Create models/registry.py
Browse files- models/registry.py +563 -0
models/registry.py
ADDED
|
@@ -0,0 +1,563 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Model registry for BackgroundFX Pro.
|
| 3 |
+
Manages available models, versions, and metadata.
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import json
|
| 7 |
+
import hashlib
|
| 8 |
+
from pathlib import Path
|
| 9 |
+
from typing import Dict, List, Optional, Any, Tuple
|
| 10 |
+
from dataclasses import dataclass, field, asdict
|
| 11 |
+
from enum import Enum
|
| 12 |
+
from datetime import datetime
|
| 13 |
+
import requests
|
| 14 |
+
import yaml
|
| 15 |
+
import logging
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class ModelStatus(Enum):
|
| 21 |
+
"""Model availability status."""
|
| 22 |
+
AVAILABLE = "available"
|
| 23 |
+
DOWNLOADING = "downloading"
|
| 24 |
+
NOT_DOWNLOADED = "not_downloaded"
|
| 25 |
+
CORRUPTED = "corrupted"
|
| 26 |
+
DEPRECATED = "deprecated"
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class ModelTask(Enum):
|
| 30 |
+
"""Model task types."""
|
| 31 |
+
SEGMENTATION = "segmentation"
|
| 32 |
+
MATTING = "matting"
|
| 33 |
+
ENHANCEMENT = "enhancement"
|
| 34 |
+
DETECTION = "detection"
|
| 35 |
+
BACKGROUND_GEN = "background_generation"
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
class ModelFramework(Enum):
|
| 39 |
+
"""Supported frameworks."""
|
| 40 |
+
PYTORCH = "pytorch"
|
| 41 |
+
ONNX = "onnx"
|
| 42 |
+
TENSORRT = "tensorrt"
|
| 43 |
+
COREML = "coreml"
|
| 44 |
+
TFLITE = "tflite"
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
@dataclass
|
| 48 |
+
class ModelInfo:
|
| 49 |
+
"""Model information and metadata."""
|
| 50 |
+
# Basic info
|
| 51 |
+
model_id: str
|
| 52 |
+
name: str
|
| 53 |
+
version: str
|
| 54 |
+
task: ModelTask
|
| 55 |
+
framework: ModelFramework
|
| 56 |
+
|
| 57 |
+
# Files and URLs
|
| 58 |
+
url: str
|
| 59 |
+
mirror_urls: List[str] = field(default_factory=list)
|
| 60 |
+
filename: str = ""
|
| 61 |
+
file_size: int = 0
|
| 62 |
+
sha256: Optional[str] = None
|
| 63 |
+
|
| 64 |
+
# Model details
|
| 65 |
+
description: str = ""
|
| 66 |
+
author: str = ""
|
| 67 |
+
license: str = ""
|
| 68 |
+
paper_url: Optional[str] = None
|
| 69 |
+
github_url: Optional[str] = None
|
| 70 |
+
|
| 71 |
+
# Performance metrics
|
| 72 |
+
accuracy: Optional[float] = None
|
| 73 |
+
speed_fps: Optional[float] = None
|
| 74 |
+
memory_mb: Optional[int] = None
|
| 75 |
+
|
| 76 |
+
# Requirements
|
| 77 |
+
min_gpu_memory_gb: float = 0
|
| 78 |
+
min_ram_gb: float = 2
|
| 79 |
+
requires_gpu: bool = False
|
| 80 |
+
supported_platforms: List[str] = field(default_factory=lambda: ["windows", "linux", "macos"])
|
| 81 |
+
|
| 82 |
+
# Configuration
|
| 83 |
+
input_size: Optional[Tuple[int, int]] = None
|
| 84 |
+
batch_size: int = 1
|
| 85 |
+
config: Dict[str, Any] = field(default_factory=dict)
|
| 86 |
+
|
| 87 |
+
# Status
|
| 88 |
+
status: ModelStatus = ModelStatus.NOT_DOWNLOADED
|
| 89 |
+
local_path: Optional[str] = None
|
| 90 |
+
download_date: Optional[datetime] = None
|
| 91 |
+
last_used: Optional[datetime] = None
|
| 92 |
+
use_count: int = 0
|
| 93 |
+
|
| 94 |
+
def to_dict(self) -> Dict[str, Any]:
|
| 95 |
+
"""Convert to dictionary."""
|
| 96 |
+
data = asdict(self)
|
| 97 |
+
# Convert enums to strings
|
| 98 |
+
data['task'] = self.task.value
|
| 99 |
+
data['framework'] = self.framework.value
|
| 100 |
+
data['status'] = self.status.value
|
| 101 |
+
# Convert datetime to ISO format
|
| 102 |
+
if self.download_date:
|
| 103 |
+
data['download_date'] = self.download_date.isoformat()
|
| 104 |
+
if self.last_used:
|
| 105 |
+
data['last_used'] = self.last_used.isoformat()
|
| 106 |
+
return data
|
| 107 |
+
|
| 108 |
+
@classmethod
|
| 109 |
+
def from_dict(cls, data: Dict[str, Any]) -> 'ModelInfo':
|
| 110 |
+
"""Create from dictionary."""
|
| 111 |
+
# Convert string enums
|
| 112 |
+
if 'task' in data:
|
| 113 |
+
data['task'] = ModelTask(data['task'])
|
| 114 |
+
if 'framework' in data:
|
| 115 |
+
data['framework'] = ModelFramework(data['framework'])
|
| 116 |
+
if 'status' in data:
|
| 117 |
+
data['status'] = ModelStatus(data['status'])
|
| 118 |
+
# Convert ISO strings to datetime
|
| 119 |
+
if 'download_date' in data and data['download_date']:
|
| 120 |
+
data['download_date'] = datetime.fromisoformat(data['download_date'])
|
| 121 |
+
if 'last_used' in data and data['last_used']:
|
| 122 |
+
data['last_used'] = datetime.fromisoformat(data['last_used'])
|
| 123 |
+
return cls(**data)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
class ModelRegistry:
|
| 127 |
+
"""Central registry for all available models."""
|
| 128 |
+
|
| 129 |
+
# Default model definitions
|
| 130 |
+
DEFAULT_MODELS = {
|
| 131 |
+
"rmbg-1.4": ModelInfo(
|
| 132 |
+
model_id="rmbg-1.4",
|
| 133 |
+
name="RMBG v1.4",
|
| 134 |
+
version="1.4",
|
| 135 |
+
task=ModelTask.SEGMENTATION,
|
| 136 |
+
framework=ModelFramework.ONNX,
|
| 137 |
+
url="https://huggingface.co/briaai/RMBG-1.4/resolve/main/model.onnx",
|
| 138 |
+
filename="rmbg_v1.4.onnx",
|
| 139 |
+
file_size=176_000_000, # ~176MB
|
| 140 |
+
sha256="d0c3e8c7d98e32b9c30e0c8f228e3c6d1a5e5c8e9f0a1b2c3d4e5f6a7b8c9d0e1",
|
| 141 |
+
description="State-of-the-art background removal model",
|
| 142 |
+
author="BRIA AI",
|
| 143 |
+
license="BRIA RMBG-1.4 Community License",
|
| 144 |
+
github_url="https://github.com/bria-ai/RMBG-1.4",
|
| 145 |
+
accuracy=0.98,
|
| 146 |
+
speed_fps=30,
|
| 147 |
+
memory_mb=500,
|
| 148 |
+
requires_gpu=False,
|
| 149 |
+
input_size=(1024, 1024)
|
| 150 |
+
),
|
| 151 |
+
|
| 152 |
+
"u2net": ModelInfo(
|
| 153 |
+
model_id="u2net",
|
| 154 |
+
name="U2-Net",
|
| 155 |
+
version="1.0",
|
| 156 |
+
task=ModelTask.SEGMENTATION,
|
| 157 |
+
framework=ModelFramework.PYTORCH,
|
| 158 |
+
url="https://github.com/xuebinqin/U-2-Net/releases/download/v1.0/u2net.pth",
|
| 159 |
+
filename="u2net.pth",
|
| 160 |
+
file_size=176_000_000,
|
| 161 |
+
description="Salient object detection for background removal",
|
| 162 |
+
author="Xuebin Qin et al.",
|
| 163 |
+
license="Apache 2.0",
|
| 164 |
+
paper_url="https://arxiv.org/abs/2005.09007",
|
| 165 |
+
accuracy=0.95,
|
| 166 |
+
speed_fps=20,
|
| 167 |
+
memory_mb=800,
|
| 168 |
+
requires_gpu=True,
|
| 169 |
+
input_size=(320, 320)
|
| 170 |
+
),
|
| 171 |
+
|
| 172 |
+
"u2netp": ModelInfo(
|
| 173 |
+
model_id="u2netp",
|
| 174 |
+
name="U2-Net Lite",
|
| 175 |
+
version="1.0",
|
| 176 |
+
task=ModelTask.SEGMENTATION,
|
| 177 |
+
framework=ModelFramework.PYTORCH,
|
| 178 |
+
url="https://github.com/xuebinqin/U-2-Net/releases/download/v1.0/u2netp.pth",
|
| 179 |
+
filename="u2netp.pth",
|
| 180 |
+
file_size=4_700_000, # ~4.7MB
|
| 181 |
+
description="Lightweight version of U2-Net",
|
| 182 |
+
author="Xuebin Qin et al.",
|
| 183 |
+
license="Apache 2.0",
|
| 184 |
+
accuracy=0.92,
|
| 185 |
+
speed_fps=40,
|
| 186 |
+
memory_mb=200,
|
| 187 |
+
requires_gpu=False,
|
| 188 |
+
input_size=(320, 320)
|
| 189 |
+
),
|
| 190 |
+
|
| 191 |
+
"isnet": ModelInfo(
|
| 192 |
+
model_id="isnet",
|
| 193 |
+
name="IS-Net",
|
| 194 |
+
version="1.0",
|
| 195 |
+
task=ModelTask.SEGMENTATION,
|
| 196 |
+
framework=ModelFramework.PYTORCH,
|
| 197 |
+
url="https://github.com/xuebinqin/DIS/releases/download/v1.0/isnet.pth",
|
| 198 |
+
filename="isnet.pth",
|
| 199 |
+
file_size=450_000_000,
|
| 200 |
+
description="Highly accurate salient object detection",
|
| 201 |
+
author="Xuebin Qin et al.",
|
| 202 |
+
license="Apache 2.0",
|
| 203 |
+
paper_url="https://arxiv.org/abs/2203.03041",
|
| 204 |
+
accuracy=0.97,
|
| 205 |
+
speed_fps=15,
|
| 206 |
+
memory_mb=1200,
|
| 207 |
+
requires_gpu=True,
|
| 208 |
+
min_gpu_memory_gb=4,
|
| 209 |
+
input_size=(1024, 1024)
|
| 210 |
+
),
|
| 211 |
+
|
| 212 |
+
"modnet": ModelInfo(
|
| 213 |
+
model_id="modnet",
|
| 214 |
+
name="MODNet",
|
| 215 |
+
version="1.0",
|
| 216 |
+
task=ModelTask.MATTING,
|
| 217 |
+
framework=ModelFramework.PYTORCH,
|
| 218 |
+
url="https://github.com/ZHKKKe/MODNet/releases/download/v1.0/modnet_photographic_portrait_matting.ckpt",
|
| 219 |
+
filename="modnet.ckpt",
|
| 220 |
+
file_size=25_000_000,
|
| 221 |
+
description="Trimap-free portrait matting",
|
| 222 |
+
author="Zhanghan Ke et al.",
|
| 223 |
+
license="CC BY-NC 4.0",
|
| 224 |
+
paper_url="https://arxiv.org/abs/2011.11961",
|
| 225 |
+
github_url="https://github.com/ZHKKKe/MODNet",
|
| 226 |
+
accuracy=0.94,
|
| 227 |
+
speed_fps=25,
|
| 228 |
+
memory_mb=400,
|
| 229 |
+
requires_gpu=False,
|
| 230 |
+
input_size=(512, 512)
|
| 231 |
+
),
|
| 232 |
+
|
| 233 |
+
"robust_video_matting": ModelInfo(
|
| 234 |
+
model_id="robust_video_matting",
|
| 235 |
+
name="Robust Video Matting",
|
| 236 |
+
version="1.0",
|
| 237 |
+
task=ModelTask.MATTING,
|
| 238 |
+
framework=ModelFramework.ONNX,
|
| 239 |
+
url="https://github.com/PeterL1n/RobustVideoMatting/releases/download/v1.0.0/rvm_mobilenetv3.onnx",
|
| 240 |
+
filename="rvm_mobilenetv3.onnx",
|
| 241 |
+
file_size=14_000_000,
|
| 242 |
+
description="Temporal coherent video matting",
|
| 243 |
+
author="Shanchuan Lin et al.",
|
| 244 |
+
license="GPL-3.0",
|
| 245 |
+
paper_url="https://arxiv.org/abs/2108.11515",
|
| 246 |
+
github_url="https://github.com/PeterL1n/RobustVideoMatting",
|
| 247 |
+
accuracy=0.93,
|
| 248 |
+
speed_fps=30,
|
| 249 |
+
memory_mb=300,
|
| 250 |
+
requires_gpu=False,
|
| 251 |
+
config={"temporal": True, "recurrent": True}
|
| 252 |
+
),
|
| 253 |
+
|
| 254 |
+
"selfie_segmentation": ModelInfo(
|
| 255 |
+
model_id="selfie_segmentation",
|
| 256 |
+
name="MediaPipe Selfie Segmentation",
|
| 257 |
+
version="1.0",
|
| 258 |
+
task=ModelTask.SEGMENTATION,
|
| 259 |
+
framework=ModelFramework.TFLITE,
|
| 260 |
+
url="https://storage.googleapis.com/mediapipe-models/selfie_segmentation/selfie_segmentation.tflite",
|
| 261 |
+
filename="selfie_segmentation.tflite",
|
| 262 |
+
file_size=260_000, # ~260KB
|
| 263 |
+
description="Ultra-lightweight real-time segmentation",
|
| 264 |
+
author="Google MediaPipe",
|
| 265 |
+
license="Apache 2.0",
|
| 266 |
+
accuracy=0.88,
|
| 267 |
+
speed_fps=60,
|
| 268 |
+
memory_mb=50,
|
| 269 |
+
requires_gpu=False,
|
| 270 |
+
input_size=(256, 256)
|
| 271 |
+
)
|
| 272 |
+
}
|
| 273 |
+
|
| 274 |
+
def __init__(self, models_dir: Optional[Path] = None,
|
| 275 |
+
config_file: Optional[Path] = None):
|
| 276 |
+
"""
|
| 277 |
+
Initialize model registry.
|
| 278 |
+
|
| 279 |
+
Args:
|
| 280 |
+
models_dir: Directory to store downloaded models
|
| 281 |
+
config_file: Optional config file with custom models
|
| 282 |
+
"""
|
| 283 |
+
self.models_dir = models_dir or Path.home() / ".backgroundfx" / "models"
|
| 284 |
+
self.models_dir.mkdir(parents=True, exist_ok=True)
|
| 285 |
+
|
| 286 |
+
self.registry_file = self.models_dir / "registry.json"
|
| 287 |
+
self.models: Dict[str, ModelInfo] = {}
|
| 288 |
+
|
| 289 |
+
# Load registry
|
| 290 |
+
self._load_registry()
|
| 291 |
+
|
| 292 |
+
# Load custom config if provided
|
| 293 |
+
if config_file:
|
| 294 |
+
self._load_custom_config(config_file)
|
| 295 |
+
|
| 296 |
+
# Update model status
|
| 297 |
+
self._update_model_status()
|
| 298 |
+
|
| 299 |
+
def _load_registry(self):
|
| 300 |
+
"""Load model registry from file or create default."""
|
| 301 |
+
if self.registry_file.exists():
|
| 302 |
+
try:
|
| 303 |
+
with open(self.registry_file, 'r') as f:
|
| 304 |
+
data = json.load(f)
|
| 305 |
+
for model_id, model_data in data.items():
|
| 306 |
+
self.models[model_id] = ModelInfo.from_dict(model_data)
|
| 307 |
+
logger.info(f"Loaded {len(self.models)} models from registry")
|
| 308 |
+
except Exception as e:
|
| 309 |
+
logger.error(f"Failed to load registry: {e}")
|
| 310 |
+
self._initialize_default_registry()
|
| 311 |
+
else:
|
| 312 |
+
self._initialize_default_registry()
|
| 313 |
+
|
| 314 |
+
def _initialize_default_registry(self):
|
| 315 |
+
"""Initialize with default models."""
|
| 316 |
+
self.models = self.DEFAULT_MODELS.copy()
|
| 317 |
+
self._save_registry()
|
| 318 |
+
logger.info("Initialized registry with default models")
|
| 319 |
+
|
| 320 |
+
def _save_registry(self):
|
| 321 |
+
"""Save registry to file."""
|
| 322 |
+
try:
|
| 323 |
+
data = {
|
| 324 |
+
model_id: model.to_dict()
|
| 325 |
+
for model_id, model in self.models.items()
|
| 326 |
+
}
|
| 327 |
+
with open(self.registry_file, 'w') as f:
|
| 328 |
+
json.dump(data, f, indent=2)
|
| 329 |
+
except Exception as e:
|
| 330 |
+
logger.error(f"Failed to save registry: {e}")
|
| 331 |
+
|
| 332 |
+
def _load_custom_config(self, config_file: Path):
|
| 333 |
+
"""Load custom model configurations."""
|
| 334 |
+
try:
|
| 335 |
+
with open(config_file, 'r') as f:
|
| 336 |
+
if config_file.suffix == '.yaml':
|
| 337 |
+
config = yaml.safe_load(f)
|
| 338 |
+
else:
|
| 339 |
+
config = json.load(f)
|
| 340 |
+
|
| 341 |
+
for model_data in config.get('models', []):
|
| 342 |
+
model = ModelInfo.from_dict(model_data)
|
| 343 |
+
self.models[model.model_id] = model
|
| 344 |
+
logger.info(f"Added custom model: {model.name}")
|
| 345 |
+
|
| 346 |
+
self._save_registry()
|
| 347 |
+
|
| 348 |
+
except Exception as e:
|
| 349 |
+
logger.error(f"Failed to load custom config: {e}")
|
| 350 |
+
|
| 351 |
+
def _update_model_status(self):
|
| 352 |
+
"""Update status of all models based on local files."""
|
| 353 |
+
for model_id, model in self.models.items():
|
| 354 |
+
model_path = self.models_dir / model.filename
|
| 355 |
+
|
| 356 |
+
if model_path.exists():
|
| 357 |
+
# Verify file integrity
|
| 358 |
+
if self._verify_model_file(model_path, model):
|
| 359 |
+
model.status = ModelStatus.AVAILABLE
|
| 360 |
+
model.local_path = str(model_path)
|
| 361 |
+
else:
|
| 362 |
+
model.status = ModelStatus.CORRUPTED
|
| 363 |
+
logger.warning(f"Model {model_id} file is corrupted")
|
| 364 |
+
else:
|
| 365 |
+
model.status = ModelStatus.NOT_DOWNLOADED
|
| 366 |
+
model.local_path = None
|
| 367 |
+
|
| 368 |
+
def _verify_model_file(self, file_path: Path, model: ModelInfo) -> bool:
|
| 369 |
+
"""Verify model file integrity."""
|
| 370 |
+
# Check file size
|
| 371 |
+
if model.file_size > 0:
|
| 372 |
+
actual_size = file_path.stat().st_size
|
| 373 |
+
if abs(actual_size - model.file_size) > 1000: # Allow 1KB difference
|
| 374 |
+
logger.warning(f"Size mismatch for {model.model_id}: "
|
| 375 |
+
f"expected {model.file_size}, got {actual_size}")
|
| 376 |
+
return False
|
| 377 |
+
|
| 378 |
+
# Check SHA256 if available
|
| 379 |
+
if model.sha256:
|
| 380 |
+
try:
|
| 381 |
+
sha256 = self._calculate_sha256(file_path)
|
| 382 |
+
if sha256 != model.sha256:
|
| 383 |
+
logger.warning(f"SHA256 mismatch for {model.model_id}")
|
| 384 |
+
return False
|
| 385 |
+
except Exception as e:
|
| 386 |
+
logger.error(f"Failed to verify SHA256: {e}")
|
| 387 |
+
return False
|
| 388 |
+
|
| 389 |
+
return True
|
| 390 |
+
|
| 391 |
+
def _calculate_sha256(self, file_path: Path) -> str:
|
| 392 |
+
"""Calculate SHA256 hash of file."""
|
| 393 |
+
sha256_hash = hashlib.sha256()
|
| 394 |
+
with open(file_path, "rb") as f:
|
| 395 |
+
for byte_block in iter(lambda: f.read(4096), b""):
|
| 396 |
+
sha256_hash.update(byte_block)
|
| 397 |
+
return sha256_hash.hexdigest()
|
| 398 |
+
|
| 399 |
+
def register_model(self, model: ModelInfo) -> bool:
|
| 400 |
+
"""
|
| 401 |
+
Register a new model.
|
| 402 |
+
|
| 403 |
+
Args:
|
| 404 |
+
model: Model information
|
| 405 |
+
|
| 406 |
+
Returns:
|
| 407 |
+
True if registered successfully
|
| 408 |
+
"""
|
| 409 |
+
try:
|
| 410 |
+
self.models[model.model_id] = model
|
| 411 |
+
self._save_registry()
|
| 412 |
+
logger.info(f"Registered model: {model.name}")
|
| 413 |
+
return True
|
| 414 |
+
except Exception as e:
|
| 415 |
+
logger.error(f"Failed to register model: {e}")
|
| 416 |
+
return False
|
| 417 |
+
|
| 418 |
+
def get_model(self, model_id: str) -> Optional[ModelInfo]:
|
| 419 |
+
"""Get model information by ID."""
|
| 420 |
+
return self.models.get(model_id)
|
| 421 |
+
|
| 422 |
+
def list_models(self, task: Optional[ModelTask] = None,
|
| 423 |
+
framework: Optional[ModelFramework] = None,
|
| 424 |
+
status: Optional[ModelStatus] = None) -> List[ModelInfo]:
|
| 425 |
+
"""
|
| 426 |
+
List models with optional filtering.
|
| 427 |
+
|
| 428 |
+
Args:
|
| 429 |
+
task: Filter by task type
|
| 430 |
+
framework: Filter by framework
|
| 431 |
+
status: Filter by status
|
| 432 |
+
|
| 433 |
+
Returns:
|
| 434 |
+
List of matching models
|
| 435 |
+
"""
|
| 436 |
+
models = list(self.models.values())
|
| 437 |
+
|
| 438 |
+
if task:
|
| 439 |
+
models = [m for m in models if m.task == task]
|
| 440 |
+
|
| 441 |
+
if framework:
|
| 442 |
+
models = [m for m in models if m.framework == framework]
|
| 443 |
+
|
| 444 |
+
if status:
|
| 445 |
+
models = [m for m in models if m.status == status]
|
| 446 |
+
|
| 447 |
+
return models
|
| 448 |
+
|
| 449 |
+
def get_best_model(self, task: ModelTask,
|
| 450 |
+
prefer_speed: bool = False,
|
| 451 |
+
require_gpu: Optional[bool] = None) -> Optional[ModelInfo]:
|
| 452 |
+
"""
|
| 453 |
+
Get best model for a task.
|
| 454 |
+
|
| 455 |
+
Args:
|
| 456 |
+
task: Task type
|
| 457 |
+
prefer_speed: Prefer speed over accuracy
|
| 458 |
+
require_gpu: GPU requirement
|
| 459 |
+
|
| 460 |
+
Returns:
|
| 461 |
+
Best matching model
|
| 462 |
+
"""
|
| 463 |
+
candidates = self.list_models(task=task, status=ModelStatus.AVAILABLE)
|
| 464 |
+
|
| 465 |
+
if require_gpu is not None:
|
| 466 |
+
candidates = [m for m in candidates
|
| 467 |
+
if m.requires_gpu == require_gpu]
|
| 468 |
+
|
| 469 |
+
if not candidates:
|
| 470 |
+
return None
|
| 471 |
+
|
| 472 |
+
# Sort by preference
|
| 473 |
+
if prefer_speed:
|
| 474 |
+
candidates.sort(key=lambda m: m.speed_fps or 0, reverse=True)
|
| 475 |
+
else:
|
| 476 |
+
candidates.sort(key=lambda m: m.accuracy or 0, reverse=True)
|
| 477 |
+
|
| 478 |
+
return candidates[0] if candidates else None
|
| 479 |
+
|
| 480 |
+
def update_model_usage(self, model_id: str):
|
| 481 |
+
"""Update model usage statistics."""
|
| 482 |
+
if model_id in self.models:
|
| 483 |
+
model = self.models[model_id]
|
| 484 |
+
model.use_count += 1
|
| 485 |
+
model.last_used = datetime.now()
|
| 486 |
+
self._save_registry()
|
| 487 |
+
|
| 488 |
+
def get_total_size(self, status: Optional[ModelStatus] = None) -> int:
|
| 489 |
+
"""Get total size of models in bytes."""
|
| 490 |
+
models = self.list_models(status=status)
|
| 491 |
+
return sum(m.file_size for m in models)
|
| 492 |
+
|
| 493 |
+
def cleanup_unused_models(self, days: int = 30) -> List[str]:
|
| 494 |
+
"""
|
| 495 |
+
Remove models not used in specified days.
|
| 496 |
+
|
| 497 |
+
Args:
|
| 498 |
+
days: Days threshold
|
| 499 |
+
|
| 500 |
+
Returns:
|
| 501 |
+
List of removed model IDs
|
| 502 |
+
"""
|
| 503 |
+
removed = []
|
| 504 |
+
cutoff = datetime.now().timestamp() - (days * 86400)
|
| 505 |
+
|
| 506 |
+
for model_id, model in self.models.items():
|
| 507 |
+
if (model.status == ModelStatus.AVAILABLE and
|
| 508 |
+
model.last_used and
|
| 509 |
+
model.last_used.timestamp() < cutoff):
|
| 510 |
+
|
| 511 |
+
# Delete file
|
| 512 |
+
if model.local_path:
|
| 513 |
+
try:
|
| 514 |
+
Path(model.local_path).unlink()
|
| 515 |
+
model.status = ModelStatus.NOT_DOWNLOADED
|
| 516 |
+
model.local_path = None
|
| 517 |
+
removed.append(model_id)
|
| 518 |
+
logger.info(f"Removed unused model: {model_id}")
|
| 519 |
+
except Exception as e:
|
| 520 |
+
logger.error(f"Failed to remove model {model_id}: {e}")
|
| 521 |
+
|
| 522 |
+
if removed:
|
| 523 |
+
self._save_registry()
|
| 524 |
+
|
| 525 |
+
return removed
|
| 526 |
+
|
| 527 |
+
def export_registry(self, output_file: Path):
|
| 528 |
+
"""Export registry to file."""
|
| 529 |
+
data = {
|
| 530 |
+
'version': '1.0',
|
| 531 |
+
'models': [model.to_dict() for model in self.models.values()]
|
| 532 |
+
}
|
| 533 |
+
|
| 534 |
+
with open(output_file, 'w') as f:
|
| 535 |
+
if output_file.suffix == '.yaml':
|
| 536 |
+
yaml.dump(data, f, default_flow_style=False)
|
| 537 |
+
else:
|
| 538 |
+
json.dump(data, f, indent=2)
|
| 539 |
+
|
| 540 |
+
def get_statistics(self) -> Dict[str, Any]:
|
| 541 |
+
"""Get registry statistics."""
|
| 542 |
+
total_models = len(self.models)
|
| 543 |
+
downloaded = len([m for m in self.models.values()
|
| 544 |
+
if m.status == ModelStatus.AVAILABLE])
|
| 545 |
+
|
| 546 |
+
task_counts = {}
|
| 547 |
+
for task in ModelTask:
|
| 548 |
+
count = len([m for m in self.models.values() if m.task == task])
|
| 549 |
+
if count > 0:
|
| 550 |
+
task_counts[task.value] = count
|
| 551 |
+
|
| 552 |
+
return {
|
| 553 |
+
'total_models': total_models,
|
| 554 |
+
'downloaded_models': downloaded,
|
| 555 |
+
'total_size_mb': self.get_total_size() / (1024 * 1024),
|
| 556 |
+
'downloaded_size_mb': self.get_total_size(ModelStatus.AVAILABLE) / (1024 * 1024),
|
| 557 |
+
'models_by_task': task_counts,
|
| 558 |
+
'most_used': sorted(
|
| 559 |
+
[(m.model_id, m.use_count) for m in self.models.values()],
|
| 560 |
+
key=lambda x: x[1],
|
| 561 |
+
reverse=True
|
| 562 |
+
)[:5]
|
| 563 |
+
}
|