File size: 16,041 Bytes
7761984 2cd1a25 7761984 a099dfd 88eae72 7761984 88eae72 a099dfd 7761984 b6786fa 88eae72 b6786fa 88eae72 7761984 b6786fa 88eae72 7761984 b6786fa 88eae72 b6786fa 88eae72 b6786fa 88eae72 b6786fa 88eae72 b6786fa 88eae72 b6786fa 88eae72 b6786fa 88eae72 b6786fa 7761984 b6786fa 88eae72 b6786fa c30a2cc b6786fa c30a2cc b6786fa c30a2cc 88eae72 c30a2cc 88eae72 c30a2cc 88eae72 c30a2cc 88eae72 c30a2cc 88eae72 c30a2cc 88eae72 c30a2cc 88eae72 c30a2cc 88eae72 c30a2cc 88eae72 c30a2cc 88eae72 c30a2cc 88eae72 c30a2cc 88eae72 c30a2cc 88eae72 c30a2cc 88eae72 c30a2cc b6786fa 7761984 a099dfd 88eae72 b6786fa a099dfd b6786fa a099dfd b6786fa 7761984 a099dfd b6786fa 88eae72 2cd1a25 88eae72 a099dfd 88eae72 2cd1a25 a099dfd 2cd1a25 a099dfd b6786fa 88eae72 a099dfd b6786fa a099dfd b6786fa a099dfd 88eae72 a099dfd b6786fa 88eae72 2cd1a25 b6786fa 88eae72 a099dfd b6786fa a099dfd b6786fa 88eae72 a099dfd b6786fa a099dfd b6786fa a099dfd b6786fa a099dfd b6786fa a099dfd b6786fa a099dfd b6786fa 88eae72 7761984 88eae72 7761984 88eae72 2cd1a25 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
SAM2 Loader + Guarded Predictor Adapter (VRAM-friendly, shape-safe, thread-safe, PyTorch 2.x)
- Uses traditional build_sam2 method with HF hub downloads for SAM 2.1 weights
- Never assigns predictor.device (read-only) — moves .model to device instead
- Accepts RGB/BGR, float/uint8; strips alpha; optional BGR→RGB via env
- Downscale ladder on set_image(); upsample masks back to original H,W
- torch.autocast(device_type="cuda", ...) + torch.inference_mode()
- Thread-safe (Lock) for Gradio/Spaces concurrency
- Returns {"masks": (N,H,W) float32, "scores": (N,) float32}; safe fallback on failure
"""
from __future__ import annotations
import os
import time
import logging
import traceback
from typing import Optional, Dict, Any, Tuple, List
import numpy as np
import torch
import cv2
import threading
logger = logging.getLogger(__name__)
if not logger.handlers:
logging.basicConfig(level=logging.INFO)
# Sanitize bad OMP before heavy libs use it
_val = os.environ.get("OMP_NUM_THREADS")
if _val is not None and not str(_val).strip().isdigit():
try:
del os.environ["OMP_NUM_THREADS"]
except Exception:
pass
def _select_device(pref: str) -> str:
pref = (pref or "").lower()
if pref.startswith("cuda"):
return "cuda" if torch.cuda.is_available() else "cpu"
if pref == "cpu":
return "cpu"
return "cuda" if torch.cuda.is_available() else "cpu"
def _ensure_rgb_uint8(img: np.ndarray, force_bgr_to_rgb: bool = False) -> np.ndarray:
if img is None:
raise ValueError("set_image received None image")
arr = np.asarray(img)
if arr.ndim != 3 or arr.shape[2] < 3:
raise ValueError(f"Expected HxWxC image with C>=3, got shape={arr.shape}")
if np.issubdtype(arr.dtype, np.floating):
arr = np.clip(arr, 0.0, 1.0)
arr = (arr * 255.0 + 0.5).astype(np.uint8)
elif arr.dtype == np.uint16:
arr = (arr / 257).astype(np.uint8)
elif arr.dtype != np.uint8:
arr = arr.astype(np.uint8)
if arr.shape[2] == 4:
arr = arr[:, :, :3]
if force_bgr_to_rgb:
arr = cv2.cvtColor(arr, cv2.COLOR_BGR2RGB)
return arr
def _compute_scaled_size(h: int, w: int, max_edge: int, target_pixels: int) -> Tuple[int, int, float]:
if h <= 0 or w <= 0:
return h, w, 1.0
s1 = min(1.0, float(max_edge) / float(max(h, w))) if max_edge > 0 else 1.0
s2 = min(1.0, (float(target_pixels) / float(h * w)) ** 0.5) if target_pixels > 0 else 1.0
s = min(s1, s2)
nh = max(1, int(round(h * s)))
nw = max(1, int(round(w * s)))
return nh, nw, s
def _ladder(nh: int, nw: int) -> List[Tuple[int, int]]:
sizes = [(nh, nw)]
for f in (0.85, 0.70, 0.55, 0.40, 0.30):
sizes.append((max(64, int(nh * f)), max(64, int(nw * f))))
uniq, seen = [], set()
for s in sizes:
if s not in seen:
uniq.append(s); seen.add(s)
return uniq
def _upsample_stack(masks: np.ndarray, out_hw: Tuple[int, int]) -> np.ndarray:
masks = np.asarray(masks)
if masks.ndim == 2:
masks = masks[None, ...]
elif masks.ndim == 4 and masks.shape[1] == 1:
masks = masks[:, 0, :, :]
if masks.ndim != 3:
masks = np.squeeze(masks)
if masks.ndim == 2:
masks = masks[None, ...]
n, h, w = masks.shape
H, W = out_hw
if (h, w) == (H, W):
return masks.astype(np.float32, copy=False)
out = np.zeros((n, H, W), dtype=np.float32)
for i in range(n):
out[i] = cv2.resize(masks[i].astype(np.float32), (W, H), interpolation=cv2.INTER_LINEAR)
return np.clip(out, 0.0, 1.0)
def _normalize_masks_dtype(x: np.ndarray) -> np.ndarray:
x = np.asarray(x)
if x.dtype == np.uint8:
return (x.astype(np.float32) / 255.0)
return x.astype(np.float32, copy=False)
class _SAM2Adapter:
def __init__(self, predictor, device: str):
self.pred = predictor
self.device = device
self.orig_hw: Tuple[int, int] = (0, 0)
self._current_rgb: Optional[np.ndarray] = None
self._current_hw: Tuple[int, int] = (0, 0)
self.max_edge = int(os.environ.get("SAM2_MAX_EDGE", "1024"))
self.target_pixels = int(os.environ.get("SAM2_TARGET_PIXELS", "900000"))
self.force_bgr_to_rgb = os.environ.get("SAM2_ASSUME_BGR", "0") == "1"
self._lock = threading.Lock()
def set_image(self, image: np.ndarray):
with self._lock:
rgb = _ensure_rgb_uint8(image, force_bgr_to_rgb=self.force_bgr_to_rgb)
H, W = rgb.shape[:2]
self.orig_hw = (H, W)
nh, nw, s = _compute_scaled_size(H, W, self.max_edge, self.target_pixels)
if s < 1.0:
work = cv2.resize(rgb, (nw, nh), interpolation=cv2.INTER_AREA)
self._current_rgb = work
self._current_hw = (nh, nw)
else:
self._current_rgb = rgb
self._current_hw = (H, W)
self.pred.set_image(self._current_rgb)
def predict(self, **kwargs) -> Dict[str, Any]:
with self._lock:
if self._current_rgb is None or self.orig_hw == (0, 0):
raise RuntimeError("SAM2Adapter.predict called before set_image()")
H, W = self.orig_hw
nh, nw = self._current_hw
sizes = _ladder(nh, nw)
last_exc: Optional[BaseException] = None
for (th, tw) in sizes:
try:
if (th, tw) != (nh, nw):
small = cv2.resize(self._current_rgb, (tw, th), interpolation=cv2.INTER_AREA)
self.pred.set_image(small)
class _NoOp:
def __enter__(self): return None
def __exit__(self, *a): return False
use_amp = (self.device == "cuda")
if use_amp:
amp_ctx = torch.autocast(
device_type="cuda",
dtype=(torch.bfloat16 if torch.cuda.is_bf16_supported() else torch.float16)
)
else:
amp_ctx = _NoOp()
with torch.inference_mode():
with amp_ctx:
out = self.pred.predict(**kwargs)
masks = None; scores = None; logits = None
if isinstance(out, dict):
masks = out.get("masks"); scores = out.get("scores"); logits = out.get("logits")
elif isinstance(out, (tuple, list)):
if len(out) >= 1: masks = out[0]
if len(out) >= 2: scores = out[1]
if len(out) >= 3: logits = out[2]
else:
masks = out
if masks is None:
raise RuntimeError("SAM2 returned no masks")
masks = _normalize_masks_dtype(masks)
masks_up = _upsample_stack(masks, (H, W))
if scores is None:
scores = np.ones((masks_up.shape[0],), dtype=np.float32) * 0.5
else:
scores = np.asarray(scores).astype(np.float32, copy=False).reshape(-1)
out_dict = {"masks": masks_up, "scores": scores}
if logits is not None:
lg = np.asarray(logits)
if lg.ndim == 3:
lg = _upsample_stack(lg, (H, W))
elif lg.ndim == 4 and lg.shape[1] == 1:
lg = _upsample_stack(lg[:, 0, :, :], (H, W))
out_dict["logits"] = lg.astype(np.float32, copy=False)
return out_dict
except torch.cuda.OutOfMemoryError as e:
last_exc = e
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.warning(f"SAM2 OOM at {th}x{tw}; retrying smaller. {e}")
continue
except Exception as e:
last_exc = e
if torch.cuda.is_available():
torch.cuda.empty_cache()
logger.debug(traceback.format_exc())
logger.warning(f"SAM2 predict failed at {th}x{tw}; retrying smaller. {e}")
continue
logger.warning(f"SAM2 calls failed; returning fallback mask. {last_exc}")
return {
"masks": np.ones((1, H, W), dtype=np.float32),
"scores": np.array([0.5], dtype=np.float32),
}
class SAM2Loader:
"""Dedicated loader for SAM2 models (PyTorch 2.x, Spaces-friendly)."""
def __init__(self, device: str = "cuda", cache_dir: str = "./checkpoints/sam2_cache"):
self.device = _select_device(device)
self.cache_dir = cache_dir
os.makedirs(self.cache_dir, exist_ok=True)
os.environ.setdefault("HF_HUB_DISABLE_SYMLINKS", "1")
os.environ.setdefault("HF_HUB_ENABLE_HF_TRANSFER", "0")
self.model = None
self.adapter = None
self.model_id = None
self.load_time = 0.0
def _determine_optimal_size(self) -> str:
# Check environment variable first
env_size = os.environ.get("USE_SAM2", "").lower()
if env_size in ["tiny", "small", "base", "large"]:
logger.info(f"Using SAM2 size from environment: {env_size}")
return env_size
try:
if torch.cuda.is_available():
props = torch.cuda.get_device_properties(0)
vram_gb = props.total_memory / (1024**3)
if vram_gb < 4: return "tiny"
if vram_gb < 8: return "small"
if vram_gb < 12: return "base"
return "large"
except Exception:
pass
return "tiny"
def load(self, model_size: str = "auto") -> Optional[_SAM2Adapter]:
if model_size == "auto":
model_size = self._determine_optimal_size()
# Use original SAM2 model names (without .1) for compatibility
model_map = {
"tiny": "facebook/sam2-hiera-tiny",
"small": "facebook/sam2-hiera-small",
"base": "facebook/sam2-hiera-base-plus",
"large": "facebook/sam2-hiera-large",
}
self.model_id = model_map.get(model_size, model_map["tiny"])
logger.info(f"Loading SAM2 model: {self.model_id} (device={self.device})")
for name, fn in (("official", self._load_official), ("fallback", self._load_fallback)):
try:
t0 = time.time()
pred = fn()
if pred is None:
continue
self.model = pred
self.adapter = _SAM2Adapter(self.model, self.device)
self.load_time = time.time() - t0
logger.info(f"SAM2 loaded via {name} in {self.load_time:.2f}s")
return self.adapter
except Exception as e:
logger.error(f"SAM2 {name} strategy failed: {e}")
logger.debug(traceback.format_exc())
logger.error("All SAM2 loading strategies failed")
return None
def _load_official(self):
try:
from huggingface_hub import hf_hub_download
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
except ImportError as e:
logger.error(f"Failed to import SAM2 components: {e}")
return None
# Map model IDs to config files and checkpoint names
config_map = {
"facebook/sam2-hiera-tiny": ("sam2_hiera_t.yaml", "sam2_hiera_tiny.pt"),
"facebook/sam2-hiera-small": ("sam2_hiera_s.yaml", "sam2_hiera_small.pt"),
"facebook/sam2-hiera-base-plus": ("sam2_hiera_b+.yaml", "sam2_hiera_base_plus.pt"),
"facebook/sam2-hiera-large": ("sam2_hiera_l.yaml", "sam2_hiera_large.pt"),
}
config_file, checkpoint_file = config_map.get(self.model_id, (None, None))
if not config_file:
raise ValueError(f"Unknown model: {self.model_id}")
try:
# Download the checkpoint from HuggingFace
logger.info(f"Downloading checkpoint: {checkpoint_file}")
checkpoint_path = hf_hub_download(
repo_id=self.model_id,
filename=checkpoint_file,
cache_dir=self.cache_dir,
local_files_only=False
)
logger.info(f"Checkpoint downloaded to: {checkpoint_path}")
# Also download the config file if needed
config_path = hf_hub_download(
repo_id=self.model_id,
filename=config_file,
cache_dir=self.cache_dir,
local_files_only=False
)
logger.info(f"Config downloaded to: {config_path}")
# Build the model using the traditional method
sam2_model = build_sam2(config_path, checkpoint_path, device=self.device)
predictor = SAM2ImagePredictor(sam2_model)
# Ensure model is on the correct device and in eval mode
if hasattr(predictor, "model"):
predictor.model = predictor.model.to(self.device)
predictor.model.eval()
return predictor
except Exception as e:
logger.error(f"Error loading SAM2 model: {e}")
logger.debug(traceback.format_exc())
return None
def _load_fallback(self):
class FallbackSAM2:
def __init__(self, device):
self.device = device
self._img = None
def set_image(self, image):
self._img = np.asarray(image)
def predict(self, **kwargs):
h, w = (self._img.shape[:2] if self._img is not None else (512, 512))
return {
"masks": np.ones((1, h, w), dtype=np.float32),
"scores": np.array([0.5], dtype=np.float32),
}
logger.warning("Using fallback SAM2 (no real segmentation)")
return FallbackSAM2(self.device)
def cleanup(self):
self.adapter = None
if self.model is not None:
try:
del self.model
except Exception:
pass
self.model = None
if torch.cuda.is_available():
torch.cuda.empty_cache()
def get_info(self) -> Dict[str, Any]:
return {
"loaded": self.adapter is not None,
"model_id": self.model_id,
"device": self.device,
"load_time": self.load_time,
"model_type": type(self.model).__name__ if self.model else None,
}
if __name__ == "__main__":
# Standalone smoke test only; NOT executed when imported in your app
import sys
logging.basicConfig(level=logging.INFO)
dev = "cuda" if torch.cuda.is_available() else "cpu"
if len(sys.argv) < 2:
print(f"Usage: {sys.argv[0]} image.jpg")
raise SystemExit(1)
path = sys.argv[1]
img = cv2.imread(path, cv2.IMREAD_COLOR)
if img is None:
print(f"Could not load image {path}")
raise SystemExit(2)
loader = SAM2Loader(device=dev)
sam = loader.load("auto")
if not sam:
print("Failed to load SAM2")
raise SystemExit(3)
sam.set_image(img)
out = sam.predict(point_coords=None, point_labels=None)
m = out["masks"]
print("Masks:", m.shape, m.dtype, m.min(), m.max())
cv2.imwrite("sam2_mask0.png", (np.clip(m[0], 0, 1) * 255).astype(np.uint8))
print("Wrote sam2_mask0.png") |