File size: 67,091 Bytes
d008b27 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 |
#!/usr/bin/env python3
# =============================================================================
# CHAPTER 0: INTRO & OVERVIEW
# =============================================================================
"""
Enhanced Video Background Replacement (SAM2 + MatAnyone + AI Backgrounds)
- Strict tensor shapes for MatAnyone (image: 3xHxW, first-frame prob mask: 1xHxW)
- First frame uses PROB path (no idx_mask / objects) to avoid assertion
- Memory management & cleanup
- SDXL / Playground / OpenAI backgrounds
- Gradio UI with "CHAPTER" dividers
- FIXED: Enhanced positioning with debug logging and coordinate precision
"""
# =============================================================================
# CHAPTER 1: IMPORTS & GLOBALS
# =============================================================================
import os
import sys
import gc
import cv2
import psutil
import time
import json
import base64
import random
import shutil
import logging
import traceback
import subprocess
import tempfile
import threading
from dataclasses import dataclass
from contextlib import contextmanager
from pathlib import Path
from typing import Optional, Tuple, List
import numpy as np
from PIL import Image
import gradio as gr
from moviepy.editor import VideoFileClip
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger("bgx")
# Environment tuning (safe defaults)
os.environ.setdefault("CUDA_MODULE_LOADING", "LAZY")
os.environ.setdefault("TORCH_CUDNN_V8_API_ENABLED", "1")
os.environ.setdefault("PYTHONUNBUFFERED", "1")
os.environ.setdefault("MKL_NUM_THREADS", "4")
os.environ.setdefault("BFX_QUALITY", "max")
os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "max_split_size_mb:128,roundup_power2_divisions:16")
os.environ.setdefault("HYDRA_FULL_ERROR", "1")
os.environ["OMP_NUM_THREADS"] = "2"
# Paths
BASE_DIR = Path(__file__).resolve().parent
CHECKPOINTS = BASE_DIR / "checkpoints"
TEMP_DIR = BASE_DIR / "temp"
OUT_DIR = BASE_DIR / "outputs"
BACKGROUND_DIR = OUT_DIR / "backgrounds"
for p in (CHECKPOINTS, TEMP_DIR, OUT_DIR, BACKGROUND_DIR):
p.mkdir(parents=True, exist_ok=True)
# Torch/device
try:
import torch
TORCH_AVAILABLE = True
CUDA_AVAILABLE = torch.cuda.is_available()
DEVICE = "cuda" if CUDA_AVAILABLE else "cpu"
try:
if torch.backends.cuda.is_built():
torch.backends.cuda.matmul.allow_tf32 = True
if hasattr(torch.backends, "cudnn"):
torch.backends.cudnn.benchmark = True
torch.backends.cudnn.deterministic = False
if CUDA_AVAILABLE:
torch.cuda.set_per_process_memory_fraction(0.8)
except Exception:
pass
except Exception:
TORCH_AVAILABLE = False
CUDA_AVAILABLE = False
DEVICE = "cpu"
# =============================================================================
# CHAPTER 2: UI CONSTANTS & UTILS
# =============================================================================
GRADIENT_PRESETS = {
"Blue Fade": ((128, 64, 0), (255, 128, 0)),
"Sunset": ((255, 128, 0), (255, 0, 128)),
"Green Field": ((64, 128, 64), (160, 255, 160)),
"Slate": ((40, 40, 48), (96, 96, 112)),
"Ocean": ((255, 140, 0), (255, 215, 0)),
"Forest": ((34, 139, 34), (144, 238, 144)),
"Sunset Pink": ((255, 182, 193), (255, 105, 180)),
"Cool Blue": ((173, 216, 230), (0, 191, 255)),
}
AI_PROMPT_SUGGESTIONS = [
"Custom (write your own)",
"modern minimalist office with soft lighting, clean desk, blurred background",
"elegant conference room with large windows and city view",
"contemporary workspace with plants and natural light",
"luxury hotel lobby with marble floors and warm ambient lighting",
"professional studio with clean white background and soft lighting",
"modern corporate meeting room with glass walls and city skyline",
"sophisticated home office with bookshelf and warm wood tones",
"sleek coworking space with industrial design elements",
"abstract geometric patterns in blue and gold, modern art style",
"soft watercolor texture with pastel colors, dreamy atmosphere",
]
def _make_vertical_gradient(width: int, height: int, c1, c2) -> np.ndarray:
width = max(1, int(width))
height = max(1, int(height))
top = np.array(c1, dtype=np.float32)
bot = np.array(c2, dtype=np.float32)
rows = np.linspace(top, bot, num=height, dtype=np.float32)
grad = np.repeat(rows[:, None, :], repeats=width, axis=1)
return np.clip(grad, 0, 255).astype(np.uint8)
def run_ffmpeg(args: list, fail_ok=False) -> bool:
cmd = ["ffmpeg", "-y", "-hide_banner", "-loglevel", "error"] + args
try:
subprocess.run(cmd, check=True, capture_output=True)
return True
except Exception as e:
if not fail_ok:
logger.error(f"ffmpeg failed: {e}")
return False
def write_video_h264(clip, path: str, fps: Optional[int] = None, crf: int = 18, preset: str = "medium"):
fps = fps or max(1, int(round(getattr(clip, "fps", None) or 24)))
clip.write_videofile(
path,
audio=False,
fps=fps,
codec="libx264",
preset=preset,
ffmpeg_params=["-crf", str(crf), "-pix_fmt", "yuv420p", "-profile:v", "high", "-movflags", "+faststart"],
logger=None,
verbose=False,
)
def download_file(url: str, dest: Path, name: str) -> bool:
if dest.exists():
logger.info(f"{name} already exists")
return True
try:
import requests
logger.info(f"Downloading {name} ...")
with requests.get(url, stream=True, timeout=300) as r:
r.raise_for_status()
with open(dest, "wb") as f:
for chunk in r.iter_content(chunk_size=8192):
if chunk:
f.write(chunk)
return True
except Exception as e:
logger.error(f"Failed to download {name}: {e}")
if dest.exists():
try: dest.unlink()
except Exception: pass
return False
def ensure_repo(repo_name: str, git_url: str) -> Optional[Path]:
repo_path = CHECKPOINTS / f"{repo_name}_repo"
if not repo_path.exists():
try:
subprocess.run(["git", "clone", "--depth", "1", git_url, str(repo_path)],
check=True, timeout=300, capture_output=True)
logger.info(f"{repo_name} cloned")
except Exception as e:
logger.error(f"Failed to clone {repo_name}: {e}")
return None
repo_str = str(repo_path)
if repo_str not in sys.path:
sys.path.insert(0, repo_str)
return repo_path
def _reset_hydra():
try:
from hydra.core.global_hydra import GlobalHydra
if GlobalHydra().is_initialized():
GlobalHydra.instance().clear()
except Exception:
pass
# =============================================================================
# CHAPTER 3: MEMORY MANAGER
# =============================================================================
@dataclass
class MemoryStats:
cpu_percent: float
cpu_memory_mb: float
gpu_memory_mb: float = 0.0
gpu_memory_reserved_mb: float = 0.0
temp_files_count: int = 0
temp_files_size_mb: float = 0.0
class MemoryManager:
def __init__(self):
self.temp_files: List[str] = []
self.cleanup_lock = threading.Lock()
self.torch_available = TORCH_AVAILABLE
self.cuda_available = CUDA_AVAILABLE
def get_memory_stats(self) -> MemoryStats:
process = psutil.Process()
cpu_percent = psutil.cpu_percent(interval=0.1)
cpu_memory_mb = process.memory_info().rss / (1024 * 1024)
gpu_memory_mb = 0.0
gpu_memory_reserved_mb = 0.0
if self.torch_available and self.cuda_available:
try:
import torch
gpu_memory_mb = torch.cuda.memory_allocated() / (1024 * 1024)
gpu_memory_reserved_mb = torch.cuda.memory_reserved() / (1024 * 1024)
except Exception:
pass
temp_count, temp_size_mb = 0, 0.0
for tf in self.temp_files:
if os.path.exists(tf):
temp_count += 1
try:
temp_size_mb += os.path.getsize(tf) / (1024 * 1024)
except Exception:
pass
return MemoryStats(cpu_percent, cpu_memory_mb, gpu_memory_mb, gpu_memory_reserved_mb, temp_count, temp_size_mb)
def register_temp_file(self, path: str):
with self.cleanup_lock:
if path not in self.temp_files:
self.temp_files.append(path)
def cleanup_temp_files(self):
with self.cleanup_lock:
cleaned = 0
for tf in self.temp_files[:]:
try:
if os.path.isdir(tf):
shutil.rmtree(tf, ignore_errors=True)
elif os.path.exists(tf):
os.unlink(tf)
cleaned += 1
except Exception as e:
logger.warning(f"Failed to cleanup {tf}: {e}")
finally:
try: self.temp_files.remove(tf)
except Exception: pass
if cleaned:
logger.info(f"Cleaned {cleaned} temp paths")
def aggressive_cleanup(self):
logger.info("Aggressive cleanup...")
gc.collect()
if self.torch_available and self.cuda_available:
try:
import torch
torch.cuda.empty_cache()
torch.cuda.synchronize()
except Exception:
pass
self.cleanup_temp_files()
gc.collect()
@contextmanager
def mem_context(self, name="op"):
stats = self.get_memory_stats()
logger.info(f"Start {name} | CPU {stats.cpu_memory_mb:.1f}MB, GPU {stats.gpu_memory_mb:.1f}MB")
try:
yield self
finally:
self.aggressive_cleanup()
stats = self.get_memory_stats()
logger.info(f"End {name} | CPU {stats.cpu_memory_mb:.1f}MB, GPU {stats.gpu_memory_mb:.1f}MB")
memory_manager = MemoryManager()
# =============================================================================
# CHAPTER 4: SYSTEM STATE
# =============================================================================
class SystemState:
def __init__(self):
self.torch_available = TORCH_AVAILABLE
self.cuda_available = CUDA_AVAILABLE
self.device = DEVICE
self.sam2_ready = False
self.matanyone_ready = False
self.sam2_error = None
self.matanyone_error = None
def status_text(self) -> str:
stats = memory_manager.get_memory_stats()
return (
"=== SYSTEM STATUS ===\n"
f"PyTorch: {'β
' if self.torch_available else 'β'}\n"
f"CUDA: {'β
' if self.cuda_available else 'β'}\n"
f"Device: {self.device}\n"
f"SAM2: {'β
' if self.sam2_ready else ('β' if self.sam2_error else 'β³')}\n"
f"MatAnyone: {'β
' if self.matanyone_ready else ('β' if self.matanyone_error else 'β³')}\n\n"
"=== MEMORY ===\n"
f"CPU: {stats.cpu_percent:.1f}% ({stats.cpu_memory_mb:.1f} MB)\n"
f"GPU: {stats.gpu_memory_mb:.1f} MB (Reserved {stats.gpu_memory_reserved_mb:.1f} MB)\n"
f"Temp: {stats.temp_files_count} files ({stats.temp_files_size_mb:.1f} MB)\n"
)
state = SystemState()
# =============================================================================
# CHAPTER 5: SAM2 HANDLER (CUDA-only)
# =============================================================================
class SAM2Handler:
def __init__(self):
self.predictor = None
self.initialized = False
def initialize(self) -> bool:
if not (TORCH_AVAILABLE and CUDA_AVAILABLE):
state.sam2_error = "SAM2 requires CUDA"
return False
with memory_manager.mem_context("SAM2 init"):
try:
_reset_hydra()
repo_path = ensure_repo("sam2", "https://github.com/facebookresearch/segment-anything-2.git")
if not repo_path:
state.sam2_error = "Clone failed"
return False
ckpt = CHECKPOINTS / "sam2.1_hiera_large.pt"
url = "https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt"
if not download_file(url, ckpt, "SAM2 Large"):
state.sam2_error = "SAM2 ckpt download failed"
return False
from hydra.core.global_hydra import GlobalHydra
from hydra import initialize_config_dir
from sam2.build_sam import build_sam2
from sam2.sam2_image_predictor import SAM2ImagePredictor
config_dir = (repo_path / "sam2" / "configs").as_posix()
if GlobalHydra().is_initialized():
GlobalHydra.instance().clear()
initialize_config_dir(config_dir=config_dir, version_base=None)
model = build_sam2("sam2.1/sam2.1_hiera_l.yaml", str(ckpt), device="cuda")
self.predictor = SAM2ImagePredictor(model)
# Smoke test
test = np.zeros((64, 64, 3), dtype=np.uint8)
self.predictor.set_image(test)
masks, scores, _ = self.predictor.predict(
point_coords=np.array([[32, 32]]),
point_labels=np.ones(1, dtype=np.int64),
multimask_output=True,
)
ok = masks is not None and len(masks) > 0
self.initialized = ok
state.sam2_ready = ok
if not ok:
state.sam2_error = "SAM2 verify failed"
return ok
except Exception as e:
state.sam2_error = f"SAM2 init error: {e}"
return False
def create_mask(self, image_rgb: np.ndarray) -> Optional[np.ndarray]:
if not self.initialized:
return None
with memory_manager.mem_context("SAM2 mask"):
try:
self.predictor.set_image(image_rgb)
h, w = image_rgb.shape[:2]
strategies = [
np.array([[w // 2, h // 2]]),
np.array([[w // 2, h // 3]]),
np.array([[w // 2, h // 3], [w // 2, (2 * h) // 3]]),
]
best, best_score = None, -1.0
for pc in strategies:
masks, scores, _ = self.predictor.predict(
point_coords=pc,
point_labels=np.ones(len(pc), dtype=np.int64),
multimask_output=True,
)
if masks is not None and len(masks) > 0:
i = int(np.argmax(scores))
sc = float(scores[i])
if sc > best_score:
best_score, best = sc, masks[i]
if best is None:
return None
mask_u8 = (best * 255).astype(np.uint8)
k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
mask_clean = cv2.morphologyEx(mask_u8, cv2.MORPH_CLOSE, k)
mask_clean = cv2.morphologyEx(mask_clean, cv2.MORPH_OPEN, k)
mask_clean = cv2.GaussianBlur(mask_clean, (3, 3), 1.0)
return mask_clean
except Exception as e:
logger.error(f"SAM2 mask error: {e}")
return None
# =============================================================================
# CHAPTER 6: MATANYONE HANDLER (FIXED - Uses existing matanyone_fixed files)
# =============================================================================
class MatAnyoneHandler:
"""
FIXED MatAnyone handler using existing matanyone_fixed files
"""
def __init__(self):
self.core = None
self.initialized = False
# ----- tensor helpers -----
def _to_chw_float(self, img01: np.ndarray) -> "torch.Tensor":
"""img01: HxWx3 in [0,1] -> torch float (3,H,W) on DEVICE (no batch)."""
assert img01.ndim == 3 and img01.shape[2] == 3, f"Expected HxWx3, got {img01.shape}"
t = torch.from_numpy(img01.transpose(2, 0, 1)).contiguous().float() # (3,H,W)
return t.to(DEVICE, non_blocking=CUDA_AVAILABLE)
def _prob_hw_from_mask_u8(self, mask_u8: np.ndarray, w: int, h: int) -> "torch.Tensor":
"""mask_u8: HxW -> torch float (H,W) in [0,1] on DEVICE (no batch, no channel)."""
if mask_u8.shape[0] != h or mask_u8.shape[1] != w:
mask_u8 = cv2.resize(mask_u8, (w, h), interpolation=cv2.INTER_NEAREST)
prob = (mask_u8.astype(np.float32) / 255.0) # (H,W)
t = torch.from_numpy(prob).contiguous().float()
return t.to(DEVICE, non_blocking=CUDA_AVAILABLE)
def _prob_1hw_from_mask_u8(self, mask_u8: np.ndarray, w: int, h: int) -> "torch.Tensor":
"""Optional: 1xHxW (channel-first, still unbatched)."""
if mask_u8.shape[0] != h or mask_u8.shape[1] != w:
mask_u8 = cv2.resize(mask_u8, (w, h), interpolation=cv2.INTER_NEAREST)
prob = (mask_u8.astype(np.float32) / 255.0)[None, ...] # (1,H,W)
t = torch.from_numpy(prob).contiguous().float()
return t.to(DEVICE, non_blocking=CUDA_AVAILABLE)
def _alpha_to_u8_hw(self, alpha_like) -> np.ndarray:
"""
Accepts torch / numpy / tuple(list) outputs.
Returns uint8 HxW (0..255). Squeezes common shapes down to HxW.
"""
if isinstance(alpha_like, (list, tuple)) and len(alpha_like) > 1:
alpha_like = alpha_like[1] # (indices, probs) -> take probs
if isinstance(alpha_like, torch.Tensor):
t = alpha_like.detach()
if t.is_cuda:
t = t.cpu()
a = t.float().clamp(0, 1).numpy()
else:
a = np.asarray(alpha_like, dtype=np.float32)
a = np.clip(a, 0, 1)
a = np.squeeze(a)
if a.ndim == 3 and a.shape[0] >= 1: # (1,H,W) -> (H,W)
a = a[0]
if a.ndim != 2:
raise ValueError(f"Alpha must be HxW; got {a.shape}")
return np.clip(a * 255.0, 0, 255).astype(np.uint8)
def initialize(self) -> bool:
"""
FIXED MatAnyone initialization using existing matanyone_fixed files
"""
if not TORCH_AVAILABLE:
state.matanyone_error = "PyTorch required"
return False
with memory_manager.mem_context("MatAnyone init"):
try:
# Use existing matanyone_fixed directory
local_matanyone = BASE_DIR / "matanyone_fixed"
if not local_matanyone.exists():
state.matanyone_error = "matanyone_fixed directory not found"
return False
# Add the fixed matanyone path to Python path
matanyone_str = str(local_matanyone)
if matanyone_str not in sys.path:
sys.path.insert(0, matanyone_str)
# Import fixed modules
try:
from inference.inference_core import InferenceCore
from utils.get_default_model import get_matanyone_model
except Exception as e:
state.matanyone_error = f"Import error: {e}"
return False
# Download model checkpoint if needed
ckpt = CHECKPOINTS / "matanyone.pth"
if not ckpt.exists():
url = "https://github.com/pq-yang/MatAnyone/releases/download/v1.0.0/matanyone.pth"
if not download_file(url, ckpt, "MatAnyone"):
logger.warning("MatAnyone checkpoint download failed, using random weights")
# Load model using fixed interface
net = get_matanyone_model(str(ckpt), device=DEVICE)
if net is None:
state.matanyone_error = "Model creation failed"
return False
# Create inference core with fixed implementation
self.core = InferenceCore(net)
self.initialized = True
state.matanyone_ready = True
logger.info("Fixed MatAnyone initialized successfully")
return True
except Exception as e:
state.matanyone_error = f"MatAnyone init error: {e}"
logger.error(f"MatAnyone initialization failed: {e}")
return False
def _try_step_variants_seed(self,
img_chw_t: "torch.Tensor",
prob_hw_t: "torch.Tensor",
prob_1hw_t: "torch.Tensor"):
"""
Simplified step variants using fixed MatAnyone
"""
# The fixed MatAnyone handles tensor format internally
try:
return self.core.step(img_chw_t, prob_hw_t)
except Exception as e:
try:
return self.core.step(img_chw_t, prob_1hw_t)
except Exception as e2:
# Final fallback: no probability guidance
return self.core.step(img_chw_t)
def _try_step_variants_noseed(self, img_chw_t: "torch.Tensor"):
"""
Simplified noseed variants using fixed MatAnyone
"""
return self.core.step(img_chw_t)
# ----- video matting using first-frame PROB mask --------------------------
def process_video(self, input_path: str, mask_path: str, output_path: str) -> str:
"""
Produce a single-channel alpha mp4 matching input fps & size.
First frame: pass a soft seed prob (~HW) alongside the image.
Remaining frames: call step(image) only.
"""
if not self.initialized or self.core is None:
raise RuntimeError("MatAnyone not initialized")
out_dir = Path(output_path)
out_dir.mkdir(parents=True, exist_ok=True)
alpha_path = out_dir / "alpha.mp4"
cap = cv2.VideoCapture(input_path)
if not cap.isOpened():
raise RuntimeError("Could not open input video")
fps = cap.get(cv2.CAP_PROP_FPS) or 24.0
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
# soft seed prob - prepare tensor versions only
seed_mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE)
if seed_mask is None:
cap.release()
raise RuntimeError("Seed mask read failed")
prob_hw_t = self._prob_hw_from_mask_u8(seed_mask, w, h) # (H,W) torch
prob_1hw_t = self._prob_1hw_from_mask_u8(seed_mask, w, h) # (1,H,W) torch
# temp frames
tmp_dir = TEMP_DIR / f"ma_{int(time.time())}_{random.randint(1000,9999)}"
tmp_dir.mkdir(parents=True, exist_ok=True)
memory_manager.register_temp_file(str(tmp_dir))
frame_idx = 0
# --- first frame (with soft prob) ---
ok, frame_bgr = cap.read()
if not ok or frame_bgr is None:
cap.release()
raise RuntimeError("Empty first frame")
frame_rgb01 = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
img_chw_t = self._to_chw_float(frame_rgb01) # (3,H,W) torch
with torch.no_grad():
out_prob = self._try_step_variants_seed(
img_chw_t, prob_hw_t, prob_1hw_t
)
alpha_u8 = self._alpha_to_u8_hw(out_prob)
cv2.imwrite(str(tmp_dir / f"{frame_idx:06d}.png"), alpha_u8)
frame_idx += 1
# --- remaining frames (no seed) ---
while True:
ok, frame_bgr = cap.read()
if not ok or frame_bgr is None:
break
frame_rgb01 = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
img_chw_t = self._to_chw_float(frame_rgb01)
with torch.no_grad():
out_prob = self._try_step_variants_noseed(img_chw_t)
alpha_u8 = self._alpha_to_u8_hw(out_prob)
cv2.imwrite(str(tmp_dir / f"{frame_idx:06d}.png"), alpha_u8)
frame_idx += 1
cap.release()
# --- encode PNGs β alpha mp4 ---
list_file = tmp_dir / "list.txt"
with open(list_file, "w") as f:
for i in range(frame_idx):
f.write(f"file '{(tmp_dir / f'{i:06d}.png').as_posix()}'\n")
cmd = [
"ffmpeg", "-y", "-hide_banner", "-loglevel", "error",
"-f", "concat", "-safe", "0",
"-r", f"{fps:.6f}",
"-i", str(list_file),
"-vf", f"format=gray,scale={w}:{h}:flags=area",
"-pix_fmt", "yuv420p",
"-c:v", "libx264", "-preset", "medium", "-crf", "18",
str(alpha_path)
]
subprocess.run(cmd, check=True)
return str(alpha_path)
# =============================================================================
# CHAPTER 7: AI BACKGROUNDS
# =============================================================================
def _maybe_enable_xformers(pipe):
try:
pipe.enable_xformers_memory_efficient_attention()
except Exception:
pass
def _setup_memory_efficient_pipeline(pipe, require_gpu: bool):
_maybe_enable_xformers(pipe)
if not require_gpu:
try:
if hasattr(pipe, "enable_attention_slicing"):
pipe.enable_attention_slicing("auto")
if hasattr(pipe, "enable_model_cpu_offload"):
pipe.enable_model_cpu_offload()
if hasattr(pipe, "enable_sequential_cpu_offload"):
pipe.enable_sequential_cpu_offload()
except Exception:
pass
def generate_sdxl_background(width:int, height:int, prompt:str, steps:int=30, guidance:float=7.0,
seed:Optional[int]=None, require_gpu:bool=False) -> str:
if not TORCH_AVAILABLE:
raise RuntimeError("PyTorch required for SDXL")
with memory_manager.mem_context("SDXL background"):
try:
from diffusers import StableDiffusionXLPipeline
except ImportError as e:
raise RuntimeError("Install diffusers/transformers/accelerate") from e
if require_gpu and not CUDA_AVAILABLE:
raise RuntimeError("Force GPU enabled but CUDA not available")
device = "cuda" if CUDA_AVAILABLE else "cpu"
torch_dtype = torch.float16 if CUDA_AVAILABLE else torch.float32
generator = torch.Generator(device=device)
if seed is None:
seed = random.randint(0, 2**31 - 1)
generator.manual_seed(int(seed))
pipe = StableDiffusionXLPipeline.from_pretrained(
"stabilityai/stable-diffusion-xl-base-1.0",
torch_dtype=torch_dtype,
add_watermarker=False,
).to(device)
_setup_memory_efficient_pipeline(pipe, require_gpu)
enhanced = f"{prompt}, professional studio lighting, high detail, clean composition"
img = pipe(
prompt=enhanced,
height=int(height),
width=int(width),
num_inference_steps=int(steps),
guidance_scale=float(guidance),
generator=generator
).images[0]
out = TEMP_DIR / f"sdxl_bg_{int(time.time())}_{seed or 0:08d}.jpg"
img.save(out, quality=95, optimize=True)
memory_manager.register_temp_file(str(out))
del pipe, img
return str(out)
def generate_playground_v25_background(width:int, height:int, prompt:str, steps:int=30, guidance:float=7.0,
seed:Optional[int]=None, require_gpu:bool=False) -> str:
if not TORCH_AVAILABLE:
raise RuntimeError("PyTorch required for Playground v2.5")
with memory_manager.mem_context("Playground v2.5 background"):
try:
from diffusers import DiffusionPipeline
except ImportError as e:
raise RuntimeError("Install diffusers/transformers/accelerate") from e
if require_gpu and not CUDA_AVAILABLE:
raise RuntimeError("Force GPU enabled but CUDA not available")
device = "cuda" if CUDA_AVAILABLE else "cpu"
torch_dtype = torch.float16 if CUDA_AVAILABLE else torch.float32
generator = torch.Generator(device=device)
if seed is None:
seed = random.randint(0, 2**31 - 1)
generator.manual_seed(int(seed))
repo_id = "playgroundai/playground-v2.5-1024px-aesthetic"
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device)
_setup_memory_efficient_pipeline(pipe, require_gpu)
enhanced = f"{prompt}, professional quality, soft light, minimal distractions"
img = pipe(
prompt=enhanced,
height=int(height),
width=int(width),
num_inference_steps=int(steps),
guidance_scale=float(guidance),
generator=generator
).images[0]
out = TEMP_DIR / f"pg25_bg_{int(time.time())}_{seed or 0:08d}.jpg"
img.save(out, quality=95, optimize=True)
memory_manager.register_temp_file(str(out))
del pipe, img
return str(out)
def generate_sd15_background(width:int, height:int, prompt:str, steps:int=25, guidance:float=7.5,
seed:Optional[int]=None, require_gpu:bool=False) -> str:
if not TORCH_AVAILABLE:
raise RuntimeError("PyTorch required for SD 1.5")
with memory_manager.mem_context("SD1.5 background"):
try:
from diffusers import StableDiffusionPipeline
except ImportError as e:
raise RuntimeError("Install diffusers/transformers/accelerate") from e
if require_gpu and not CUDA_AVAILABLE:
raise RuntimeError("Force GPU enabled but CUDA not available")
device = "cuda" if CUDA_AVAILABLE else "cpu"
torch_dtype = torch.float16 if CUDA_AVAILABLE else torch.float32
generator = torch.Generator(device=device)
if seed is None:
seed = random.randint(0, 2**31 - 1)
generator.manual_seed(int(seed))
pipe = StableDiffusionPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5",
torch_dtype=torch_dtype,
safety_checker=None,
requires_safety_checker=False
).to(device)
_setup_memory_efficient_pipeline(pipe, require_gpu)
enhanced = f"{prompt}, professional background, clean composition"
img = pipe(
prompt=enhanced,
height=int(height),
width=int(width),
num_inference_steps=int(steps),
guidance_scale=float(guidance),
generator=generator
).images[0]
out = TEMP_DIR / f"sd15_bg_{int(time.time())}_{seed or 0:08d}.jpg"
img.save(out, quality=95, optimize=True)
memory_manager.register_temp_file(str(out))
del pipe, img
return str(out)
def generate_openai_background(width:int, height:int, prompt:str, api_key:str, model:str="gpt-image-1") -> str:
if not api_key or not isinstance(api_key, str) or len(api_key) < 10:
raise RuntimeError("Missing or invalid OpenAI API key")
with memory_manager.mem_context("OpenAI background"):
target = "1024x1024"
url = "https://api.openai.com/v1/images/generations"
headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"}
body = {"model": model, "prompt": f"{prompt}, professional background, studio lighting, minimal distractions, high detail",
"size": target, "n": 1, "quality": "high"}
import requests
r = requests.post(url, headers=headers, data=json.dumps(body), timeout=120)
if r.status_code != 200:
raise RuntimeError(f"OpenAI API error: {r.status_code} {r.text}")
data = r.json()
b64 = data["data"][0]["b64_json"]
raw = base64.b64decode(b64)
tmp_png = TEMP_DIR / f"openai_raw_{int(time.time())}_{random.randint(1000,9999)}.png"
with open(tmp_png, "wb") as f:
f.write(raw)
img = Image.open(tmp_png).convert("RGB").resize((int(width), int(height)), Image.LANCZOS)
out = TEMP_DIR / f"openai_bg_{int(time.time())}_{random.randint(1000,9999)}.jpg"
img.save(out, quality=95, optimize=True)
try: os.unlink(tmp_png)
except Exception: pass
memory_manager.register_temp_file(str(out))
return str(out)
def generate_ai_background_router(width:int, height:int, prompt:str, model:str="SDXL",
steps:int=30, guidance:float=7.0, seed:Optional[int]=None,
openai_key:Optional[str]=None, require_gpu:bool=False) -> str:
try:
if model == "OpenAI (gpt-image-1)":
if not openai_key:
raise RuntimeError("OpenAI API key not provided")
return generate_openai_background(width, height, prompt, openai_key, model="gpt-image-1")
elif model == "Playground v2.5":
return generate_playground_v25_background(width, height, prompt, steps, guidance, seed, require_gpu)
elif model == "SDXL":
return generate_sdxl_background(width, height, prompt, steps, guidance, seed, require_gpu)
else:
return generate_sd15_background(width, height, prompt, steps, guidance, seed, require_gpu)
except Exception as e:
logger.warning(f"{model} generation failed: {e}; falling back to SD1.5/gradient")
try:
return generate_sd15_background(width, height, prompt, steps, guidance, seed, require_gpu=False)
except Exception:
grad = _make_vertical_gradient(width, height, (235, 240, 245), (210, 220, 230))
out = TEMP_DIR / f"bg_fallback_{int(time.time())}.jpg"
cv2.imwrite(str(out), grad)
memory_manager.register_temp_file(str(out))
return str(out)
# =============================================================================
# CHAPTER 8: CHUNKED PROCESSOR (optional)
# =============================================================================
class ChunkedVideoProcessor:
def __init__(self, chunk_size_frames: int = 60):
self.chunk_size = int(chunk_size_frames)
def _extract_chunk(self, video_path: str, start_frame: int, end_frame: int, fps: float) -> str:
chunk_path = str(TEMP_DIR / f"chunk_{start_frame}_{end_frame}_{random.randint(1000,9999)}.mp4")
start_time = start_frame / fps
duration = max(0.001, (end_frame - start_frame) / fps)
cmd = [
"ffmpeg", "-y", "-hide_banner", "-loglevel", "error",
"-ss", f"{start_time:.6f}", "-i", video_path,
"-t", f"{duration:.6f}",
"-vf", "scale=trunc(iw/2)*2:trunc(ih/2)*2",
"-c:v", "libx264", "-preset", "veryfast", "-crf", "20",
"-an", chunk_path
]
subprocess.run(cmd, check=True)
return chunk_path
def _merge_chunks(self, chunk_paths: List[str], fps: float, width: int, height: int) -> str:
if not chunk_paths:
raise ValueError("No chunks to merge")
if len(chunk_paths) == 1:
return chunk_paths[0]
concat_file = TEMP_DIR / f"concat_{random.randint(1000,9999)}.txt"
with open(concat_file, "w") as f:
for c in chunk_paths:
f.write(f"file '{c}'\n")
out = TEMP_DIR / f"merged_{random.randint(1000,9999)}.mp4"
cmd = ["ffmpeg", "-y", "-hide_banner", "-loglevel", "error",
"-f", "concat", "-safe", "0", "-i", str(concat_file),
"-c", "copy", str(out)]
subprocess.run(cmd, check=True)
return str(out)
def process_video_chunks(self, video_path: str, processor_func, **kwargs) -> str:
cap = cv2.VideoCapture(video_path)
total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
fps = cap.get(cv2.CAP_PROP_FPS) or 24.0
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
cap.release()
processed: List[str] = []
for start in range(0, total, self.chunk_size):
end = min(start + self.chunk_size, total)
with memory_manager.mem_context(f"chunk {start}-{end}"):
ch = self._extract_chunk(video_path, start, end, fps)
memory_manager.register_temp_file(ch)
out = processor_func(ch, **kwargs)
memory_manager.register_temp_file(out)
processed.append(out)
return self._merge_chunks(processed, fps, width, height)
# =============================================================================
# CHAPTER 9: MAIN PIPELINE (SAM2 β MatAnyone β Composite) - FIXED VERSION
# =============================================================================
def process_video_main(
video_path: str,
background_path: Optional[str] = None,
trim_duration: Optional[float] = None,
crf: int = 18,
preserve_audio_flag: bool = True,
placement: Optional[dict] = None,
use_chunked_processing: bool = False,
progress: gr.Progress = gr.Progress(track_tqdm=True),
) -> Tuple[Optional[str], str]:
messages: List[str] = []
with memory_manager.mem_context("Pipeline"):
try:
progress(0, desc="Initializing models")
sam2 = SAM2Handler()
matanyone = MatAnyoneHandler()
if not sam2.initialize():
return None, f"SAM2 init failed: {state.sam2_error}"
if not matanyone.initialize():
return None, f"MatAnyone init failed: {state.matanyone_error}"
messages.append("β
SAM2 & MatAnyone initialized")
progress(0.1, desc="Preparing video")
input_video = video_path
# Optional trim
if trim_duration and float(trim_duration) > 0:
trimmed = TEMP_DIR / f"trimmed_{int(time.time())}_{random.randint(1000,9999)}.mp4"
memory_manager.register_temp_file(str(trimmed))
with VideoFileClip(video_path) as clip:
d = min(float(trim_duration), float(clip.duration or trim_duration))
sub = clip.subclip(0, d)
write_video_h264(sub, str(trimmed), crf=int(crf))
sub.close()
input_video = str(trimmed)
messages.append(f"βοΈ Trimmed to {d:.1f}s")
else:
with VideoFileClip(video_path) as clip:
messages.append(f"ποΈ Full video: {clip.duration:.1f}s")
progress(0.2, desc="Creating SAM2 mask")
cap = cv2.VideoCapture(input_video)
ret, first_frame = cap.read()
cap.release()
if not ret or first_frame is None:
return None, "Could not read video"
h, w = first_frame.shape[:2]
rgb0 = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB)
mask = sam2.create_mask(rgb0)
if mask is None:
return None, "SAM2 mask failed"
mask_path = TEMP_DIR / f"mask_{int(time.time())}_{random.randint(1000,9999)}.png"
memory_manager.register_temp_file(str(mask_path))
cv2.imwrite(str(mask_path), mask)
messages.append("β
Person mask created")
progress(0.35, desc="Matting video")
if use_chunked_processing:
chunker = ChunkedVideoProcessor(chunk_size_frames=60)
alpha_video = chunker.process_video_chunks(
input_video,
lambda chunk_path, **_k: matanyone.process_video(
input_path=chunk_path,
mask_path=str(mask_path),
output_path=str(TEMP_DIR / f"matanyone_chunk_{int(time.time())}_{random.randint(1000,9999)}")
)
)
memory_manager.register_temp_file(alpha_video)
else:
out_dir = TEMP_DIR / f"matanyone_out_{int(time.time())}_{random.randint(1000,9999)}"
out_dir.mkdir(parents=True, exist_ok=True)
memory_manager.register_temp_file(str(out_dir))
alpha_video = matanyone.process_video(
input_path=input_video,
mask_path=str(mask_path),
output_path=str(out_dir)
)
if not alpha_video or not os.path.exists(alpha_video):
return None, "MatAnyone did not produce alpha video"
messages.append("β
Alpha video generated")
progress(0.55, desc="Preparing background")
original_clip = VideoFileClip(input_video)
alpha_clip = VideoFileClip(alpha_video)
if background_path and os.path.exists(background_path):
messages.append("πΌοΈ Using background file")
bg_bgr = cv2.imread(background_path)
bg_bgr = cv2.resize(bg_bgr, (w, h))
bg_rgb = cv2.cvtColor(bg_bgr, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
else:
messages.append("πΌοΈ Using gradient background")
grad = _make_vertical_gradient(w, h, (200, 205, 215), (160, 170, 190))
bg_rgb = cv2.cvtColor(grad, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0
# FIXED: Enhanced placement parameters with validation and debugging
placement = placement or {}
px = max(0.0, min(1.0, float(placement.get("x", 0.5))))
py = max(0.0, min(1.0, float(placement.get("y", 0.75))))
ps = max(0.3, min(2.0, float(placement.get("scale", 1.0))))
feather_px = max(0, min(50, int(placement.get("feather", 3))))
# Debug logging for placement parameters
logger.info(f"POSITIONING DEBUG: px={px:.3f}, py={py:.3f}, ps={ps:.3f}, feather={feather_px}")
logger.info(f"VIDEO DIMENSIONS: {w}x{h}")
logger.info(f"TARGET CENTER: ({int(px * w)}, {int(py * h)})")
frame_count = 0
def composite_frame(get_frame, t):
nonlocal frame_count
frame_count += 1
# Get original frame
frame = get_frame(t).astype(np.float32) / 255.0
hh, ww = frame.shape[:2]
# FIXED: Better alpha temporal synchronization
alpha_duration = getattr(alpha_clip, 'duration', None)
if alpha_duration and alpha_duration > 0:
# Ensure we don't go beyond alpha video duration
alpha_t = min(t, alpha_duration - 0.01)
alpha_t = max(0.0, alpha_t)
else:
alpha_t = 0.0
try:
a = alpha_clip.get_frame(alpha_t)
# Handle multi-channel alpha
if a.ndim == 3:
a = a[:, :, 0]
a = a.astype(np.float32) / 255.0
# FIXED: Ensure alpha matches frame dimensions exactly
if a.shape != (hh, ww):
logger.warning(f"Alpha size mismatch: {a.shape} vs {(hh, ww)}, resizing...")
a = cv2.resize(a, (ww, hh), interpolation=cv2.INTER_LINEAR)
except Exception as e:
logger.error(f"Alpha frame error at t={t:.3f}: {e}")
return (bg_rgb * 255).astype(np.uint8)
# FIXED: Calculate scaled dimensions with better rounding
sw = max(1, round(ww * ps)) # Use round instead of int for better precision
sh = max(1, round(hh * ps))
# FIXED: Scale both frame and alpha consistently
try:
fg_scaled = cv2.resize(frame, (sw, sh), interpolation=cv2.INTER_AREA if ps < 1.0 else cv2.INTER_LINEAR)
a_scaled = cv2.resize(a, (sw, sh), interpolation=cv2.INTER_AREA if ps < 1.0 else cv2.INTER_LINEAR)
except Exception as e:
logger.error(f"Scaling error: {e}")
return (bg_rgb * 255).astype(np.uint8)
# Create canvases
fg_canvas = np.zeros_like(frame, dtype=np.float32)
a_canvas = np.zeros((hh, ww), dtype=np.float32)
# FIXED: More precise center calculations
cx = round(px * ww)
cy = round(py * hh)
# FIXED: Use floor division for consistent centering
x0 = cx - sw // 2
y0 = cy - sh // 2
# Debug logging for first few frames
if frame_count <= 3:
logger.info(f"FRAME {frame_count}: scaled_size=({sw}, {sh}), center=({cx}, {cy}), top_left=({x0}, {y0})")
# FIXED: Robust bounds checking with edge case handling
xs0 = max(0, x0)
ys0 = max(0, y0)
xs1 = min(ww, x0 + sw)
ys1 = min(hh, y0 + sh)
# Check for valid placement region
if xs1 <= xs0 or ys1 <= ys0:
if frame_count <= 3:
logger.warning(f"Subject outside bounds: dest=({xs0},{ys0})-({xs1},{ys1})")
return (bg_rgb * 255).astype(np.uint8)
# FIXED: Calculate source region with bounds validation
src_x0 = xs0 - x0 # Will be 0 if x0 >= 0, positive if x0 < 0
src_y0 = ys0 - y0 # Will be 0 if y0 >= 0, positive if y0 < 0
src_x1 = src_x0 + (xs1 - xs0)
src_y1 = src_y0 + (ys1 - ys0)
# Validate source bounds
if (src_x1 > sw or src_y1 > sh or src_x0 < 0 or src_y0 < 0 or
src_x1 <= src_x0 or src_y1 <= src_y0):
if frame_count <= 3:
logger.error(f"Invalid source region: ({src_x0},{src_y0})-({src_x1},{src_y1}) for {sw}x{sh} scaled")
return (bg_rgb * 255).astype(np.uint8)
# FIXED: Safe canvas placement with error handling
try:
fg_canvas[ys0:ys1, xs0:xs1, :] = fg_scaled[src_y0:src_y1, src_x0:src_x1, :]
a_canvas[ys0:ys1, xs0:xs1] = a_scaled[src_y0:src_y1, src_x0:src_x1]
except Exception as e:
logger.error(f"Canvas placement failed: {e}")
logger.error(f"Dest: [{ys0}:{ys1}, {xs0}:{xs1}], Src: [{src_y0}:{src_y1}, {src_x0}:{src_x1}]")
return (bg_rgb * 255).astype(np.uint8)
# FIXED: Apply feathering with bounds checking
if feather_px > 0:
kernel_size = max(3, feather_px * 2 + 1)
if kernel_size % 2 == 0:
kernel_size += 1 # Ensure odd kernel size
try:
a_canvas = cv2.GaussianBlur(a_canvas, (kernel_size, kernel_size), feather_px / 3.0)
except Exception as e:
logger.warning(f"Feathering failed: {e}")
# FIXED: Composite with proper alpha handling
a3 = np.expand_dims(a_canvas, axis=2) # More explicit than [:, :, None]
comp = a3 * fg_canvas + (1.0 - a3) * bg_rgb
result = np.clip(comp * 255, 0, 255).astype(np.uint8)
return result
progress(0.7, desc="Compositing")
final_clip = original_clip.fl(composite_frame)
output_path = OUT_DIR / f"processed_{int(time.time())}_{random.randint(1000,9999)}.mp4"
temp_video_path = TEMP_DIR / f"temp_video_{int(time.time())}_{random.randint(1000,9999)}.mp4"
memory_manager.register_temp_file(str(temp_video_path))
write_video_h264(final_clip, str(temp_video_path), crf=int(crf))
original_clip.close(); alpha_clip.close(); final_clip.close()
progress(0.85, desc="Merging audio")
if preserve_audio_flag:
success = run_ffmpeg([
"-i", str(temp_video_path),
"-i", video_path,
"-map", "0:v:0",
"-map", "1:a:0?",
"-c:v", "copy",
"-c:a", "aac",
"-b:a", "192k",
"-shortest",
str(output_path)
], fail_ok=True)
if success:
messages.append("π Original audio preserved")
else:
shutil.copy2(str(temp_video_path), str(output_path))
messages.append("β οΈ Audio merge failed, saved w/o audio")
else:
shutil.copy2(str(temp_video_path), str(output_path))
messages.append("π Saved without audio")
messages.append("β
Done")
stats = memory_manager.get_memory_stats()
messages.append(f"π CPU {stats.cpu_memory_mb:.1f}MB, GPU {stats.gpu_memory_mb:.1f}MB")
messages.append(f"π― Processed {frame_count} frames with placement ({px:.2f}, {py:.2f}) @ {ps:.2f}x scale")
progress(1.0, desc="Done")
return str(output_path), "\n".join(messages)
except Exception as e:
err = f"Processing failed: {str(e)}\n\n{traceback.format_exc()}"
return None, err
# =============================================================================
# CHAPTER 10: GRADIO UI
# =============================================================================
def create_interface():
def diag():
return state.status_text()
def cleanup():
memory_manager.aggressive_cleanup()
s = memory_manager.get_memory_stats()
return f"π§Ή Cleanup\nCPU: {s.cpu_memory_mb:.1f}MB\nGPU: {s.gpu_memory_mb:.1f}MB\nTemp: {s.temp_files_count} files"
def preload(ai_model, openai_key, force_gpu, progress=gr.Progress()):
try:
progress(0, desc="Preloading...")
msg = ""
if ai_model in ("SDXL", "Playground v2.5", "SD 1.5 (fallback)"):
try:
if ai_model == "SDXL":
_ = generate_sdxl_background(64, 64, "plain", steps=2, guidance=3.5, seed=42, require_gpu=bool(force_gpu))
elif ai_model == "Playground v2.5":
_ = generate_playground_v25_background(64, 64, "plain", steps=2, guidance=3.5, seed=42, require_gpu=bool(force_gpu))
else:
_ = generate_sd15_background(64, 64, "plain", steps=2, guidance=3.5, seed=42, require_gpu=bool(force_gpu))
msg += f"{ai_model} preloaded.\n"
except Exception as e:
msg += f"{ai_model} preload failed: {e}\n"
_reset_hydra()
s, m = SAM2Handler(), MatAnyoneHandler()
ok_s = s.initialize()
_reset_hydra()
ok_m = m.initialize()
progress(1.0, desc="Preload complete")
return f"β
Preload\n{msg}SAM2: {'ready' if ok_s else 'failed'}\nMatAnyone: {'ready' if ok_m else 'failed'}"
except Exception as e:
return f"β Preload error: {e}"
def generate_background_safe(video_file, ai_prompt, ai_steps, ai_guidance, ai_seed,
ai_model, openai_key, force_gpu, progress=gr.Progress()):
if not video_file:
return None, "Upload a video first", gr.update(visible=False), None
with memory_manager.mem_context("Background generation"):
try:
video_path = video_file.name if hasattr(video_file, 'name') else str(video_file)
if not os.path.exists(video_path):
return None, "Video not found", gr.update(visible=False), None
cap = cv2.VideoCapture(video_path)
if not cap.isOpened():
return None, "Could not open video", gr.update(visible=False), None
ret, frame = cap.read()
cap.release()
if not ret or frame is None:
return None, "Could not read frame", gr.update(visible=False), None
h, w = int(frame.shape[0]), int(frame.shape[1])
steps = max(1, min(50, int(ai_steps or 30)))
guidance = max(1.0, min(15.0, float(ai_guidance or 7.0)))
try:
seed_val = int(ai_seed) if ai_seed and str(ai_seed).strip() else None
except Exception:
seed_val = None
progress(0.1, desc=f"Generating {ai_model}")
bg_path = generate_ai_background_router(
width=w, height=h, prompt=str(ai_prompt or "professional office background").strip(),
model=str(ai_model or "SDXL"), steps=steps, guidance=guidance,
seed=seed_val, openai_key=openai_key, require_gpu=bool(force_gpu)
)
progress(1.0, desc="Background ready")
if bg_path and os.path.exists(bg_path):
return bg_path, f"AI background generated with {ai_model}", gr.update(visible=True), bg_path
else:
return None, "No output file", gr.update(visible=False), None
except Exception as e:
logger.error(f"Background generation error: {e}")
return None, f"Background generation failed: {str(e)}", gr.update(visible=False), None
def approve_background(bg_path):
try:
if not bg_path or not (isinstance(bg_path, str) and os.path.exists(bg_path)):
return None, "Generate a background first", gr.update(visible=False)
ext = os.path.splitext(bg_path)[1].lower() or ".jpg"
safe_name = f"approved_{int(time.time())}_{random.randint(1000,9999)}{ext}"
dest = BACKGROUND_DIR / safe_name
shutil.copy2(bg_path, dest)
return str(dest), f"β
Background approved β {dest.name}", gr.update(visible=False)
except Exception as e:
return None, f"β οΈ Approve failed: {e}", gr.update(visible=False)
css = """
.gradio-container { font-size: 16px !important; }
label { font-size: 18px !important; font-weight: 600 !important; color: #2d3748 !important; }
.process-button { font-size: 20px !important; font-weight: 700 !important; padding: 16px 28px !important; }
.memory-info { background: #f8fafc; border: 1px solid #e2e8f0; border-radius: 8px; padding: 12px; }
"""
with gr.Blocks(title="Enhanced Video Background Replacement", theme=gr.themes.Soft(), css=css) as interface:
gr.Markdown("# π¬ Enhanced Video Background Replacement")
gr.Markdown("_SAM2 + MatAnyone + AI Backgrounds β with strict tensor shapes & memory management_")
gr.HTML(f"""
<div class='memory-info'>
<strong>Device:</strong> {DEVICE}
<strong>PyTorch:</strong> {'β
' if TORCH_AVAILABLE else 'β'}
<strong>CUDA:</strong> {'β
' if CUDA_AVAILABLE else 'β'}
</div>
""")
with gr.Row():
with gr.Column(scale=1):
video_input = gr.Video(label="Input Video")
gr.Markdown("### Background")
bg_method = gr.Radio(choices=["Upload Image", "Gradients", "AI Generated"],
value="AI Generated", label="Background Method")
# Upload group (hidden by default)
with gr.Group(visible=False) as upload_group:
upload_img = gr.Image(label="Background Image", type="filepath")
# Gradient group (hidden by default)
with gr.Group(visible=False) as gradient_group:
gradient_choice = gr.Dropdown(label="Gradient Style",
choices=list(GRADIENT_PRESETS.keys()),
value="Slate")
# AI group (visible by default)
with gr.Group(visible=True) as ai_group:
prompt_suggestions = gr.Dropdown(label="π‘ Prompt Inspiration",
choices=AI_PROMPT_SUGGESTIONS,
value="Custom (write your own)")
ai_prompt = gr.Textbox(label="Background Description",
value="professional office background", lines=3)
ai_model = gr.Radio(["SDXL", "Playground v2.5", "SD 1.5 (fallback)", "OpenAI (gpt-image-1)"],
value="SDXL", label="AI Model")
with gr.Accordion("Connect services (optional)", open=False):
openai_api_key = gr.Textbox(label="OpenAI API Key", type="password",
placeholder="sk-... (kept only in this session)")
with gr.Row():
ai_steps = gr.Slider(10, 50, value=30, step=1, label="Quality (steps)")
ai_guidance = gr.Slider(1.0, 15.0, value=7.0, step=0.1, label="Guidance")
ai_seed = gr.Number(label="Seed (optional)", precision=0)
force_gpu_ai = gr.Checkbox(value=True, label="Force GPU for AI background")
preload_btn = gr.Button("π¦ Preload Models")
preload_status = gr.Textbox(label="Preload Status", lines=4)
generate_bg_btn = gr.Button("Generate AI Background", variant="primary")
ai_generated_bg = gr.Image(label="Generated Background", type="filepath")
approve_bg_btn = gr.Button("β
Approve Background", visible=False)
approved_background_path = gr.State(value=None)
last_generated_bg = gr.State(value=None)
ai_status = gr.Textbox(label="Generation Status", lines=2)
gr.Markdown("### Processing")
with gr.Row():
trim_enabled = gr.Checkbox(label="Trim Video", value=False)
trim_seconds = gr.Number(label="Trim Duration (seconds)", value=5, precision=1)
with gr.Row():
crf_value = gr.Slider(0, 30, value=18, step=1, label="Quality (CRF - lower=better)")
audio_enabled = gr.Checkbox(label="Preserve Audio", value=True)
with gr.Row():
use_chunked = gr.Checkbox(label="Use Chunked Processing", value=False)
gr.Markdown("### Subject Placement")
with gr.Row():
place_x = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Horizontal")
place_y = gr.Slider(0.0, 1.0, value=0.75, step=0.01, label="Vertical")
with gr.Row():
place_scale = gr.Slider(0.3, 2.0, value=1.0, step=0.01, label="Scale")
place_feather = gr.Slider(0, 15, value=3, step=1, label="Edge feather (px)")
process_btn = gr.Button("π Process Video", variant="primary", elem_classes=["process-button"])
gr.Markdown("### System")
with gr.Row():
diagnostics_btn = gr.Button("π System Diagnostics")
cleanup_btn = gr.Button("π§Ή Memory Cleanup")
diagnostics_output = gr.Textbox(label="System Status", lines=10)
with gr.Column(scale=1):
output_video = gr.Video(label="Processed Video")
download_file = gr.File(label="Download Processed Video")
status_output = gr.Textbox(label="Processing Status", lines=20)
# --- Wiring ---
def update_background_visibility(method):
return (
gr.update(visible=(method == "Upload Image")),
gr.update(visible=(method == "Gradients")),
gr.update(visible=(method == "AI Generated")),
)
def update_prompt_from_suggestion(suggestion):
if suggestion == "Custom (write your own)":
return gr.update(value="", placeholder="Describe the background you want...")
return gr.update(value=suggestion)
bg_method.change(
update_background_visibility,
inputs=[bg_method],
outputs=[upload_group, gradient_group, ai_group]
)
prompt_suggestions.change(update_prompt_from_suggestion, inputs=[prompt_suggestions], outputs=[ai_prompt])
preload_btn.click(preload,
inputs=[ai_model, openai_api_key, force_gpu_ai],
outputs=[preload_status],
show_progress=True
)
generate_bg_btn.click(
generate_background_safe,
inputs=[video_input, ai_prompt, ai_steps, ai_guidance, ai_seed, ai_model, openai_api_key, force_gpu_ai],
outputs=[ai_generated_bg, ai_status, approve_bg_btn, last_generated_bg],
show_progress=True
)
approve_bg_btn.click(
approve_background,
inputs=[ai_generated_bg],
outputs=[approved_background_path, ai_status, approve_bg_btn]
)
diagnostics_btn.click(diag, outputs=[diagnostics_output])
cleanup_btn.click(cleanup, outputs=[diagnostics_output])
def process_video(
video_file,
bg_method,
upload_img,
gradient_choice,
approved_background_path,
last_generated_bg,
trim_enabled, trim_seconds, crf_value, audio_enabled,
use_chunked,
place_x, place_y, place_scale, place_feather,
progress=gr.Progress(track_tqdm=True),
):
try:
if not video_file:
return None, None, "Please upload a video file"
video_path = video_file.name if hasattr(video_file, 'name') else str(video_file)
# Resolve background
bg_path = None
try:
if bg_method == "Upload Image" and upload_img:
bg_path = upload_img if isinstance(upload_img, str) else getattr(upload_img, "name", None)
elif bg_method == "Gradients":
cap = cv2.VideoCapture(video_path)
ret, frame = cap.read(); cap.release()
if ret and frame is not None:
h, w = frame.shape[:2]
if gradient_choice in GRADIENT_PRESETS:
grad = _make_vertical_gradient(w, h, *GRADIENT_PRESETS[gradient_choice])
tmp_bg = tempfile.NamedTemporaryFile(suffix=".jpg", delete=False, dir=TEMP_DIR).name
cv2.imwrite(tmp_bg, grad)
memory_manager.register_temp_file(tmp_bg)
bg_path = tmp_bg
else: # AI Generated
if approved_background_path:
bg_path = approved_background_path
elif last_generated_bg and isinstance(last_generated_bg, str) and os.path.exists(last_generated_bg):
bg_path = last_generated_bg
except Exception as e:
logger.error(f"Background setup error: {e}")
return None, None, f"Background setup failed: {str(e)}"
result_path, status = process_video_main(
video_path=video_path,
background_path=bg_path,
trim_duration=float(trim_seconds) if (trim_enabled and float(trim_seconds) > 0) else None,
crf=int(crf_value),
preserve_audio_flag=bool(audio_enabled),
placement=dict(x=float(place_x), y=float(place_y), scale=float(place_scale), feather=int(place_feather)),
use_chunked_processing=bool(use_chunked),
progress=progress,
)
if result_path and os.path.exists(result_path):
return result_path, result_path, f"β
Success\n\n{status}"
else:
return None, None, f"β Failed\n\n{status or 'Unknown error'}"
except Exception as e:
tb = traceback.format_exc()
return None, None, f"β Crash: {e}\n\n{tb}"
process_btn.click(
process_video,
inputs=[
video_input,
bg_method,
upload_img,
gradient_choice,
approved_background_path, last_generated_bg,
trim_enabled, trim_seconds, crf_value, audio_enabled,
use_chunked,
place_x, place_y, place_scale, place_feather,
],
outputs=[output_video, download_file, status_output],
show_progress=True
)
return interface
# =============================================================================
# CHAPTER 11: MAIN
# =============================================================================
def main():
logger.info("Starting Enhanced Background Replacement")
stats = memory_manager.get_memory_stats()
logger.info(f"Initial memory: CPU {stats.cpu_memory_mb:.1f}MB, GPU {stats.gpu_memory_mb:.1f}MB")
interface = create_interface()
interface.queue(max_size=3)
try:
interface.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
inbrowser=False,
show_error=True
)
finally:
logger.info("Shutting down - cleanup")
memory_manager.cleanup_temp_files()
memory_manager.aggressive_cleanup()
if __name__ == "__main__":
main() |