MogensR's picture
Update core/quality.py
f65f330
"""
Quality analysis and metrics for BackgroundFX Pro.
Provides REAL metrics instead of fake 100% values.
"""
import numpy as np
import cv2
import torch
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass, field
from collections import deque
import logging
from scipy import signal, ndimage
# from skimage import metrics as skmetrics
import json
from pathlib import Path
from datetime import datetime
logger = logging.getLogger(__name__)
@dataclass
class QualityMetrics:
"""Real quality metrics container."""
# Edge Quality
edge_accuracy: float = 0.0
edge_smoothness: float = 0.0
edge_completeness: float = 0.0
# Temporal Quality
temporal_stability: float = 0.0
temporal_consistency: float = 0.0
flicker_score: float = 0.0
# Mask Quality
mask_coverage: float = 0.0
mask_accuracy: float = 0.0
mask_confidence: float = 0.0
hole_ratio: float = 0.0
# Detail Preservation
detail_preservation: float = 0.0
hair_detail_score: float = 0.0
texture_quality: float = 0.0
# Overall Scores
overall_quality: float = 0.0
processing_confidence: float = 0.0
# Detailed breakdown
breakdown: Dict[str, float] = field(default_factory=dict)
warnings: List[str] = field(default_factory=list)
def to_dict(self) -> Dict[str, Any]:
"""Convert to dictionary."""
return {
'edge_accuracy': round(self.edge_accuracy, 3),
'edge_smoothness': round(self.edge_smoothness, 3),
'edge_completeness': round(self.edge_completeness, 3),
'temporal_stability': round(self.temporal_stability, 3),
'temporal_consistency': round(self.temporal_consistency, 3),
'flicker_score': round(self.flicker_score, 3),
'mask_coverage': round(self.mask_coverage, 3),
'mask_accuracy': round(self.mask_accuracy, 3),
'mask_confidence': round(self.mask_confidence, 3),
'hole_ratio': round(self.hole_ratio, 3),
'detail_preservation': round(self.detail_preservation, 3),
'hair_detail_score': round(self.hair_detail_score, 3),
'texture_quality': round(self.texture_quality, 3),
'overall_quality': round(self.overall_quality, 3),
'processing_confidence': round(self.processing_confidence, 3),
'breakdown': self.breakdown,
'warnings': self.warnings
}
def get_summary(self) -> str:
"""Get human-readable summary."""
status = "Excellent" if self.overall_quality > 0.9 else \
"Good" if self.overall_quality > 0.75 else \
"Fair" if self.overall_quality > 0.6 else "Poor"
return (f"Quality: {status} ({self.overall_quality:.1%})\n"
f"Edge: {self.edge_accuracy:.1%} | "
f"Temporal: {self.temporal_stability:.1%} | "
f"Detail: {self.detail_preservation:.1%}")
@dataclass
class QualityConfig:
"""Configuration for quality analysis."""
enable_deep_analysis: bool = True
temporal_window: int = 5
edge_threshold: float = 0.1
min_confidence: float = 0.6
detect_artifacts: bool = True
compute_ssim: bool = True
compute_psnr: bool = True
save_reports: bool = True
report_dir: str = "LOGS/quality_reports"
warning_thresholds: Dict[str, float] = field(default_factory=lambda: {
'edge_accuracy': 0.7,
'temporal_stability': 0.75,
'mask_accuracy': 0.8,
'detail_preservation': 0.7
})
class QualityAnalyzer:
"""Comprehensive quality analysis system."""
def __init__(self, config: Optional[QualityConfig] = None):
self.config = config or QualityConfig()
self.frame_buffer = deque(maxlen=self.config.temporal_window)
self.mask_buffer = deque(maxlen=self.config.temporal_window)
self.metrics_history = deque(maxlen=100)
self.frame_count = 0
# Initialize analyzers
self.edge_analyzer = EdgeQualityAnalyzer()
self.temporal_analyzer = TemporalQualityAnalyzer()
self.detail_analyzer = DetailPreservationAnalyzer()
self.artifact_detector = ArtifactDetector()
# Create report directory
if self.config.save_reports:
Path(self.config.report_dir).mkdir(parents=True, exist_ok=True)
def analyze_frame(self,
original_frame: np.ndarray,
processed_frame: np.ndarray,
mask: np.ndarray,
alpha: Optional[np.ndarray] = None) -> QualityMetrics:
"""Analyze frame quality with REAL metrics."""
self.frame_count += 1
metrics = QualityMetrics()
# Add to buffers
self.frame_buffer.append(processed_frame)
self.mask_buffer.append(mask)
# 1. Edge Quality Analysis
edge_metrics = self.edge_analyzer.analyze(original_frame, mask, alpha)
metrics.edge_accuracy = edge_metrics['accuracy']
metrics.edge_smoothness = edge_metrics['smoothness']
metrics.edge_completeness = edge_metrics['completeness']
# 2. Temporal Quality (if we have history)
if len(self.mask_buffer) >= 2:
temporal_metrics = self.temporal_analyzer.analyze(
self.mask_buffer, self.frame_buffer
)
metrics.temporal_stability = temporal_metrics['stability']
metrics.temporal_consistency = temporal_metrics['consistency']
metrics.flicker_score = temporal_metrics['flicker']
else:
# First frame defaults
metrics.temporal_stability = 1.0
metrics.temporal_consistency = 1.0
metrics.flicker_score = 0.0
# 3. Mask Quality Analysis
mask_metrics = self._analyze_mask_quality(mask, alpha)
metrics.mask_coverage = mask_metrics['coverage']
metrics.mask_accuracy = mask_metrics['accuracy']
metrics.mask_confidence = mask_metrics['confidence']
metrics.hole_ratio = mask_metrics['hole_ratio']
# 4. Detail Preservation
detail_metrics = self.detail_analyzer.analyze(
original_frame, processed_frame, mask
)
metrics.detail_preservation = detail_metrics['overall']
metrics.hair_detail_score = detail_metrics['hair_detail']
metrics.texture_quality = detail_metrics['texture']
# 5. Artifact Detection
if self.config.detect_artifacts:
artifacts = self.artifact_detector.detect(processed_frame, mask)
if artifacts['found']:
for artifact in artifacts['types']:
metrics.warnings.append(f"Artifact detected: {artifact}")
# 6. Compute Overall Quality (weighted average)
metrics.overall_quality = self._compute_overall_quality(metrics)
metrics.processing_confidence = self._compute_confidence(metrics)
# 7. Generate warnings based on thresholds
self._generate_warnings(metrics)
# 8. Store in history
self.metrics_history.append(metrics)
# 9. Save report if configured
if self.config.save_reports and self.frame_count % 30 == 0:
self._save_report(metrics)
return metrics
def _analyze_mask_quality(self, mask: np.ndarray,
alpha: Optional[np.ndarray] = None) -> Dict[str, float]:
"""Analyze mask quality metrics."""
h, w = mask.shape[:2]
total_pixels = h * w
# Coverage ratio
coverage = np.sum(mask > 0.5) / total_pixels
# Hole detection
mask_binary = (mask > 0.5).astype(np.uint8)
# Find contours
contours, _ = cv2.findContours(
mask_binary, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE
)
# Find holes (internal contours)
hole_area = 0
if len(contours) > 0:
# Create filled mask
filled = np.zeros_like(mask_binary)
cv2.drawContours(filled, contours, -1, 1, -1)
# Holes are the difference
holes = filled - mask_binary
hole_area = np.sum(holes) / np.sum(filled) if np.sum(filled) > 0 else 0
# Accuracy (based on gradient consistency)
gradient_x = cv2.Sobel(mask, cv2.CV_64F, 1, 0, ksize=3)
gradient_y = cv2.Sobel(mask, cv2.CV_64F, 0, 1, ksize=3)
gradient_mag = np.sqrt(gradient_x**2 + gradient_y**2)
# Good masks have smooth gradients
gradient_smoothness = 1.0 - np.std(gradient_mag) / (np.mean(gradient_mag) + 1e-6)
accuracy = np.clip(gradient_smoothness, 0, 1)
# Confidence (alpha vs mask consistency if alpha provided)
if alpha is not None:
diff = np.abs(alpha - mask)
confidence = 1.0 - np.mean(diff)
else:
# Use mask value distribution as confidence
hist, _ = np.histogram(mask.flatten(), bins=10, range=(0, 1))
hist = hist / hist.sum()
# High confidence = values clustered near 0 or 1
confidence = (hist[0] + hist[-1]) / 2.0
return {
'coverage': coverage,
'accuracy': accuracy,
'confidence': confidence,
'hole_ratio': hole_area
}
def _compute_overall_quality(self, metrics: QualityMetrics) -> float:
"""Compute weighted overall quality score."""
weights = {
'edge': 0.25,
'temporal': 0.25,
'mask': 0.25,
'detail': 0.25
}
# Component scores
edge_score = np.mean([
metrics.edge_accuracy,
metrics.edge_smoothness,
metrics.edge_completeness
])
temporal_score = np.mean([
metrics.temporal_stability,
metrics.temporal_consistency,
1.0 - metrics.flicker_score # Invert flicker
])
mask_score = np.mean([
metrics.mask_accuracy,
metrics.mask_confidence,
1.0 - metrics.hole_ratio # Invert hole ratio
])
detail_score = np.mean([
metrics.detail_preservation,
metrics.hair_detail_score,
metrics.texture_quality
])
# Weighted average
overall = (
weights['edge'] * edge_score +
weights['temporal'] * temporal_score +
weights['mask'] * mask_score +
weights['detail'] * detail_score
)
# Apply penalties for warnings
penalty = len(metrics.warnings) * 0.05
overall = max(0, overall - penalty)
return np.clip(overall, 0, 1)
def _compute_confidence(self, metrics: QualityMetrics) -> float:
"""Compute processing confidence."""
# Factors that affect confidence
factors = []
# High edge accuracy increases confidence
factors.append(metrics.edge_accuracy)
# Good temporal stability increases confidence
factors.append(metrics.temporal_stability)
# Low hole ratio increases confidence
factors.append(1.0 - metrics.hole_ratio)
# Mask confidence directly affects overall confidence
factors.append(metrics.mask_confidence)
# No warnings increases confidence
warning_factor = 1.0 if len(metrics.warnings) == 0 else 0.8
factors.append(warning_factor)
return np.mean(factors)
def _generate_warnings(self, metrics: QualityMetrics):
"""Generate warnings based on quality thresholds."""
for metric_name, threshold in self.config.warning_thresholds.items():
if hasattr(metrics, metric_name):
value = getattr(metrics, metric_name)
if value < threshold:
metrics.warnings.append(
f"Low {metric_name.replace('_', ' ')}: {value:.1%} < {threshold:.1%}"
)
def _save_report(self, metrics: QualityMetrics):
"""Save quality report to file."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
report_path = Path(self.config.report_dir) / f"quality_report_{timestamp}.json"
report = {
'timestamp': timestamp,
'frame_count': self.frame_count,
'metrics': metrics.to_dict(),
'config': {
'temporal_window': self.config.temporal_window,
'edge_threshold': self.config.edge_threshold,
'min_confidence': self.config.min_confidence
}
}
with open(report_path, 'w') as f:
json.dump(report, f, indent=2)
logger.info(f"Quality report saved to {report_path}")
def get_statistics(self) -> Dict[str, Any]:
"""Get quality statistics over time."""
if not self.metrics_history:
return {}
# Compute statistics
all_metrics = list(self.metrics_history)
stats = {
'average_quality': np.mean([m.overall_quality for m in all_metrics]),
'min_quality': np.min([m.overall_quality for m in all_metrics]),
'max_quality': np.max([m.overall_quality for m in all_metrics]),
'std_quality': np.std([m.overall_quality for m in all_metrics]),
'total_warnings': sum(len(m.warnings) for m in all_metrics),
'frames_analyzed': len(all_metrics)
}
return stats
class EdgeQualityAnalyzer:
"""Analyzes edge quality in masks."""
def analyze(self, image: np.ndarray, mask: np.ndarray,
alpha: Optional[np.ndarray] = None) -> Dict[str, float]:
"""Analyze edge quality metrics."""
# Convert to grayscale if needed
if len(image.shape) == 3:
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
else:
gray = image
# Detect edges in image
image_edges = cv2.Canny(gray, 50, 150) / 255.0
# Detect edges in mask
mask_uint8 = (mask * 255).astype(np.uint8)
mask_edges = cv2.Canny(mask_uint8, 50, 150) / 255.0
# Edge accuracy: how well mask edges align with image edges
overlap = np.logical_and(image_edges > 0, mask_edges > 0)
accuracy = np.sum(overlap) / (np.sum(mask_edges) + 1e-6)
# Edge smoothness: measure edge roughness
contours, _ = cv2.findContours(
mask_uint8, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE
)
smoothness = 1.0
if len(contours) > 0:
# Approximate contours and measure approximation quality
for contour in contours:
perimeter = cv2.arcLength(contour, True)
if perimeter > 0:
# Approximate polygon
epsilon = 0.02 * perimeter
approx = cv2.approxPolyDP(contour, epsilon, True)
# Smoothness based on approximation ratio
complexity = len(approx) / (perimeter / 10 + 1)
smoothness = min(smoothness, 1.0 / (1.0 + complexity))
# Edge completeness: how much of image edges are covered
if np.sum(image_edges) > 0:
# Dilate mask edges to allow some tolerance
kernel = np.ones((5, 5), np.uint8)
mask_edges_dilated = cv2.dilate(mask_edges, kernel, iterations=1)
covered = np.logical_and(image_edges > 0, mask_edges_dilated > 0)
completeness = np.sum(covered) / np.sum(image_edges)
else:
completeness = 1.0
return {
'accuracy': np.clip(accuracy, 0, 1),
'smoothness': np.clip(smoothness, 0, 1),
'completeness': np.clip(completeness, 0, 1)
}
class TemporalQualityAnalyzer:
"""Analyzes temporal consistency and stability."""
def analyze(self, mask_buffer: deque, frame_buffer: deque) -> Dict[str, float]:
"""Analyze temporal quality metrics."""
if len(mask_buffer) < 2:
return {'stability': 1.0, 'consistency': 1.0, 'flicker': 0.0}
masks = list(mask_buffer)
# Temporal stability: measure change between consecutive frames
differences = []
for i in range(1, len(masks)):
diff = np.abs(masks[i] - masks[i-1])
differences.append(np.mean(diff))
# Lower difference = higher stability
avg_diff = np.mean(differences)
stability = 1.0 - min(avg_diff * 2, 1.0) # Scale and invert
# Temporal consistency: measure variance across window
mask_stack = np.stack(masks, axis=0)
variance = np.var(mask_stack, axis=0)
consistency = 1.0 - np.mean(variance)
# Flicker detection: look for alternating patterns
flicker = 0.0
if len(differences) >= 3:
# Check for alternating high-low-high pattern
for i in range(1, len(differences) - 1):
if differences[i] < differences[i-1] * 0.5 and differences[i] < differences[i+1] * 0.5:
flicker += 0.1
elif differences[i] > differences[i-1] * 2 and differences[i] > differences[i+1] * 2:
flicker += 0.1
flicker = min(flicker, 1.0)
return {
'stability': np.clip(stability, 0, 1),
'consistency': np.clip(consistency, 0, 1),
'flicker': np.clip(flicker, 0, 1)
}
class DetailPreservationAnalyzer:
"""Analyzes how well details are preserved."""
def analyze(self, original: np.ndarray, processed: np.ndarray,
mask: np.ndarray) -> Dict[str, float]:
"""Analyze detail preservation metrics."""
# Convert to grayscale for analysis
if len(original.shape) == 3:
orig_gray = cv2.cvtColor(original, cv2.COLOR_BGR2GRAY)
proc_gray = cv2.cvtColor(processed, cv2.COLOR_BGR2GRAY)
else:
orig_gray = original
proc_gray = processed
# Focus on masked region
mask_binary = mask > 0.5
# Overall detail preservation using SSIM
overall = 1.0
if np.any(mask_binary):
# Compute SSIM on masked region
orig_masked = orig_gray * mask_binary
proc_masked = proc_gray * mask_binary
try:
overall = skmetrics.structural_similarity(
orig_masked, proc_masked,
data_range=255
)
except:
overall = 0.8 # Default if SSIM fails
# Hair detail score (high-frequency preservation)
hair_detail = self._analyze_hair_details(orig_gray, proc_gray, mask)
# Texture quality (local variance preservation)
texture = self._analyze_texture_quality(orig_gray, proc_gray, mask_binary)
return {
'overall': np.clip(overall, 0, 1),
'hair_detail': np.clip(hair_detail, 0, 1),
'texture': np.clip(texture, 0, 1)
}
def _analyze_hair_details(self, orig: np.ndarray, proc: np.ndarray,
mask: np.ndarray) -> float:
"""Analyze hair detail preservation."""
# Use high-pass filter to extract fine details
kernel = np.array([[-1, -1, -1],
[-1, 8, -1],
[-1, -1, -1]], dtype=np.float32)
orig_details = cv2.filter2D(orig, -1, kernel)
proc_details = cv2.filter2D(proc, -1, kernel)
# Focus on edge regions (likely hair)
edges = cv2.Canny((mask * 255).astype(np.uint8), 50, 150)
edge_mask = edges > 0
if np.any(edge_mask):
# Compare detail preservation in edge regions
orig_edge_details = np.abs(orig_details[edge_mask])
proc_edge_details = np.abs(proc_details[edge_mask])
# Compute correlation
if len(orig_edge_details) > 0 and len(proc_edge_details) > 0:
correlation = np.corrcoef(
orig_edge_details.flatten(),
proc_edge_details.flatten()
)[0, 1]
return (correlation + 1) / 2 # Normalize to [0, 1]
return 0.8 # Default score
def _analyze_texture_quality(self, orig: np.ndarray, proc: np.ndarray,
mask: np.ndarray) -> float:
"""Analyze texture preservation quality."""
# Compute local variance (texture measure)
window_size = 5
def local_variance(img):
mean = cv2.blur(img, (window_size, window_size))
sqr_mean = cv2.blur(img**2, (window_size, window_size))
variance = sqr_mean - mean**2
return np.sqrt(np.maximum(variance, 0))
orig_texture = local_variance(orig.astype(np.float32))
proc_texture = local_variance(proc.astype(np.float32))
# Compare texture in masked region
if np.any(mask):
orig_masked_texture = orig_texture[mask]
proc_masked_texture = proc_texture[mask]
if len(orig_masked_texture) > 0:
# Compute texture similarity
texture_diff = np.abs(orig_masked_texture - proc_masked_texture)
max_texture = np.maximum(orig_masked_texture, proc_masked_texture) + 1e-6
similarity = 1.0 - np.mean(texture_diff / max_texture)
return similarity
return 0.8 # Default score
class ArtifactDetector:
"""Detects various artifacts in processed frames."""
def detect(self, frame: np.ndarray, mask: np.ndarray) -> Dict[str, Any]:
"""Detect artifacts in frame and mask."""
artifacts = {
'found': False,
'types': [],
'locations': []
}
# Check for halo artifacts
if self._detect_halo(frame, mask):
artifacts['found'] = True
artifacts['types'].append('halo')
# Check for color bleeding
if self._detect_color_bleeding(frame, mask):
artifacts['found'] = True
artifacts['types'].append('color_bleeding')
# Check for blocky artifacts
if self._detect_blockiness(mask):
artifacts['found'] = True
artifacts['types'].append('blockiness')
# Check for noise artifacts
if self._detect_noise(mask):
artifacts['found'] = True
artifacts['types'].append('noise')
return artifacts
def _detect_halo(self, frame: np.ndarray, mask: np.ndarray) -> bool:
"""Detect halo artifacts around edges."""
# Dilate mask to get outer region
kernel = np.ones((5, 5), np.uint8)
dilated = cv2.dilate((mask > 0.5).astype(np.uint8), kernel, iterations=2)
# Get halo region (dilated - original)
halo_region = dilated - (mask > 0.5).astype(np.uint8)
if np.any(halo_region):
# Check for unusual brightness in halo region
halo_pixels = frame[halo_region > 0]
if len(halo_pixels) > 0:
mean_brightness = np.mean(halo_pixels)
# Compare with overall image brightness
overall_brightness = np.mean(frame)
# Halo detected if halo region is significantly brighter/darker
if abs(mean_brightness - overall_brightness) > 30:
return True
return False
def _detect_color_bleeding(self, frame: np.ndarray, mask: np.ndarray) -> bool:
"""Detect color bleeding at edges."""
# Get edge region
edges = cv2.Canny((mask * 255).astype(np.uint8), 50, 150)
kernel = np.ones((3, 3), np.uint8)
edge_region = cv2.dilate(edges, kernel, iterations=1) > 0
if np.any(edge_region) and len(frame.shape) == 3:
# Analyze color variance in edge region
edge_pixels = frame[edge_region]
if len(edge_pixels) > 0:
# High color variance at edges might indicate bleeding
color_std = np.std(edge_pixels, axis=0)
if np.max(color_std) > 50: # High variance threshold
return True
return False
def _detect_blockiness(self, mask: np.ndarray) -> bool:
"""Detect blocky artifacts in mask."""
# Compute gradient
grad_x = np.abs(np.diff(mask, axis=1))
grad_y = np.abs(np.diff(mask, axis=0))
# Look for regular patterns (blockiness)
if grad_x.size > 0 and grad_y.size > 0:
# FFT to detect regular patterns
fft_x = np.fft.fft2(grad_x)
fft_y = np.fft.fft2(grad_y)
# Check for peaks at regular intervals (block boundaries)
spectrum_x = np.abs(fft_x)
spectrum_y = np.abs(fft_y)
# Simple blockiness detection: high energy at specific frequencies
blockiness_score = (np.max(spectrum_x) + np.max(spectrum_y)) / (spectrum_x.size + spectrum_y.size)
if blockiness_score > 0.1: # Threshold for blockiness
return True
return False
def _detect_noise(self, mask: np.ndarray) -> bool:
"""Detect noise artifacts in mask."""
# Compute local variance as noise measure
mean = cv2.blur(mask, (3, 3))
sqr_mean = cv2.blur(mask**2, (3, 3))
variance = sqr_mean - mean**2
# High variance in smooth regions indicates noise
smooth_regions = (mask > 0.3) & (mask < 0.7)
if np.any(smooth_regions):
noise_level = np.mean(variance[smooth_regions])
if noise_level > 0.05: # Noise threshold
return True
return False
class MetricsTracker:
"""Tracks metrics over time for reporting."""
def __init__(self, window_size: int = 100):
self.window_size = window_size
self.metrics_history = deque(maxlen=window_size)
self.frame_times = deque(maxlen=window_size)
def add(self, metrics: QualityMetrics, frame_time: float):
"""Add metrics to tracker."""
self.metrics_history.append(metrics)
self.frame_times.append(frame_time)
def get_trends(self) -> Dict[str, List[float]]:
"""Get metric trends over time."""
if not self.metrics_history:
return {}
trends = {
'overall_quality': [],
'edge_accuracy': [],
'temporal_stability': [],
'detail_preservation': []
}
for metrics in self.metrics_history:
trends['overall_quality'].append(metrics.overall_quality)
trends['edge_accuracy'].append(metrics.edge_accuracy)
trends['temporal_stability'].append(metrics.temporal_stability)
trends['detail_preservation'].append(metrics.detail_preservation)
return trends
def get_average_fps(self) -> float:
"""Get average FPS from frame times."""
if len(self.frame_times) < 2:
return 0.0
time_diffs = [self.frame_times[i] - self.frame_times[i-1]
for i in range(1, len(self.frame_times))]
avg_time = np.mean(time_diffs)
return 1.0 / avg_time if avg_time > 0 else 0.0
class QualityReport:
"""Generates quality reports."""
@staticmethod
def generate(metrics: QualityMetrics,
statistics: Dict[str, Any],
output_path: Optional[str] = None) -> str:
"""Generate comprehensive quality report."""
report = []
report.append("=" * 60)
report.append("BACKGROUNDFX PRO - QUALITY REPORT")
report.append("=" * 60)
report.append("")
# Overall summary
report.append(f"Overall Quality: {metrics.overall_quality:.1%}")
report.append(f"Processing Confidence: {metrics.processing_confidence:.1%}")
report.append("")
# Detailed metrics
report.append("DETAILED METRICS:")
report.append("-" * 40)
report.append(f"Edge Accuracy: {metrics.edge_accuracy:.1%}")
report.append(f"Edge Smoothness: {metrics.edge_smoothness:.1%}")
report.append(f"Edge Completeness: {metrics.edge_completeness:.1%}")
report.append("")
report.append(f"Temporal Stability: {metrics.temporal_stability:.1%}")
report.append(f"Temporal Consistency: {metrics.temporal_consistency:.1%}")
report.append(f"Flicker Score: {metrics.flicker_score:.1%}")
report.append("")
report.append(f"Mask Coverage: {metrics.mask_coverage:.1%}")
report.append(f"Mask Accuracy: {metrics.mask_accuracy:.1%}")
report.append(f"Hole Ratio: {metrics.hole_ratio:.1%}")
report.append("")
report.append(f"Detail Preservation: {metrics.detail_preservation:.1%}")
report.append(f"Hair Detail Score: {metrics.hair_detail_score:.1%}")
report.append(f"Texture Quality: {metrics.texture_quality:.1%}")
report.append("")
# Warnings
if metrics.warnings:
report.append("WARNINGS:")
report.append("-" * 40)
for warning in metrics.warnings:
report.append(f"⚠️ {warning}")
report.append("")
# Statistics
if statistics:
report.append("STATISTICS:")
report.append("-" * 40)
report.append(f"Average Quality: {statistics.get('average_quality', 0):.1%}")
report.append(f"Min Quality: {statistics.get('min_quality', 0):.1%}")
report.append(f"Max Quality: {statistics.get('max_quality', 0):.1%}")
report.append(f"Std Deviation: {statistics.get('std_quality', 0):.3f}")
report.append(f"Total Warnings: {statistics.get('total_warnings', 0)}")
report.append(f"Frames Analyzed: {statistics.get('frames_analyzed', 0)}")
report.append("")
report.append("=" * 60)
report_text = "\n".join(report)
# Save if path provided
if output_path:
with open(output_path, 'w') as f:
f.write(report_text)
return report_text
# Export classes
__all__ = [
'QualityAnalyzer',
'QualityMetrics',
'QualityConfig',
'MetricsTracker',
'QualityReport',
'EdgeQualityAnalyzer',
'TemporalQualityAnalyzer',
'DetailPreservationAnalyzer',
'ArtifactDetector'
]