
14 |
+
file_up = st.file_uploader("Upload a file", type='csv')
|
15 |
+
|
16 |
+
# Check if the file uploaded is successfull or not, if successfull then read the file
|
17 |
+
if file_up is not None:
|
18 |
+
st.success("File uploaded successfully")
|
19 |
+
df = pd.read_csv(file_up)
|
20 |
+
obj = []
|
21 |
+
int_float = []
|
22 |
+
for i in df.columns:
|
23 |
+
clas = df[i].dtypes
|
24 |
+
if clas == 'object':
|
25 |
+
obj.append(i)
|
26 |
+
else:
|
27 |
+
int_float.append(i)
|
28 |
+
|
29 |
+
# Remove null values and replace them with mean and median value
|
30 |
+
with st.form(key='my_form'):
|
31 |
+
with st.sidebar:
|
32 |
+
st.sidebar.header("To remove NULL values press below button")
|
33 |
+
submit_button = st.form_submit_button(label="Remove NULL")
|
34 |
+
|
35 |
+
if submit_button:
|
36 |
+
for i in df.columns:
|
37 |
+
clas = df[i].dtypes
|
38 |
+
if clas == 'object':
|
39 |
+
df[i].fillna(df[i].mode()[0], inplace = True)
|
40 |
+
else:
|
41 |
+
df[i].fillna(df[i].mean(), inplace = True)
|
42 |
+
|
43 |
+
# finding the number of null values in each column
|
44 |
+
ls = []
|
45 |
+
for i in df.columns:
|
46 |
+
dd = sum(pd.isnull(df[i]))
|
47 |
+
ls.append(dd)
|
48 |
+
|
49 |
+
# if number of null values are zero it will display some text else it will plot bar plot by each column
|
50 |
+
if max(ls) == 0:
|
51 |
+
st.write("Total no. of NULL values: ", str(max(ls)))
|
52 |
+
else:
|
53 |
+
st.write("Bar plot to know the number of NULL values in each column")
|
54 |
+
st.write("Total number of null values: ", str(max(ls)))
|
55 |
+
fig = px.bar(x=df.columns, y=ls,labels={'x':"Column Names",'y':"No. of Null values"})
|
56 |
+
st.plotly_chart(fig)
|
57 |
+
|
58 |
+
# Frequency Plot
|
59 |
+
st.sidebar.header("Select variable")
|
60 |
+
selected = st.sidebar.selectbox('Object variables',obj)
|
61 |
+
st.write("Bar Plot to know the frequency of each category")
|
62 |
+
frequency = df[selected].value_counts()
|
63 |
+
|
64 |
+
fig2 = px.bar(frequency, x=frequency.index,y=selected,labels={'x':selected, 'y':'count'})
|
65 |
+
st.plotly_chart(fig2)
|
66 |
+
|
67 |
+
# Correlation chart
|
68 |
+
st.sidebar.header("Select variable")
|
69 |
+
selected2 = st.sidebar.multiselect("Variables",int_float)
|
70 |
+
st.write("Scatter plot for correlation")
|
71 |
+
if len(selected2) == 2:
|
72 |
+
fig3 = px.scatter(df,x=selected2[0], y=selected2[1])
|
73 |
+
st.plotly_chart(fig3)
|
74 |
+
else:
|
75 |
+
st.write("Select any 2 variables only")
|