Update utilities.py
Browse files- utilities.py +159 -410
utilities.py
CHANGED
|
@@ -159,26 +159,26 @@
|
|
| 159 |
def download_and_setup_models():
|
| 160 |
"""ENHANCED download and setup with multiple fallback methods and lazy loading"""
|
| 161 |
global sam2_predictor, matanyone_model, models_loaded
|
| 162 |
-
|
| 163 |
with loading_lock:
|
| 164 |
if models_loaded:
|
| 165 |
return "✅ High-quality models already loaded"
|
| 166 |
-
|
| 167 |
try:
|
| 168 |
logger.info("🔄 Starting ENHANCED model loading with multiple fallbacks...")
|
| 169 |
-
|
| 170 |
# Check environment and system capabilities
|
| 171 |
is_hf_space = os.getenv("SPACE_ID") is not None
|
| 172 |
is_colab = 'google.colab' in sys.modules
|
| 173 |
is_kaggle = os.environ.get('KAGGLE_KERNEL_RUN_TYPE') is not None
|
| 174 |
-
|
| 175 |
env_type = "HuggingFace Space" if is_hf_space else "Google Colab" if is_colab else "Kaggle" if is_kaggle else "Local"
|
| 176 |
logger.info(f"Environment detected: {env_type}")
|
| 177 |
-
|
| 178 |
# Load PyTorch and check GPU
|
| 179 |
import torch
|
| 180 |
logger.info(f"✅ PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}")
|
| 181 |
-
|
| 182 |
if torch.cuda.is_available():
|
| 183 |
try:
|
| 184 |
gpu_name = torch.cuda.get_device_name(0)
|
|
@@ -186,12 +186,36 @@ def download_and_setup_models():
|
|
| 186 |
logger.info(f"🎮 GPU: {gpu_name} ({gpu_memory:.1f}GB)")
|
| 187 |
except Exception as e:
|
| 188 |
logger.info(f"🎮 GPU available but details unavailable: {e}")
|
| 189 |
-
|
| 190 |
# === ENHANCED SAM2 LOADING WITH MULTIPLE METHODS ===
|
| 191 |
sam2_loaded = False
|
| 192 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 193 |
-
|
| 194 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 195 |
try:
|
| 196 |
logger.info("🔄 SAM2 Method 1: Direct import from requirements...")
|
| 197 |
from sam2.build_sam import build_sam2
|
|
@@ -200,13 +224,12 @@ def download_and_setup_models():
|
|
| 200 |
logger.info("✅ SAM2 imported directly from installed package")
|
| 201 |
except ImportError as e:
|
| 202 |
logger.info(f"❌ SAM2 Method 1 failed: {e}")
|
| 203 |
-
|
| 204 |
-
# Method 2: Clone and properly setup SAM2
|
| 205 |
if not sam2_loaded:
|
| 206 |
try:
|
| 207 |
logger.info("🔄 SAM2 Method 2: Cloning and setting up repository...")
|
| 208 |
sam2_dir = "/tmp/segment-anything-2"
|
| 209 |
-
|
| 210 |
if not os.path.exists(sam2_dir):
|
| 211 |
logger.info("📥 Cloning SAM2 repository...")
|
| 212 |
clone_cmd = f"git clone --depth 1 https://github.com/facebookresearch/segment-anything-2.git {sam2_dir}"
|
|
@@ -215,38 +238,31 @@ def download_and_setup_models():
|
|
| 215 |
logger.info("✅ SAM2 repository cloned successfully")
|
| 216 |
else:
|
| 217 |
raise Exception("Git clone failed")
|
| 218 |
-
|
| 219 |
# Add to path
|
| 220 |
if sam2_dir not in sys.path:
|
| 221 |
sys.path.insert(0, sam2_dir)
|
| 222 |
-
|
| 223 |
# Install SAM2 dependencies if needed
|
| 224 |
try:
|
| 225 |
import hydra
|
| 226 |
except ImportError:
|
| 227 |
logger.info("Installing Hydra-core for SAM2 configs...")
|
| 228 |
os.system("pip install hydra-core --quiet")
|
| 229 |
-
|
| 230 |
from sam2.build_sam import build_sam2
|
| 231 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 232 |
sam2_loaded = True
|
| 233 |
logger.info("✅ SAM2 imported after cloning")
|
| 234 |
except Exception as e:
|
| 235 |
logger.info(f"❌ SAM2 Method 2 failed: {e}")
|
| 236 |
-
|
| 237 |
-
# Method 3: Use simplified SAM2 loading without Hydra configs
|
| 238 |
if not sam2_loaded:
|
| 239 |
try:
|
| 240 |
logger.info("🔄 SAM2 Method 3: Simplified loading without Hydra...")
|
| 241 |
-
|
| 242 |
# Download checkpoint first
|
| 243 |
cache_dir = os.path.expanduser("~/.cache/sam2")
|
| 244 |
os.makedirs(cache_dir, exist_ok=True)
|
| 245 |
-
|
| 246 |
-
# Use tiny model for better compatibility
|
| 247 |
checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt"
|
| 248 |
sam2_checkpoint = os.path.join(cache_dir, "sam2_hiera_tiny.pt")
|
| 249 |
-
|
| 250 |
if not os.path.exists(sam2_checkpoint):
|
| 251 |
logger.info("📥 Downloading SAM2 checkpoint...")
|
| 252 |
response = requests.get(checkpoint_url, stream=True)
|
|
@@ -255,93 +271,63 @@ def download_and_setup_models():
|
|
| 255 |
if chunk:
|
| 256 |
f.write(chunk)
|
| 257 |
logger.info("✅ Checkpoint downloaded")
|
| 258 |
-
|
| 259 |
-
# Try to load the model directly without configs
|
| 260 |
-
# This is a simplified approach that may work in some environments
|
| 261 |
checkpoint = torch.load(sam2_checkpoint, map_location=device)
|
| 262 |
-
|
| 263 |
-
# Create a simple predictor wrapper
|
| 264 |
class SimpleSAM2Predictor:
|
| 265 |
def __init__(self, checkpoint_path, device):
|
| 266 |
self.device = device
|
| 267 |
self.checkpoint_path = checkpoint_path
|
| 268 |
self.image = None
|
| 269 |
logger.info("Using simplified SAM2 predictor")
|
| 270 |
-
|
| 271 |
def set_image(self, image):
|
| 272 |
self.image = image.copy()
|
| 273 |
-
|
| 274 |
def predict(self, point_coords, point_labels, multimask_output=True):
|
| 275 |
-
# Simplified mask prediction
|
| 276 |
if self.image is None:
|
| 277 |
raise ValueError("No image set")
|
| 278 |
-
|
| 279 |
h, w = self.image.shape[:2]
|
| 280 |
mask = np.zeros((h, w), dtype=np.uint8)
|
| 281 |
-
|
| 282 |
-
# Create mask based on points
|
| 283 |
for point in point_coords:
|
| 284 |
x, y = int(point[0]), int(point[1])
|
| 285 |
-
# Create circular mask around point
|
| 286 |
cv2.circle(mask, (x, y), min(w, h)//4, 255, -1)
|
| 287 |
-
|
| 288 |
-
# Refine mask with GrabCut
|
| 289 |
try:
|
| 290 |
mask_3d = np.zeros((h, w), dtype=np.uint8)
|
| 291 |
mask_3d[mask > 0] = cv2.GC_PR_FGD
|
| 292 |
mask_3d[mask == 0] = cv2.GC_PR_BGD
|
| 293 |
-
|
| 294 |
bgd_model = np.zeros((1, 65), np.float64)
|
| 295 |
fgd_model = np.zeros((1, 65), np.float64)
|
| 296 |
-
|
| 297 |
cv2.grabCut(self.image, mask_3d, None, bgd_model, fgd_model, 5, cv2.GC_INIT_WITH_MASK)
|
| 298 |
-
|
| 299 |
mask = np.where((mask_3d == cv2.GC_FGD) | (mask_3d == cv2.GC_PR_FGD), 255, 0).astype('uint8')
|
| 300 |
except:
|
| 301 |
pass
|
| 302 |
-
|
| 303 |
return [mask], [1.0], None
|
| 304 |
-
|
| 305 |
sam2_predictor = SimpleSAM2Predictor(sam2_checkpoint, device)
|
| 306 |
sam2_loaded = True
|
| 307 |
logger.info("✅ Using simplified SAM2 predictor")
|
| 308 |
-
|
| 309 |
except Exception as e:
|
| 310 |
logger.info(f"❌ SAM2 Method 3 failed: {e}")
|
| 311 |
-
|
| 312 |
-
# Method 4: Install via pip and try again
|
| 313 |
if not sam2_loaded:
|
| 314 |
try:
|
| 315 |
logger.info("🔄 SAM2 Method 4: Installing via pip...")
|
| 316 |
-
|
| 317 |
-
# Install dependencies first
|
| 318 |
os.system("pip install hydra-core omegaconf --quiet")
|
| 319 |
-
|
| 320 |
-
# Clone and install SAM2
|
| 321 |
sam2_dir = "/tmp/sam2_install"
|
| 322 |
if os.path.exists(sam2_dir):
|
| 323 |
shutil.rmtree(sam2_dir)
|
| 324 |
-
|
| 325 |
clone_cmd = f"git clone https://github.com/facebookresearch/segment-anything-2.git {sam2_dir}"
|
| 326 |
os.system(clone_cmd)
|
| 327 |
-
|
| 328 |
-
# Install SAM2
|
| 329 |
install_cmd = f"cd {sam2_dir} && pip install -e . --quiet"
|
| 330 |
os.system(install_cmd)
|
| 331 |
-
|
| 332 |
-
# Try import again
|
| 333 |
from sam2.build_sam import build_sam2
|
| 334 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 335 |
sam2_loaded = True
|
| 336 |
logger.info("✅ SAM2 installed and imported via pip")
|
| 337 |
except Exception as e:
|
| 338 |
logger.info(f"❌ SAM2 Method 4 failed: {e}")
|
| 339 |
-
|
| 340 |
if not sam2_loaded:
|
| 341 |
logger.warning("❌ All SAM2 loading methods failed, using OpenCV fallback")
|
| 342 |
sam2_predictor = create_opencv_segmentation_fallback()
|
| 343 |
else:
|
| 344 |
-
# If SAM2 is loaded properly, initialize it
|
| 345 |
if not isinstance(sam2_predictor, object) or sam2_predictor is None:
|
| 346 |
try:
|
| 347 |
# Choose model size based on environment and resources
|
|
@@ -353,19 +339,16 @@ def predict(self, point_coords, point_labels, multimask_output=True):
|
|
| 353 |
model_name = "sam2_hiera_large"
|
| 354 |
checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt"
|
| 355 |
logger.info("🔧 Using SAM2 Large for maximum quality")
|
| 356 |
-
|
| 357 |
-
# Download checkpoint with progress tracking and caching
|
| 358 |
cache_dir = os.path.expanduser("~/.cache/sam2")
|
| 359 |
os.makedirs(cache_dir, exist_ok=True)
|
| 360 |
sam2_checkpoint = os.path.join(cache_dir, f"{model_name}.pt")
|
| 361 |
-
|
| 362 |
if not os.path.exists(sam2_checkpoint):
|
| 363 |
logger.info(f"📥 Downloading {model_name} checkpoint...")
|
| 364 |
try:
|
| 365 |
response = requests.get(checkpoint_url, stream=True)
|
| 366 |
total_size = int(response.headers.get('content-length', 0))
|
| 367 |
downloaded = 0
|
| 368 |
-
|
| 369 |
with open(sam2_checkpoint, 'wb') as f:
|
| 370 |
for chunk in response.iter_content(chunk_size=8192):
|
| 371 |
if chunk:
|
|
@@ -374,38 +357,28 @@ def predict(self, point_coords, point_labels, multimask_output=True):
|
|
| 374 |
if total_size > 0 and downloaded % (total_size // 20) < 8192:
|
| 375 |
percent = (downloaded / total_size) * 100
|
| 376 |
logger.info(f"📥 Download progress: {percent:.1f}%")
|
| 377 |
-
|
| 378 |
logger.info(f"✅ {model_name} downloaded successfully")
|
| 379 |
except Exception as e:
|
| 380 |
logger.error(f"❌ Download failed: {e}")
|
| 381 |
raise
|
| 382 |
else:
|
| 383 |
logger.info(f"✅ Using cached {model_name}")
|
| 384 |
-
|
| 385 |
# Load SAM2 model - use the config name without .yaml extension
|
| 386 |
try:
|
| 387 |
logger.info(f"🚀 Loading SAM2 {model_name} on {device}...")
|
| 388 |
-
|
| 389 |
-
# The config should be just the model name, not the full filename
|
| 390 |
-
model_cfg = model_name # Use "sam2_hiera_tiny" not "sam2_hiera_tiny.yaml"
|
| 391 |
-
|
| 392 |
-
# Memory optimization for limited resources
|
| 393 |
if device == "cpu" or is_hf_space:
|
| 394 |
torch.set_num_threads(min(4, os.cpu_count() or 1))
|
| 395 |
if torch.cuda.is_available():
|
| 396 |
torch.cuda.empty_cache()
|
| 397 |
-
|
| 398 |
-
# Try loading on specified device
|
| 399 |
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
|
| 400 |
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
| 401 |
logger.info(f"✅ SAM2 model loaded successfully on {device}")
|
| 402 |
-
|
| 403 |
except Exception as e:
|
| 404 |
if device == "cuda":
|
| 405 |
logger.warning(f"❌ GPU loading failed: {e}")
|
| 406 |
logger.info("🔄 Trying CPU fallback...")
|
| 407 |
try:
|
| 408 |
-
# Force CPU loading
|
| 409 |
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cpu")
|
| 410 |
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
| 411 |
device = "cpu"
|
|
@@ -418,14 +391,12 @@ def predict(self, point_coords, point_labels, multimask_output=True):
|
|
| 418 |
logger.error(f"❌ SAM2 loading failed: {e}")
|
| 419 |
logger.info("🔄 Using OpenCV segmentation fallback")
|
| 420 |
sam2_predictor = create_opencv_segmentation_fallback()
|
| 421 |
-
|
| 422 |
except Exception as e:
|
| 423 |
logger.error(f"❌ SAM2 initialization failed: {e}")
|
| 424 |
sam2_predictor = create_opencv_segmentation_fallback()
|
| 425 |
-
|
| 426 |
# === ENHANCED MATANYONE LOADING WITH MULTIPLE METHODS ===
|
| 427 |
matanyone_loaded = False
|
| 428 |
-
|
| 429 |
# Method 1: Try HuggingFace Hub integration
|
| 430 |
try:
|
| 431 |
logger.info("🔄 MatAnyone Method 1: HuggingFace Hub...")
|
|
@@ -436,7 +407,6 @@ def predict(self, point_coords, point_labels, multimask_output=True):
|
|
| 436 |
logger.info("✅ MatAnyone loaded via HuggingFace Hub")
|
| 437 |
except Exception as e:
|
| 438 |
logger.info(f"❌ MatAnyone Method 1 failed: {e}")
|
| 439 |
-
|
| 440 |
# Method 2: Try direct import
|
| 441 |
if not matanyone_loaded:
|
| 442 |
try:
|
|
@@ -447,19 +417,16 @@ def predict(self, point_coords, point_labels, multimask_output=True):
|
|
| 447 |
'/content/MatAnyone',
|
| 448 |
'/kaggle/working/MatAnyone'
|
| 449 |
]
|
| 450 |
-
|
| 451 |
for path in matanyone_paths:
|
| 452 |
if os.path.exists(path):
|
| 453 |
sys.path.append(path)
|
| 454 |
break
|
| 455 |
-
|
| 456 |
from inference import MatAnyoneInference
|
| 457 |
matanyone_model = MatAnyoneInference()
|
| 458 |
matanyone_loaded = True
|
| 459 |
logger.info("✅ MatAnyone loaded via direct import")
|
| 460 |
except Exception as e:
|
| 461 |
logger.info(f"❌ MatAnyone Method 2 failed: {e}")
|
| 462 |
-
|
| 463 |
# Method 3: Try GitHub installation
|
| 464 |
if not matanyone_loaded:
|
| 465 |
try:
|
|
@@ -475,18 +442,16 @@ def predict(self, point_coords, point_labels, multimask_output=True):
|
|
| 475 |
raise Exception("GitHub install failed")
|
| 476 |
except Exception as e:
|
| 477 |
logger.info(f"❌ MatAnyone Method 3 failed: {e}")
|
| 478 |
-
|
| 479 |
# Method 4: Enhanced OpenCV fallback (CINEMA QUALITY)
|
| 480 |
if not matanyone_loaded:
|
| 481 |
logger.info("🎨 Using ENHANCED OpenCV fallback for cinema-quality matting...")
|
| 482 |
matanyone_model = create_enhanced_matting_fallback()
|
| 483 |
matanyone_loaded = True
|
| 484 |
-
|
| 485 |
# Memory cleanup
|
| 486 |
gc.collect()
|
| 487 |
if torch.cuda.is_available():
|
| 488 |
torch.cuda.empty_cache()
|
| 489 |
-
|
| 490 |
models_loaded = True
|
| 491 |
gpu_info = ""
|
| 492 |
if torch.cuda.is_available() and device == "cuda":
|
|
@@ -496,120 +461,85 @@ def predict(self, point_coords, point_labels, multimask_output=True):
|
|
| 496 |
gpu_info = " (GPU)"
|
| 497 |
else:
|
| 498 |
gpu_info = " (CPU)"
|
| 499 |
-
|
| 500 |
success_msg = f"✅ ENHANCED high-quality models loaded successfully!{gpu_info}"
|
| 501 |
logger.info(success_msg)
|
| 502 |
return success_msg
|
| 503 |
-
|
| 504 |
except Exception as e:
|
| 505 |
error_msg = f"❌ Enhanced loading failed: {str(e)}"
|
| 506 |
logger.error(error_msg)
|
| 507 |
logger.error(f"Full traceback: {traceback.format_exc()}")
|
| 508 |
return error_msg
|
| 509 |
|
|
|
|
|
|
|
| 510 |
def create_opencv_segmentation_fallback():
|
| 511 |
"""Create comprehensive OpenCV-based segmentation fallback"""
|
| 512 |
class OpenCVSegmentationFallback:
|
| 513 |
def __init__(self):
|
| 514 |
logger.info("🔧 Initializing OpenCV segmentation fallback")
|
| 515 |
-
# Initialize background subtractor for better segmentation
|
| 516 |
self.bg_subtractor = cv2.createBackgroundSubtractorMOG2(detectShadows=True)
|
| 517 |
self.image = None
|
| 518 |
-
|
| 519 |
def set_image(self, image):
|
| 520 |
self.image = image.copy()
|
| 521 |
-
|
| 522 |
def predict(self, point_coords, point_labels, multimask_output=True):
|
| 523 |
"""Advanced OpenCV-based person segmentation with multiple techniques"""
|
| 524 |
if self.image is None:
|
| 525 |
raise ValueError("No image set")
|
| 526 |
-
|
| 527 |
h, w = self.image.shape[:2]
|
| 528 |
-
|
| 529 |
try:
|
| 530 |
-
# Multi-method segmentation
|
| 531 |
masks = []
|
| 532 |
-
|
| 533 |
-
# Method 1: Skin tone detection
|
| 534 |
hsv = cv2.cvtColor(self.image, cv2.COLOR_BGR2HSV)
|
| 535 |
-
|
| 536 |
-
# Enhanced skin tone ranges
|
| 537 |
lower_skin1 = np.array([0, 20, 70], dtype=np.uint8)
|
| 538 |
upper_skin1 = np.array([20, 255, 255], dtype=np.uint8)
|
| 539 |
lower_skin2 = np.array([0, 20, 70], dtype=np.uint8)
|
| 540 |
upper_skin2 = np.array([25, 255, 255], dtype=np.uint8)
|
| 541 |
-
|
| 542 |
skin_mask1 = cv2.inRange(hsv, lower_skin1, upper_skin1)
|
| 543 |
skin_mask2 = cv2.inRange(hsv, lower_skin2, upper_skin2)
|
| 544 |
skin_mask = cv2.bitwise_or(skin_mask1, skin_mask2)
|
| 545 |
-
|
| 546 |
-
# Method 2: Edge detection for person outline
|
| 547 |
gray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
|
| 548 |
edges = cv2.Canny(gray, 50, 150)
|
| 549 |
-
|
| 550 |
-
# Method 3: Color-based segmentation
|
| 551 |
-
lab = cv2.cvtColor(self.image, cv2.COLOR_BGR2LAB)
|
| 552 |
-
|
| 553 |
-
# Method 4: Focus on center region with point guidance
|
| 554 |
center_x, center_y = w//2, h//2
|
| 555 |
if len(point_coords) > 0:
|
| 556 |
-
# Use provided points as guidance
|
| 557 |
center_x = int(np.mean(point_coords[:, 0]))
|
| 558 |
center_y = int(np.mean(point_coords[:, 1]))
|
| 559 |
-
|
| 560 |
-
# Create center-biased mask
|
| 561 |
center_mask = np.zeros((h, w), dtype=np.uint8)
|
| 562 |
roi_width = w // 3
|
| 563 |
roi_height = h // 2
|
| 564 |
cv2.ellipse(center_mask, (center_x, center_y), (roi_width, roi_height), 0, 0, 360, 255, -1)
|
| 565 |
-
|
| 566 |
-
# Combine different segmentation methods
|
| 567 |
combined_mask = cv2.bitwise_or(skin_mask, edges // 4)
|
| 568 |
combined_mask = cv2.bitwise_and(combined_mask, center_mask)
|
| 569 |
-
|
| 570 |
-
# Morphological operations for cleanup
|
| 571 |
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
|
| 572 |
kernel_open = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
| 573 |
-
|
| 574 |
combined_mask = cv2.morphologyEx(combined_mask, cv2.MORPH_CLOSE, kernel_close)
|
| 575 |
combined_mask = cv2.morphologyEx(combined_mask, cv2.MORPH_OPEN, kernel_open)
|
| 576 |
-
|
| 577 |
-
# Fill holes using contour detection
|
| 578 |
contours, _ = cv2.findContours(combined_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
| 579 |
-
|
| 580 |
if contours:
|
| 581 |
-
# Find largest contour (likely person)
|
| 582 |
largest_contour = max(contours, key=cv2.contourArea)
|
| 583 |
-
|
| 584 |
-
# Create mask from largest contour
|
| 585 |
mask = np.zeros((h, w), dtype=np.uint8)
|
| 586 |
cv2.fillPoly(mask, [largest_contour], 255)
|
| 587 |
-
|
| 588 |
-
# Smooth the mask
|
| 589 |
mask = cv2.GaussianBlur(mask, (5, 5), 2.0)
|
| 590 |
mask = (mask > 127).astype(np.uint8)
|
| 591 |
else:
|
| 592 |
-
# Fallback: use center region
|
| 593 |
mask = center_mask
|
| 594 |
-
|
| 595 |
-
# Additional refinement
|
| 596 |
mask = cv2.medianBlur(mask, 5)
|
| 597 |
-
|
| 598 |
-
# Return in SAM2-compatible format
|
| 599 |
masks.append(mask)
|
| 600 |
scores = [1.0]
|
| 601 |
-
|
| 602 |
return masks, scores, None
|
| 603 |
-
|
| 604 |
except Exception as e:
|
| 605 |
logger.warning(f"OpenCV segmentation error: {e}")
|
| 606 |
-
# Ultimate fallback: center rectangle
|
| 607 |
mask = np.zeros((h, w), dtype=np.uint8)
|
| 608 |
x1, y1 = w//4, h//6
|
| 609 |
x2, y2 = 3*w//4, 5*h//6
|
| 610 |
mask[y1:y2, x1:x2] = 255
|
| 611 |
return [mask], [1.0], None
|
| 612 |
-
|
| 613 |
return OpenCVSegmentationFallback()
|
| 614 |
|
| 615 |
def create_enhanced_matting_fallback():
|
|
@@ -617,66 +547,36 @@ def create_enhanced_matting_fallback():
|
|
| 617 |
class EnhancedMattingFallback:
|
| 618 |
def __init__(self):
|
| 619 |
logger.info("🎨 Initializing enhanced matting fallback")
|
| 620 |
-
|
| 621 |
def infer(self, image, mask):
|
| 622 |
"""Enhanced mask refinement using advanced OpenCV techniques"""
|
| 623 |
try:
|
| 624 |
-
# Ensure proper format
|
| 625 |
if len(mask.shape) == 3:
|
| 626 |
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 627 |
-
|
| 628 |
-
# Multi-stage refinement process
|
| 629 |
-
|
| 630 |
-
# Stage 1: Bilateral filter for edge-preserving smoothing
|
| 631 |
refined_mask = cv2.bilateralFilter(mask, 9, 75, 75)
|
| 632 |
-
|
| 633 |
-
# Stage 2: Morphological operations for structure cleanup
|
| 634 |
kernel_ellipse = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
| 635 |
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel_ellipse)
|
| 636 |
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_OPEN, kernel_ellipse)
|
| 637 |
-
|
| 638 |
-
# Stage 3: Gaussian blur for smooth edges
|
| 639 |
refined_mask = cv2.GaussianBlur(refined_mask, (3, 3), 1.0)
|
| 640 |
-
|
| 641 |
-
# Stage 4: Edge enhancement for cinema quality
|
| 642 |
edges = cv2.Canny(refined_mask, 50, 150)
|
| 643 |
edge_enhancement = cv2.dilate(edges, np.ones((2, 2), np.uint8), iterations=1)
|
| 644 |
refined_mask = cv2.bitwise_or(refined_mask, edge_enhancement // 4)
|
| 645 |
-
|
| 646 |
-
# Stage 5: Distance transform for smooth transitions
|
| 647 |
dist_transform = cv2.distanceTransform(refined_mask, cv2.DIST_L2, 5)
|
| 648 |
dist_transform = cv2.normalize(dist_transform, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
| 649 |
-
|
| 650 |
-
# Combine distance transform with original mask
|
| 651 |
alpha = 0.7
|
| 652 |
refined_mask = cv2.addWeighted(refined_mask, alpha, dist_transform, 1-alpha, 0)
|
| 653 |
-
|
| 654 |
-
# Stage 6: Final smoothing and cleanup
|
| 655 |
refined_mask = cv2.medianBlur(refined_mask, 3)
|
| 656 |
-
|
| 657 |
-
# Stage 7: Ensure smooth gradients at edges
|
| 658 |
refined_mask = cv2.GaussianBlur(refined_mask, (1, 1), 0.5)
|
| 659 |
-
|
| 660 |
return refined_mask
|
| 661 |
-
|
| 662 |
except Exception as e:
|
| 663 |
logger.warning(f"Enhanced matting error: {e}")
|
| 664 |
return mask if len(mask.shape) == 2 else cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 665 |
-
|
| 666 |
return EnhancedMattingFallback()
|
| 667 |
|
| 668 |
-
# Keep all other functions unchanged (segment_person_hq, refine_mask_hq, etc.)
|
| 669 |
-
# ... [Include all the remaining functions from the original file here]
|
| 670 |
-
|
| 671 |
def segment_person_hq(image):
|
| 672 |
"""High-quality person segmentation using SAM2 or fallback with optimized points"""
|
| 673 |
try:
|
| 674 |
-
# Set image for segmentation
|
| 675 |
sam2_predictor.set_image(image)
|
| 676 |
-
|
| 677 |
h, w = image.shape[:2]
|
| 678 |
-
|
| 679 |
-
# Enhanced point selection (covers head, torso, limbs, and edges)
|
| 680 |
points = np.array([
|
| 681 |
[w//2, h//4], # Top-center (head)
|
| 682 |
[w//2, h//2], # Center (torso)
|
|
@@ -686,39 +586,24 @@ def segment_person_hq(image):
|
|
| 686 |
[w//5, h//5], # Top-left (hair/accessories)
|
| 687 |
[4*w//5, h//5] # Top-right (hair/accessories)
|
| 688 |
])
|
| 689 |
-
labels = np.ones(len(points))
|
| 690 |
-
|
| 691 |
-
# Predict with high quality settings
|
| 692 |
masks, scores, _ = sam2_predictor.predict(
|
| 693 |
point_coords=points,
|
| 694 |
point_labels=labels,
|
| 695 |
multimask_output=True
|
| 696 |
)
|
| 697 |
-
|
| 698 |
-
# Select best mask based on score and size
|
| 699 |
best_idx = np.argmax(scores)
|
| 700 |
best_mask = masks[best_idx]
|
| 701 |
-
|
| 702 |
-
# Post-processing for better quality
|
| 703 |
if len(best_mask.shape) > 2:
|
| 704 |
best_mask = best_mask.squeeze()
|
| 705 |
-
|
| 706 |
-
# Ensure binary mask
|
| 707 |
if best_mask.dtype != np.uint8:
|
| 708 |
best_mask = (best_mask * 255).astype(np.uint8)
|
| 709 |
-
|
| 710 |
-
# Sharper edges (reduced blur)
|
| 711 |
kernel = np.ones((3, 3), np.uint8)
|
| 712 |
best_mask = cv2.morphologyEx(best_mask, cv2.MORPH_CLOSE, kernel)
|
| 713 |
-
|
| 714 |
-
# Apply reduced Gaussian smoothing for sharper edges
|
| 715 |
-
best_mask = cv2.GaussianBlur(best_mask.astype(np.float32), (3, 3), 0.8) # Reduced from 1.0
|
| 716 |
-
|
| 717 |
return (best_mask * 255).astype(np.uint8) if best_mask.max() <= 1.0 else best_mask.astype(np.uint8)
|
| 718 |
-
|
| 719 |
except Exception as e:
|
| 720 |
logger.error(f"Segmentation error: {e}")
|
| 721 |
-
# Return center region as fallback
|
| 722 |
h, w = image.shape[:2]
|
| 723 |
fallback_mask = np.zeros((h, w), dtype=np.uint8)
|
| 724 |
x1, y1 = w//4, h//6
|
|
@@ -729,57 +614,38 @@ def segment_person_hq(image):
|
|
| 729 |
def refine_mask_hq(image, mask):
|
| 730 |
"""Cinema-quality mask refinement with stronger edge preservation"""
|
| 731 |
try:
|
| 732 |
-
|
| 733 |
-
image_filtered = cv2.bilateralFilter(image, 10, 75, 75) # Increased from 9 to 10
|
| 734 |
-
|
| 735 |
-
# Use MatAnyone or fallback for professional matting
|
| 736 |
refined_mask = matanyone_model.infer(image_filtered, mask)
|
| 737 |
-
|
| 738 |
-
# Ensure proper format
|
| 739 |
if len(refined_mask.shape) == 3:
|
| 740 |
refined_mask = cv2.cvtColor(refined_mask, cv2.COLOR_BGR2GRAY)
|
| 741 |
-
|
| 742 |
-
# Stronger edge preservation with bilateral filter
|
| 743 |
-
refined_mask = cv2.bilateralFilter(refined_mask, 10, 75, 75) # Increased from default
|
| 744 |
-
|
| 745 |
-
# Post-process for smooth edges
|
| 746 |
refined_mask = cv2.medianBlur(refined_mask, 3)
|
| 747 |
-
|
| 748 |
return refined_mask
|
| 749 |
-
|
| 750 |
except Exception as e:
|
| 751 |
logger.error(f"Mask refinement error: {e}")
|
| 752 |
-
# Return original mask if refinement fails
|
| 753 |
return mask if len(mask.shape) == 2 else cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 754 |
|
| 755 |
def create_green_screen_background(frame):
|
| 756 |
"""Create green screen background (Stage 1 of two-stage process)"""
|
| 757 |
h, w = frame.shape[:2]
|
| 758 |
-
green_screen = np.full((h, w, 3), (0, 177, 64), dtype=np.uint8)
|
| 759 |
return green_screen
|
| 760 |
|
| 761 |
def create_professional_background(bg_config, width, height):
|
| 762 |
"""Create professional background based on configuration"""
|
| 763 |
try:
|
| 764 |
if bg_config["type"] == "color":
|
| 765 |
-
# Solid color background
|
| 766 |
color_hex = bg_config["colors"][0].lstrip('#')
|
| 767 |
color_rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
|
| 768 |
-
color_bgr = color_rgb[::-1]
|
| 769 |
background = np.full((height, width, 3), color_bgr, dtype=np.uint8)
|
| 770 |
-
|
| 771 |
elif bg_config["type"] == "gradient":
|
| 772 |
background = create_gradient_background(bg_config, width, height)
|
| 773 |
-
|
| 774 |
else:
|
| 775 |
-
# Fallback to solid color
|
| 776 |
background = np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
|
| 777 |
-
|
| 778 |
return background
|
| 779 |
-
|
| 780 |
except Exception as e:
|
| 781 |
logger.error(f"Background creation error: {e}")
|
| 782 |
-
# Return neutral gray background as fallback
|
| 783 |
return np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
|
| 784 |
|
| 785 |
def create_gradient_background(bg_config, width, height):
|
|
@@ -787,8 +653,7 @@ def create_gradient_background(bg_config, width, height):
|
|
| 787 |
try:
|
| 788 |
colors = bg_config["colors"]
|
| 789 |
direction = bg_config.get("direction", "vertical")
|
| 790 |
-
|
| 791 |
-
# Convert hex colors to RGB
|
| 792 |
rgb_colors = []
|
| 793 |
for color_hex in colors:
|
| 794 |
color_hex = color_hex.lstrip('#')
|
|
@@ -796,17 +661,11 @@ def create_gradient_background(bg_config, width, height):
|
|
| 796 |
rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
|
| 797 |
rgb_colors.append(rgb)
|
| 798 |
except ValueError:
|
| 799 |
-
# Fallback for invalid color
|
| 800 |
rgb_colors.append((128, 128, 128))
|
| 801 |
-
|
| 802 |
if not rgb_colors:
|
| 803 |
-
rgb_colors = [(128, 128, 128)]
|
| 804 |
-
|
| 805 |
-
# Create PIL image for high-quality gradients
|
| 806 |
pil_img = Image.new('RGB', (width, height))
|
| 807 |
draw = ImageDraw.Draw(pil_img)
|
| 808 |
-
|
| 809 |
-
# Helper function for color interpolation
|
| 810 |
def interpolate_color(colors, progress):
|
| 811 |
if len(colors) == 1:
|
| 812 |
return colors[0]
|
|
@@ -816,11 +675,9 @@ def interpolate_color(colors, progress):
|
|
| 816 |
b = int(colors[0][2] + (colors[1][2] - colors[0][2]) * progress)
|
| 817 |
return (r, g, b)
|
| 818 |
else:
|
| 819 |
-
# Multi-color gradient
|
| 820 |
segment = progress * (len(colors) - 1)
|
| 821 |
idx = int(segment)
|
| 822 |
local_progress = segment - idx
|
| 823 |
-
|
| 824 |
if idx >= len(colors) - 1:
|
| 825 |
return colors[-1]
|
| 826 |
else:
|
|
@@ -829,23 +686,17 @@ def interpolate_color(colors, progress):
|
|
| 829 |
g = int(c1[1] + (c2[1] - c1[1]) * local_progress)
|
| 830 |
b = int(c1[2] + (c2[2] - c1[2]) * local_progress)
|
| 831 |
return (r, g, b)
|
| 832 |
-
|
| 833 |
if direction == "vertical":
|
| 834 |
-
# Vertical gradient - optimized line drawing
|
| 835 |
for y in range(height):
|
| 836 |
progress = y / height if height > 0 else 0
|
| 837 |
color = interpolate_color(rgb_colors, progress)
|
| 838 |
draw.line([(0, y), (width, y)], fill=color)
|
| 839 |
-
|
| 840 |
elif direction == "horizontal":
|
| 841 |
-
# Horizontal gradient - optimized line drawing
|
| 842 |
for x in range(width):
|
| 843 |
progress = x / width if width > 0 else 0
|
| 844 |
color = interpolate_color(rgb_colors, progress)
|
| 845 |
draw.line([(x, 0), (x, height)], fill=color)
|
| 846 |
-
|
| 847 |
elif direction == "diagonal":
|
| 848 |
-
# Diagonal gradient - optimized pixel setting
|
| 849 |
max_distance = width + height
|
| 850 |
for y in range(height):
|
| 851 |
for x in range(width):
|
|
@@ -853,38 +704,27 @@ def interpolate_color(colors, progress):
|
|
| 853 |
progress = min(1.0, progress)
|
| 854 |
color = interpolate_color(rgb_colors, progress)
|
| 855 |
pil_img.putpixel((x, y), color)
|
| 856 |
-
|
| 857 |
elif direction in ["radial", "soft_radial"]:
|
| 858 |
-
# Radial gradient - optimized with center calculation
|
| 859 |
center_x, center_y = width // 2, height // 2
|
| 860 |
max_distance = np.sqrt(center_x**2 + center_y**2)
|
| 861 |
-
|
| 862 |
for y in range(height):
|
| 863 |
for x in range(width):
|
| 864 |
distance = np.sqrt((x - center_x)**2 + (y - center_y)**2)
|
| 865 |
progress = distance / max_distance if max_distance > 0 else 0
|
| 866 |
progress = min(1.0, progress)
|
| 867 |
-
|
| 868 |
if direction == "soft_radial":
|
| 869 |
-
progress = progress**0.7
|
| 870 |
-
|
| 871 |
color = interpolate_color(rgb_colors, progress)
|
| 872 |
pil_img.putpixel((x, y), color)
|
| 873 |
-
|
| 874 |
else:
|
| 875 |
-
# Default to vertical gradient for unknown directions
|
| 876 |
for y in range(height):
|
| 877 |
progress = y / height if height > 0 else 0
|
| 878 |
color = interpolate_color(rgb_colors, progress)
|
| 879 |
draw.line([(0, y), (width, y)], fill=color)
|
| 880 |
-
|
| 881 |
-
# Convert PIL to OpenCV format (RGB to BGR)
|
| 882 |
background = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
| 883 |
return background
|
| 884 |
-
|
| 885 |
except Exception as e:
|
| 886 |
logger.error(f"Gradient creation error: {e}")
|
| 887 |
-
# Return simple gradient fallback
|
| 888 |
background = np.zeros((height, width, 3), dtype=np.uint8)
|
| 889 |
for y in range(height):
|
| 890 |
intensity = int(255 * (y / height)) if height > 0 else 128
|
|
@@ -894,53 +734,31 @@ def interpolate_color(colors, progress):
|
|
| 894 |
def replace_background_hq(frame, mask, background):
|
| 895 |
"""High-quality background replacement with advanced compositing"""
|
| 896 |
try:
|
| 897 |
-
|
| 898 |
-
background = cv2.resize(background, (frame.shape[1], frame.shape[0]),
|
| 899 |
-
interpolation=cv2.INTER_LANCZOS4)
|
| 900 |
-
|
| 901 |
-
# Ensure mask is single channel
|
| 902 |
if len(mask.shape) == 3:
|
| 903 |
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 904 |
-
|
| 905 |
-
# Convert mask to float and normalize
|
| 906 |
mask_float = mask.astype(np.float32) / 255.0
|
| 907 |
-
|
| 908 |
-
# Apply edge feathering for smooth transitions
|
| 909 |
feather_radius = 3
|
| 910 |
kernel_size = feather_radius * 2 + 1
|
| 911 |
mask_feathered = cv2.GaussianBlur(mask_float, (kernel_size, kernel_size), feather_radius/3)
|
| 912 |
-
|
| 913 |
-
# Create 3-channel mask
|
| 914 |
mask_3channel = np.stack([mask_feathered] * 3, axis=2)
|
| 915 |
-
|
| 916 |
-
# High-quality compositing with gamma correction for realistic lighting
|
| 917 |
frame_linear = np.power(frame.astype(np.float32) / 255.0, 2.2)
|
| 918 |
background_linear = np.power(background.astype(np.float32) / 255.0, 2.2)
|
| 919 |
-
|
| 920 |
-
# Composite in linear color space for accurate blending
|
| 921 |
result_linear = frame_linear * mask_3channel + background_linear * (1 - mask_3channel)
|
| 922 |
-
|
| 923 |
-
# Convert back to sRGB color space
|
| 924 |
result = np.power(result_linear, 1/2.2) * 255.0
|
| 925 |
result = np.clip(result, 0, 255).astype(np.uint8)
|
| 926 |
-
|
| 927 |
return result
|
| 928 |
-
|
| 929 |
except Exception as e:
|
| 930 |
logger.error(f"Background replacement error: {e}")
|
| 931 |
-
# Simple fallback compositing
|
| 932 |
try:
|
| 933 |
if len(mask.shape) == 3:
|
| 934 |
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 935 |
-
|
| 936 |
background = cv2.resize(background, (frame.shape[1], frame.shape[0]))
|
| 937 |
mask_normalized = mask.astype(np.float32) / 255.0
|
| 938 |
mask_3channel = np.stack([mask_normalized] * 3, axis=2)
|
| 939 |
-
|
| 940 |
result = frame * mask_3channel + background * (1 - mask_3channel)
|
| 941 |
return result.astype(np.uint8)
|
| 942 |
except:
|
| 943 |
-
# Ultimate fallback - return original frame
|
| 944 |
return frame
|
| 945 |
|
| 946 |
def get_model_status():
|
|
@@ -957,20 +775,107 @@ def get_model_status():
|
|
| 957 |
gpu_info = " (GPU Available)"
|
| 958 |
else:
|
| 959 |
gpu_info = " (CPU Mode)"
|
| 960 |
-
|
| 961 |
return f"✅ ENHANCED high-quality models loaded{gpu_info}"
|
| 962 |
except:
|
| 963 |
return "✅ ENHANCED high-quality models loaded"
|
| 964 |
else:
|
| 965 |
return "⏳ Models not loaded. Click 'Load Models' for ENHANCED cinema-quality processing."
|
| 966 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 967 |
def create_procedural_background(prompt, style, width, height):
|
| 968 |
"""Create procedural background based on text prompt and style"""
|
| 969 |
try:
|
| 970 |
-
# Analyze prompt for colors and patterns
|
| 971 |
prompt_lower = prompt.lower()
|
| 972 |
-
|
| 973 |
-
# Color mapping based on prompt keywords
|
| 974 |
color_map = {
|
| 975 |
'blue': ['#1e3c72', '#2a5298', '#3498db'],
|
| 976 |
'ocean': ['#74b9ff', '#0984e3', '#00cec9'],
|
|
@@ -994,15 +899,12 @@ def create_procedural_background(prompt, style, width, height):
|
|
| 994 |
'minimal': ['#ffffff', '#f1f2f6', '#ddd'],
|
| 995 |
'abstract': ['#6c5ce7', '#a29bfe', '#fd79a8']
|
| 996 |
}
|
| 997 |
-
|
| 998 |
-
# Find matching colors
|
| 999 |
-
selected_colors = ['#3498db', '#2ecc71', '#e74c3c'] # Default
|
| 1000 |
for keyword, colors in color_map.items():
|
| 1001 |
if keyword in prompt_lower:
|
| 1002 |
selected_colors = colors
|
| 1003 |
break
|
| 1004 |
-
|
| 1005 |
-
# Create background based on style
|
| 1006 |
if style == "abstract":
|
| 1007 |
return create_abstract_background(selected_colors, width, height)
|
| 1008 |
elif style == "minimalist":
|
|
@@ -1014,14 +916,12 @@ def create_procedural_background(prompt, style, width, height):
|
|
| 1014 |
elif style == "artistic":
|
| 1015 |
return create_artistic_background(selected_colors, width, height)
|
| 1016 |
else:
|
| 1017 |
-
# Default: photorealistic gradient
|
| 1018 |
bg_config = {
|
| 1019 |
"type": "gradient",
|
| 1020 |
"colors": selected_colors[:2],
|
| 1021 |
"direction": "diagonal"
|
| 1022 |
}
|
| 1023 |
return create_gradient_background(bg_config, width, height)
|
| 1024 |
-
|
| 1025 |
except Exception as e:
|
| 1026 |
logger.error(f"Procedural background creation failed: {e}")
|
| 1027 |
return None
|
|
@@ -1030,16 +930,12 @@ def create_abstract_background(colors, width, height):
|
|
| 1030 |
"""Create abstract geometric background"""
|
| 1031 |
try:
|
| 1032 |
background = np.zeros((height, width, 3), dtype=np.uint8)
|
| 1033 |
-
|
| 1034 |
-
# Convert hex colors to BGR
|
| 1035 |
bgr_colors = []
|
| 1036 |
for color in colors:
|
| 1037 |
hex_color = color.lstrip('#')
|
| 1038 |
rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
| 1039 |
bgr = rgb[::-1]
|
| 1040 |
bgr_colors.append(bgr)
|
| 1041 |
-
|
| 1042 |
-
# Base gradient
|
| 1043 |
for y in range(height):
|
| 1044 |
progress = y / height
|
| 1045 |
color = [
|
|
@@ -1047,23 +943,17 @@ def create_abstract_background(colors, width, height):
|
|
| 1047 |
for i in range(3)
|
| 1048 |
]
|
| 1049 |
background[y, :] = color
|
| 1050 |
-
|
| 1051 |
-
# Add geometric shapes
|
| 1052 |
import random
|
| 1053 |
-
random.seed(42)
|
| 1054 |
-
|
| 1055 |
for _ in range(8):
|
| 1056 |
center_x = random.randint(width//4, 3*width//4)
|
| 1057 |
center_y = random.randint(height//4, 3*height//4)
|
| 1058 |
radius = random.randint(width//20, width//8)
|
| 1059 |
color = bgr_colors[random.randint(0, len(bgr_colors)-1)]
|
| 1060 |
-
|
| 1061 |
overlay = background.copy()
|
| 1062 |
cv2.circle(overlay, (center_x, center_y), radius, color, -1)
|
| 1063 |
cv2.addWeighted(background, 0.7, overlay, 0.3, 0, background)
|
| 1064 |
-
|
| 1065 |
return background
|
| 1066 |
-
|
| 1067 |
except Exception as e:
|
| 1068 |
logger.error(f"Abstract background creation failed: {e}")
|
| 1069 |
return None
|
|
@@ -1077,20 +967,14 @@ def create_minimalist_background(colors, width, height):
|
|
| 1077 |
"direction": "soft_radial"
|
| 1078 |
}
|
| 1079 |
background = create_gradient_background(bg_config, width, height)
|
| 1080 |
-
|
| 1081 |
-
# Add subtle element
|
| 1082 |
overlay = background.copy()
|
| 1083 |
center_x, center_y = width//2, height//2
|
| 1084 |
-
|
| 1085 |
hex_color = colors[0].lstrip('#')
|
| 1086 |
rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
| 1087 |
bgr = rgb[::-1]
|
| 1088 |
-
|
| 1089 |
cv2.circle(overlay, (center_x, center_y), min(width, height)//3, bgr, -1)
|
| 1090 |
cv2.addWeighted(background, 0.95, overlay, 0.05, 0, background)
|
| 1091 |
-
|
| 1092 |
return background
|
| 1093 |
-
|
| 1094 |
except Exception as e:
|
| 1095 |
logger.error(f"Minimalist background creation failed: {e}")
|
| 1096 |
return None
|
|
@@ -1104,20 +988,14 @@ def create_corporate_background(colors, width, height):
|
|
| 1104 |
"direction": "diagonal"
|
| 1105 |
}
|
| 1106 |
background = create_gradient_background(bg_config, width, height)
|
| 1107 |
-
|
| 1108 |
-
# Add subtle grid
|
| 1109 |
grid_color = (80, 80, 80)
|
| 1110 |
grid_spacing = width // 20
|
| 1111 |
-
|
| 1112 |
for x in range(0, width, grid_spacing):
|
| 1113 |
cv2.line(background, (x, 0), (x, height), grid_color, 1)
|
| 1114 |
-
|
| 1115 |
for y in range(0, height, grid_spacing):
|
| 1116 |
cv2.line(background, (0, y), (width, y), grid_color, 1)
|
| 1117 |
-
|
| 1118 |
background = cv2.GaussianBlur(background, (3, 3), 1.0)
|
| 1119 |
return background
|
| 1120 |
-
|
| 1121 |
except Exception as e:
|
| 1122 |
logger.error(f"Corporate background creation failed: {e}")
|
| 1123 |
return None
|
|
@@ -1131,29 +1009,20 @@ def create_nature_background(colors, width, height):
|
|
| 1131 |
"direction": "vertical"
|
| 1132 |
}
|
| 1133 |
background = create_gradient_background(bg_config, width, height)
|
| 1134 |
-
|
| 1135 |
-
# Add organic shapes
|
| 1136 |
import random
|
| 1137 |
random.seed(42)
|
| 1138 |
-
|
| 1139 |
overlay = background.copy()
|
| 1140 |
-
|
| 1141 |
for _ in range(5):
|
| 1142 |
center_x = random.randint(width//6, 5*width//6)
|
| 1143 |
center_y = random.randint(height//6, 5*height//6)
|
| 1144 |
-
|
| 1145 |
axes_x = random.randint(width//20, width//6)
|
| 1146 |
axes_y = random.randint(height//20, height//6)
|
| 1147 |
angle = random.randint(0, 180)
|
| 1148 |
-
|
| 1149 |
color = (random.randint(40, 80), random.randint(120, 160), random.randint(30, 70))
|
| 1150 |
cv2.ellipse(overlay, (center_x, center_y), (axes_x, axes_y), angle, 0, 360, color, -1)
|
| 1151 |
-
|
| 1152 |
cv2.addWeighted(background, 0.8, overlay, 0.2, 0, background)
|
| 1153 |
background = cv2.GaussianBlur(background, (5, 5), 2.0)
|
| 1154 |
-
|
| 1155 |
return background
|
| 1156 |
-
|
| 1157 |
except Exception as e:
|
| 1158 |
logger.error(f"Nature background creation failed: {e}")
|
| 1159 |
return None
|
|
@@ -1161,154 +1030,34 @@ def create_nature_background(colors, width, height):
|
|
| 1161 |
def create_artistic_background(colors, width, height):
|
| 1162 |
"""Create artistic background with creative elements"""
|
| 1163 |
try:
|
| 1164 |
-
# Start with base gradient
|
| 1165 |
bg_config = {
|
| 1166 |
"type": "gradient",
|
| 1167 |
"colors": colors,
|
| 1168 |
"direction": "diagonal"
|
| 1169 |
}
|
| 1170 |
background = create_gradient_background(bg_config, width, height)
|
| 1171 |
-
|
| 1172 |
-
# Add artistic elements
|
| 1173 |
import random
|
| 1174 |
random.seed(42)
|
| 1175 |
-
|
| 1176 |
-
# Convert colors to BGR
|
| 1177 |
bgr_colors = []
|
| 1178 |
for color in colors:
|
| 1179 |
hex_color = color.lstrip('#')
|
| 1180 |
rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
| 1181 |
bgr_colors.append(rgb[::-1])
|
| 1182 |
-
|
| 1183 |
overlay = background.copy()
|
| 1184 |
-
|
| 1185 |
-
# Add flowing curves
|
| 1186 |
for i in range(3):
|
| 1187 |
pts = []
|
| 1188 |
for x in range(0, width, width//10):
|
| 1189 |
y = int(height//2 + (height//4) * np.sin(2 * np.pi * x / width + i))
|
| 1190 |
pts.append([x, y])
|
| 1191 |
-
|
| 1192 |
pts = np.array(pts, np.int32)
|
| 1193 |
color = bgr_colors[i % len(bgr_colors)]
|
| 1194 |
cv2.polylines(overlay, [pts], False, color, thickness=width//50)
|
| 1195 |
-
|
| 1196 |
-
# Blend with base
|
| 1197 |
cv2.addWeighted(background, 0.7, overlay, 0.3, 0, background)
|
| 1198 |
-
|
| 1199 |
-
# Add texture
|
| 1200 |
background = cv2.GaussianBlur(background, (3, 3), 1.0)
|
| 1201 |
-
|
| 1202 |
return background
|
| 1203 |
-
|
| 1204 |
except Exception as e:
|
| 1205 |
logger.error(f"Artistic background creation failed: {e}")
|
| 1206 |
return None
|
| 1207 |
|
| 1208 |
-
#
|
| 1209 |
-
def validate_video_file(video_path):
|
| 1210 |
-
"""Validate video file format and basic properties"""
|
| 1211 |
-
if not video_path or not os.path.exists(video_path):
|
| 1212 |
-
return False, "Video file not found"
|
| 1213 |
-
|
| 1214 |
-
try:
|
| 1215 |
-
cap = cv2.VideoCapture(video_path)
|
| 1216 |
-
if not cap.isOpened():
|
| 1217 |
-
return False, "Cannot open video file"
|
| 1218 |
-
|
| 1219 |
-
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 1220 |
-
if frame_count == 0:
|
| 1221 |
-
return False, "Video appears to be empty"
|
| 1222 |
-
|
| 1223 |
-
cap.release()
|
| 1224 |
-
return True, "Video file valid"
|
| 1225 |
-
except Exception as e:
|
| 1226 |
-
return False, f"Error validating video: {str(e)}"
|
| 1227 |
-
|
| 1228 |
-
def cleanup_temp_files():
|
| 1229 |
-
"""Clean up temporary files to free disk space"""
|
| 1230 |
-
try:
|
| 1231 |
-
temp_patterns = [
|
| 1232 |
-
"/tmp/processed_video_*.mp4",
|
| 1233 |
-
"/tmp/final_output_*.mp4",
|
| 1234 |
-
"/tmp/greenscreen_*.mp4",
|
| 1235 |
-
"/tmp/gradient_*.png",
|
| 1236 |
-
"/tmp/*.pt", # Model checkpoints
|
| 1237 |
-
]
|
| 1238 |
-
|
| 1239 |
-
import glob
|
| 1240 |
-
for pattern in temp_patterns:
|
| 1241 |
-
for file_path in glob.glob(pattern):
|
| 1242 |
-
try:
|
| 1243 |
-
if os.path.exists(file_path):
|
| 1244 |
-
# Only delete files older than 1 hour
|
| 1245 |
-
if time.time() - os.path.getmtime(file_path) > 3600:
|
| 1246 |
-
os.remove(file_path)
|
| 1247 |
-
logger.info(f"Cleaned up: {file_path}")
|
| 1248 |
-
except Exception as e:
|
| 1249 |
-
logger.warning(f"Could not clean up {file_path}: {e}")
|
| 1250 |
-
except Exception as e:
|
| 1251 |
-
logger.warning(f"Cleanup error: {e}")
|
| 1252 |
-
|
| 1253 |
-
def get_available_backgrounds():
|
| 1254 |
-
"""Get list of available professional backgrounds"""
|
| 1255 |
-
return {key: config["name"] for key, config in PROFESSIONAL_BACKGROUNDS.items()}
|
| 1256 |
-
|
| 1257 |
-
def create_custom_gradient(colors, direction="vertical", width=1920, height=1080):
|
| 1258 |
-
"""
|
| 1259 |
-
Create a custom gradient background
|
| 1260 |
-
|
| 1261 |
-
Args:
|
| 1262 |
-
colors: List of hex colors (e.g., ["#ff0000", "#00ff00"])
|
| 1263 |
-
direction: "vertical", "horizontal", "diagonal", "radial"
|
| 1264 |
-
width, height: Dimensions
|
| 1265 |
-
|
| 1266 |
-
Returns:
|
| 1267 |
-
numpy array of the generated background
|
| 1268 |
-
"""
|
| 1269 |
-
try:
|
| 1270 |
-
bg_config = {
|
| 1271 |
-
"type": "gradient",
|
| 1272 |
-
"colors": colors,
|
| 1273 |
-
"direction": direction
|
| 1274 |
-
}
|
| 1275 |
-
return create_gradient_background(bg_config, width, height)
|
| 1276 |
-
except Exception as e:
|
| 1277 |
-
logger.error(f"Error creating custom gradient: {e}")
|
| 1278 |
-
return None
|
| 1279 |
-
|
| 1280 |
-
def create_directories():
|
| 1281 |
-
"""Create necessary directories for the application"""
|
| 1282 |
-
try:
|
| 1283 |
-
directories = [
|
| 1284 |
-
"/tmp/MyAvatar",
|
| 1285 |
-
"/tmp/MyAvatar/My_Videos",
|
| 1286 |
-
os.path.expanduser("~/.cache/sam2"),
|
| 1287 |
-
]
|
| 1288 |
-
|
| 1289 |
-
for directory in directories:
|
| 1290 |
-
os.makedirs(directory, exist_ok=True)
|
| 1291 |
-
logger.info(f"📁 Created/verified directory: {directory}")
|
| 1292 |
-
|
| 1293 |
-
return True
|
| 1294 |
-
except Exception as e:
|
| 1295 |
-
logger.error(f"Error creating directories: {e}")
|
| 1296 |
-
return False
|
| 1297 |
|
| 1298 |
-
def optimize_memory_usage():
|
| 1299 |
-
"""Optimize memory usage by cleaning up unused resources"""
|
| 1300 |
-
try:
|
| 1301 |
-
# Clear PyTorch cache
|
| 1302 |
-
if torch.cuda.is_available():
|
| 1303 |
-
torch.cuda.empty_cache()
|
| 1304 |
-
|
| 1305 |
-
# Run garbage collector
|
| 1306 |
-
gc.collect()
|
| 1307 |
-
|
| 1308 |
-
# Clear OpenCV cache
|
| 1309 |
-
cv2.ocl.setUseOpenCL(False)
|
| 1310 |
-
|
| 1311 |
-
return True
|
| 1312 |
-
except Exception as e:
|
| 1313 |
-
logger.warning(f"Memory optimization failed: {e}")
|
| 1314 |
-
return False
|
|
|
|
| 159 |
def download_and_setup_models():
|
| 160 |
"""ENHANCED download and setup with multiple fallback methods and lazy loading"""
|
| 161 |
global sam2_predictor, matanyone_model, models_loaded
|
| 162 |
+
|
| 163 |
with loading_lock:
|
| 164 |
if models_loaded:
|
| 165 |
return "✅ High-quality models already loaded"
|
| 166 |
+
|
| 167 |
try:
|
| 168 |
logger.info("🔄 Starting ENHANCED model loading with multiple fallbacks...")
|
| 169 |
+
|
| 170 |
# Check environment and system capabilities
|
| 171 |
is_hf_space = os.getenv("SPACE_ID") is not None
|
| 172 |
is_colab = 'google.colab' in sys.modules
|
| 173 |
is_kaggle = os.environ.get('KAGGLE_KERNEL_RUN_TYPE') is not None
|
| 174 |
+
|
| 175 |
env_type = "HuggingFace Space" if is_hf_space else "Google Colab" if is_colab else "Kaggle" if is_kaggle else "Local"
|
| 176 |
logger.info(f"Environment detected: {env_type}")
|
| 177 |
+
|
| 178 |
# Load PyTorch and check GPU
|
| 179 |
import torch
|
| 180 |
logger.info(f"✅ PyTorch {torch.__version__} - CUDA: {torch.cuda.is_available()}")
|
| 181 |
+
|
| 182 |
if torch.cuda.is_available():
|
| 183 |
try:
|
| 184 |
gpu_name = torch.cuda.get_device_name(0)
|
|
|
|
| 186 |
logger.info(f"🎮 GPU: {gpu_name} ({gpu_memory:.1f}GB)")
|
| 187 |
except Exception as e:
|
| 188 |
logger.info(f"🎮 GPU available but details unavailable: {e}")
|
| 189 |
+
|
| 190 |
# === ENHANCED SAM2 LOADING WITH MULTIPLE METHODS ===
|
| 191 |
sam2_loaded = False
|
| 192 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 193 |
+
|
| 194 |
+
# --- Improved YAML/config handling ---
|
| 195 |
+
config_paths = [
|
| 196 |
+
"./configs", # Local ./configs directory
|
| 197 |
+
"/home/user/app/configs", # Typical in HF spaces
|
| 198 |
+
os.path.expanduser("~/.cache/sam2/configs"),
|
| 199 |
+
]
|
| 200 |
+
config_dir = None
|
| 201 |
+
for path in config_paths:
|
| 202 |
+
if os.path.isdir(path):
|
| 203 |
+
config_dir = path
|
| 204 |
+
break
|
| 205 |
+
|
| 206 |
+
# Copy bundled .yaml files to a found config_dir if not present
|
| 207 |
+
bundled_configs = ["sam2_hiera_large.yaml", "sam2_hiera_tiny.yaml"]
|
| 208 |
+
if config_dir:
|
| 209 |
+
for cfg_file in bundled_configs:
|
| 210 |
+
src = Path(cfg_file)
|
| 211 |
+
dest = Path(config_dir) / cfg_file
|
| 212 |
+
if src.exists() and not dest.exists():
|
| 213 |
+
shutil.copyfile(src, dest)
|
| 214 |
+
logger.info(f"✅ Copied {cfg_file} to {config_dir}")
|
| 215 |
+
else:
|
| 216 |
+
logger.warning("No configs directory found for SAM2! Fallback to default logic.")
|
| 217 |
+
|
| 218 |
+
# --- Method 1: Try direct import (requirements.txt installation) ---
|
| 219 |
try:
|
| 220 |
logger.info("🔄 SAM2 Method 1: Direct import from requirements...")
|
| 221 |
from sam2.build_sam import build_sam2
|
|
|
|
| 224 |
logger.info("✅ SAM2 imported directly from installed package")
|
| 225 |
except ImportError as e:
|
| 226 |
logger.info(f"❌ SAM2 Method 1 failed: {e}")
|
| 227 |
+
|
| 228 |
+
# --- Method 2: Clone and properly setup SAM2 ---
|
| 229 |
if not sam2_loaded:
|
| 230 |
try:
|
| 231 |
logger.info("🔄 SAM2 Method 2: Cloning and setting up repository...")
|
| 232 |
sam2_dir = "/tmp/segment-anything-2"
|
|
|
|
| 233 |
if not os.path.exists(sam2_dir):
|
| 234 |
logger.info("📥 Cloning SAM2 repository...")
|
| 235 |
clone_cmd = f"git clone --depth 1 https://github.com/facebookresearch/segment-anything-2.git {sam2_dir}"
|
|
|
|
| 238 |
logger.info("✅ SAM2 repository cloned successfully")
|
| 239 |
else:
|
| 240 |
raise Exception("Git clone failed")
|
|
|
|
| 241 |
# Add to path
|
| 242 |
if sam2_dir not in sys.path:
|
| 243 |
sys.path.insert(0, sam2_dir)
|
|
|
|
| 244 |
# Install SAM2 dependencies if needed
|
| 245 |
try:
|
| 246 |
import hydra
|
| 247 |
except ImportError:
|
| 248 |
logger.info("Installing Hydra-core for SAM2 configs...")
|
| 249 |
os.system("pip install hydra-core --quiet")
|
|
|
|
| 250 |
from sam2.build_sam import build_sam2
|
| 251 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 252 |
sam2_loaded = True
|
| 253 |
logger.info("✅ SAM2 imported after cloning")
|
| 254 |
except Exception as e:
|
| 255 |
logger.info(f"❌ SAM2 Method 2 failed: {e}")
|
| 256 |
+
|
| 257 |
+
# --- Method 3: Use simplified SAM2 loading without Hydra configs ---
|
| 258 |
if not sam2_loaded:
|
| 259 |
try:
|
| 260 |
logger.info("🔄 SAM2 Method 3: Simplified loading without Hydra...")
|
|
|
|
| 261 |
# Download checkpoint first
|
| 262 |
cache_dir = os.path.expanduser("~/.cache/sam2")
|
| 263 |
os.makedirs(cache_dir, exist_ok=True)
|
|
|
|
|
|
|
| 264 |
checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_tiny.pt"
|
| 265 |
sam2_checkpoint = os.path.join(cache_dir, "sam2_hiera_tiny.pt")
|
|
|
|
| 266 |
if not os.path.exists(sam2_checkpoint):
|
| 267 |
logger.info("📥 Downloading SAM2 checkpoint...")
|
| 268 |
response = requests.get(checkpoint_url, stream=True)
|
|
|
|
| 271 |
if chunk:
|
| 272 |
f.write(chunk)
|
| 273 |
logger.info("✅ Checkpoint downloaded")
|
|
|
|
|
|
|
|
|
|
| 274 |
checkpoint = torch.load(sam2_checkpoint, map_location=device)
|
|
|
|
|
|
|
| 275 |
class SimpleSAM2Predictor:
|
| 276 |
def __init__(self, checkpoint_path, device):
|
| 277 |
self.device = device
|
| 278 |
self.checkpoint_path = checkpoint_path
|
| 279 |
self.image = None
|
| 280 |
logger.info("Using simplified SAM2 predictor")
|
|
|
|
| 281 |
def set_image(self, image):
|
| 282 |
self.image = image.copy()
|
|
|
|
| 283 |
def predict(self, point_coords, point_labels, multimask_output=True):
|
|
|
|
| 284 |
if self.image is None:
|
| 285 |
raise ValueError("No image set")
|
|
|
|
| 286 |
h, w = self.image.shape[:2]
|
| 287 |
mask = np.zeros((h, w), dtype=np.uint8)
|
|
|
|
|
|
|
| 288 |
for point in point_coords:
|
| 289 |
x, y = int(point[0]), int(point[1])
|
|
|
|
| 290 |
cv2.circle(mask, (x, y), min(w, h)//4, 255, -1)
|
|
|
|
|
|
|
| 291 |
try:
|
| 292 |
mask_3d = np.zeros((h, w), dtype=np.uint8)
|
| 293 |
mask_3d[mask > 0] = cv2.GC_PR_FGD
|
| 294 |
mask_3d[mask == 0] = cv2.GC_PR_BGD
|
|
|
|
| 295 |
bgd_model = np.zeros((1, 65), np.float64)
|
| 296 |
fgd_model = np.zeros((1, 65), np.float64)
|
|
|
|
| 297 |
cv2.grabCut(self.image, mask_3d, None, bgd_model, fgd_model, 5, cv2.GC_INIT_WITH_MASK)
|
|
|
|
| 298 |
mask = np.where((mask_3d == cv2.GC_FGD) | (mask_3d == cv2.GC_PR_FGD), 255, 0).astype('uint8')
|
| 299 |
except:
|
| 300 |
pass
|
|
|
|
| 301 |
return [mask], [1.0], None
|
|
|
|
| 302 |
sam2_predictor = SimpleSAM2Predictor(sam2_checkpoint, device)
|
| 303 |
sam2_loaded = True
|
| 304 |
logger.info("✅ Using simplified SAM2 predictor")
|
|
|
|
| 305 |
except Exception as e:
|
| 306 |
logger.info(f"❌ SAM2 Method 3 failed: {e}")
|
| 307 |
+
|
| 308 |
+
# --- Method 4: Install via pip and try again ---
|
| 309 |
if not sam2_loaded:
|
| 310 |
try:
|
| 311 |
logger.info("🔄 SAM2 Method 4: Installing via pip...")
|
|
|
|
|
|
|
| 312 |
os.system("pip install hydra-core omegaconf --quiet")
|
|
|
|
|
|
|
| 313 |
sam2_dir = "/tmp/sam2_install"
|
| 314 |
if os.path.exists(sam2_dir):
|
| 315 |
shutil.rmtree(sam2_dir)
|
|
|
|
| 316 |
clone_cmd = f"git clone https://github.com/facebookresearch/segment-anything-2.git {sam2_dir}"
|
| 317 |
os.system(clone_cmd)
|
|
|
|
|
|
|
| 318 |
install_cmd = f"cd {sam2_dir} && pip install -e . --quiet"
|
| 319 |
os.system(install_cmd)
|
|
|
|
|
|
|
| 320 |
from sam2.build_sam import build_sam2
|
| 321 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 322 |
sam2_loaded = True
|
| 323 |
logger.info("✅ SAM2 installed and imported via pip")
|
| 324 |
except Exception as e:
|
| 325 |
logger.info(f"❌ SAM2 Method 4 failed: {e}")
|
| 326 |
+
|
| 327 |
if not sam2_loaded:
|
| 328 |
logger.warning("❌ All SAM2 loading methods failed, using OpenCV fallback")
|
| 329 |
sam2_predictor = create_opencv_segmentation_fallback()
|
| 330 |
else:
|
|
|
|
| 331 |
if not isinstance(sam2_predictor, object) or sam2_predictor is None:
|
| 332 |
try:
|
| 333 |
# Choose model size based on environment and resources
|
|
|
|
| 339 |
model_name = "sam2_hiera_large"
|
| 340 |
checkpoint_url = "https://dl.fbaipublicfiles.com/segment_anything_2/072824/sam2_hiera_large.pt"
|
| 341 |
logger.info("🔧 Using SAM2 Large for maximum quality")
|
| 342 |
+
# Download checkpoint
|
|
|
|
| 343 |
cache_dir = os.path.expanduser("~/.cache/sam2")
|
| 344 |
os.makedirs(cache_dir, exist_ok=True)
|
| 345 |
sam2_checkpoint = os.path.join(cache_dir, f"{model_name}.pt")
|
|
|
|
| 346 |
if not os.path.exists(sam2_checkpoint):
|
| 347 |
logger.info(f"📥 Downloading {model_name} checkpoint...")
|
| 348 |
try:
|
| 349 |
response = requests.get(checkpoint_url, stream=True)
|
| 350 |
total_size = int(response.headers.get('content-length', 0))
|
| 351 |
downloaded = 0
|
|
|
|
| 352 |
with open(sam2_checkpoint, 'wb') as f:
|
| 353 |
for chunk in response.iter_content(chunk_size=8192):
|
| 354 |
if chunk:
|
|
|
|
| 357 |
if total_size > 0 and downloaded % (total_size // 20) < 8192:
|
| 358 |
percent = (downloaded / total_size) * 100
|
| 359 |
logger.info(f"📥 Download progress: {percent:.1f}%")
|
|
|
|
| 360 |
logger.info(f"✅ {model_name} downloaded successfully")
|
| 361 |
except Exception as e:
|
| 362 |
logger.error(f"❌ Download failed: {e}")
|
| 363 |
raise
|
| 364 |
else:
|
| 365 |
logger.info(f"✅ Using cached {model_name}")
|
|
|
|
| 366 |
# Load SAM2 model - use the config name without .yaml extension
|
| 367 |
try:
|
| 368 |
logger.info(f"🚀 Loading SAM2 {model_name} on {device}...")
|
| 369 |
+
model_cfg = model_name
|
|
|
|
|
|
|
|
|
|
|
|
|
| 370 |
if device == "cpu" or is_hf_space:
|
| 371 |
torch.set_num_threads(min(4, os.cpu_count() or 1))
|
| 372 |
if torch.cuda.is_available():
|
| 373 |
torch.cuda.empty_cache()
|
|
|
|
|
|
|
| 374 |
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device=device)
|
| 375 |
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
| 376 |
logger.info(f"✅ SAM2 model loaded successfully on {device}")
|
|
|
|
| 377 |
except Exception as e:
|
| 378 |
if device == "cuda":
|
| 379 |
logger.warning(f"❌ GPU loading failed: {e}")
|
| 380 |
logger.info("🔄 Trying CPU fallback...")
|
| 381 |
try:
|
|
|
|
| 382 |
sam2_model = build_sam2(model_cfg, sam2_checkpoint, device="cpu")
|
| 383 |
sam2_predictor = SAM2ImagePredictor(sam2_model)
|
| 384 |
device = "cpu"
|
|
|
|
| 391 |
logger.error(f"❌ SAM2 loading failed: {e}")
|
| 392 |
logger.info("🔄 Using OpenCV segmentation fallback")
|
| 393 |
sam2_predictor = create_opencv_segmentation_fallback()
|
|
|
|
| 394 |
except Exception as e:
|
| 395 |
logger.error(f"❌ SAM2 initialization failed: {e}")
|
| 396 |
sam2_predictor = create_opencv_segmentation_fallback()
|
| 397 |
+
|
| 398 |
# === ENHANCED MATANYONE LOADING WITH MULTIPLE METHODS ===
|
| 399 |
matanyone_loaded = False
|
|
|
|
| 400 |
# Method 1: Try HuggingFace Hub integration
|
| 401 |
try:
|
| 402 |
logger.info("🔄 MatAnyone Method 1: HuggingFace Hub...")
|
|
|
|
| 407 |
logger.info("✅ MatAnyone loaded via HuggingFace Hub")
|
| 408 |
except Exception as e:
|
| 409 |
logger.info(f"❌ MatAnyone Method 1 failed: {e}")
|
|
|
|
| 410 |
# Method 2: Try direct import
|
| 411 |
if not matanyone_loaded:
|
| 412 |
try:
|
|
|
|
| 417 |
'/content/MatAnyone',
|
| 418 |
'/kaggle/working/MatAnyone'
|
| 419 |
]
|
|
|
|
| 420 |
for path in matanyone_paths:
|
| 421 |
if os.path.exists(path):
|
| 422 |
sys.path.append(path)
|
| 423 |
break
|
|
|
|
| 424 |
from inference import MatAnyoneInference
|
| 425 |
matanyone_model = MatAnyoneInference()
|
| 426 |
matanyone_loaded = True
|
| 427 |
logger.info("✅ MatAnyone loaded via direct import")
|
| 428 |
except Exception as e:
|
| 429 |
logger.info(f"❌ MatAnyone Method 2 failed: {e}")
|
|
|
|
| 430 |
# Method 3: Try GitHub installation
|
| 431 |
if not matanyone_loaded:
|
| 432 |
try:
|
|
|
|
| 442 |
raise Exception("GitHub install failed")
|
| 443 |
except Exception as e:
|
| 444 |
logger.info(f"❌ MatAnyone Method 3 failed: {e}")
|
|
|
|
| 445 |
# Method 4: Enhanced OpenCV fallback (CINEMA QUALITY)
|
| 446 |
if not matanyone_loaded:
|
| 447 |
logger.info("🎨 Using ENHANCED OpenCV fallback for cinema-quality matting...")
|
| 448 |
matanyone_model = create_enhanced_matting_fallback()
|
| 449 |
matanyone_loaded = True
|
| 450 |
+
|
| 451 |
# Memory cleanup
|
| 452 |
gc.collect()
|
| 453 |
if torch.cuda.is_available():
|
| 454 |
torch.cuda.empty_cache()
|
|
|
|
| 455 |
models_loaded = True
|
| 456 |
gpu_info = ""
|
| 457 |
if torch.cuda.is_available() and device == "cuda":
|
|
|
|
| 461 |
gpu_info = " (GPU)"
|
| 462 |
else:
|
| 463 |
gpu_info = " (CPU)"
|
|
|
|
| 464 |
success_msg = f"✅ ENHANCED high-quality models loaded successfully!{gpu_info}"
|
| 465 |
logger.info(success_msg)
|
| 466 |
return success_msg
|
| 467 |
+
|
| 468 |
except Exception as e:
|
| 469 |
error_msg = f"❌ Enhanced loading failed: {str(e)}"
|
| 470 |
logger.error(error_msg)
|
| 471 |
logger.error(f"Full traceback: {traceback.format_exc()}")
|
| 472 |
return error_msg
|
| 473 |
|
| 474 |
+
# ... next: create_opencv_segmentation_fallback(), create_enhanced_matting_fallback(), and much more
|
| 475 |
+
|
| 476 |
def create_opencv_segmentation_fallback():
|
| 477 |
"""Create comprehensive OpenCV-based segmentation fallback"""
|
| 478 |
class OpenCVSegmentationFallback:
|
| 479 |
def __init__(self):
|
| 480 |
logger.info("🔧 Initializing OpenCV segmentation fallback")
|
|
|
|
| 481 |
self.bg_subtractor = cv2.createBackgroundSubtractorMOG2(detectShadows=True)
|
| 482 |
self.image = None
|
| 483 |
+
|
| 484 |
def set_image(self, image):
|
| 485 |
self.image = image.copy()
|
| 486 |
+
|
| 487 |
def predict(self, point_coords, point_labels, multimask_output=True):
|
| 488 |
"""Advanced OpenCV-based person segmentation with multiple techniques"""
|
| 489 |
if self.image is None:
|
| 490 |
raise ValueError("No image set")
|
|
|
|
| 491 |
h, w = self.image.shape[:2]
|
|
|
|
| 492 |
try:
|
| 493 |
+
# Multi-method segmentation
|
| 494 |
masks = []
|
| 495 |
+
# Skin tone detection (HSV ranges)
|
|
|
|
| 496 |
hsv = cv2.cvtColor(self.image, cv2.COLOR_BGR2HSV)
|
|
|
|
|
|
|
| 497 |
lower_skin1 = np.array([0, 20, 70], dtype=np.uint8)
|
| 498 |
upper_skin1 = np.array([20, 255, 255], dtype=np.uint8)
|
| 499 |
lower_skin2 = np.array([0, 20, 70], dtype=np.uint8)
|
| 500 |
upper_skin2 = np.array([25, 255, 255], dtype=np.uint8)
|
|
|
|
| 501 |
skin_mask1 = cv2.inRange(hsv, lower_skin1, upper_skin1)
|
| 502 |
skin_mask2 = cv2.inRange(hsv, lower_skin2, upper_skin2)
|
| 503 |
skin_mask = cv2.bitwise_or(skin_mask1, skin_mask2)
|
| 504 |
+
# Edge detection for person outline
|
|
|
|
| 505 |
gray = cv2.cvtColor(self.image, cv2.COLOR_BGR2GRAY)
|
| 506 |
edges = cv2.Canny(gray, 50, 150)
|
| 507 |
+
# Focus on center region (with point guidance)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
center_x, center_y = w//2, h//2
|
| 509 |
if len(point_coords) > 0:
|
|
|
|
| 510 |
center_x = int(np.mean(point_coords[:, 0]))
|
| 511 |
center_y = int(np.mean(point_coords[:, 1]))
|
|
|
|
|
|
|
| 512 |
center_mask = np.zeros((h, w), dtype=np.uint8)
|
| 513 |
roi_width = w // 3
|
| 514 |
roi_height = h // 2
|
| 515 |
cv2.ellipse(center_mask, (center_x, center_y), (roi_width, roi_height), 0, 0, 360, 255, -1)
|
| 516 |
+
# Combine masks
|
|
|
|
| 517 |
combined_mask = cv2.bitwise_or(skin_mask, edges // 4)
|
| 518 |
combined_mask = cv2.bitwise_and(combined_mask, center_mask)
|
|
|
|
|
|
|
| 519 |
kernel_close = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (7, 7))
|
| 520 |
kernel_open = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5))
|
|
|
|
| 521 |
combined_mask = cv2.morphologyEx(combined_mask, cv2.MORPH_CLOSE, kernel_close)
|
| 522 |
combined_mask = cv2.morphologyEx(combined_mask, cv2.MORPH_OPEN, kernel_open)
|
|
|
|
|
|
|
| 523 |
contours, _ = cv2.findContours(combined_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
|
|
|
| 524 |
if contours:
|
|
|
|
| 525 |
largest_contour = max(contours, key=cv2.contourArea)
|
|
|
|
|
|
|
| 526 |
mask = np.zeros((h, w), dtype=np.uint8)
|
| 527 |
cv2.fillPoly(mask, [largest_contour], 255)
|
|
|
|
|
|
|
| 528 |
mask = cv2.GaussianBlur(mask, (5, 5), 2.0)
|
| 529 |
mask = (mask > 127).astype(np.uint8)
|
| 530 |
else:
|
|
|
|
| 531 |
mask = center_mask
|
|
|
|
|
|
|
| 532 |
mask = cv2.medianBlur(mask, 5)
|
|
|
|
|
|
|
| 533 |
masks.append(mask)
|
| 534 |
scores = [1.0]
|
|
|
|
| 535 |
return masks, scores, None
|
|
|
|
| 536 |
except Exception as e:
|
| 537 |
logger.warning(f"OpenCV segmentation error: {e}")
|
|
|
|
| 538 |
mask = np.zeros((h, w), dtype=np.uint8)
|
| 539 |
x1, y1 = w//4, h//6
|
| 540 |
x2, y2 = 3*w//4, 5*h//6
|
| 541 |
mask[y1:y2, x1:x2] = 255
|
| 542 |
return [mask], [1.0], None
|
|
|
|
| 543 |
return OpenCVSegmentationFallback()
|
| 544 |
|
| 545 |
def create_enhanced_matting_fallback():
|
|
|
|
| 547 |
class EnhancedMattingFallback:
|
| 548 |
def __init__(self):
|
| 549 |
logger.info("🎨 Initializing enhanced matting fallback")
|
|
|
|
| 550 |
def infer(self, image, mask):
|
| 551 |
"""Enhanced mask refinement using advanced OpenCV techniques"""
|
| 552 |
try:
|
|
|
|
| 553 |
if len(mask.shape) == 3:
|
| 554 |
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 555 |
refined_mask = cv2.bilateralFilter(mask, 9, 75, 75)
|
|
|
|
|
|
|
| 556 |
kernel_ellipse = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3, 3))
|
| 557 |
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_CLOSE, kernel_ellipse)
|
| 558 |
refined_mask = cv2.morphologyEx(refined_mask, cv2.MORPH_OPEN, kernel_ellipse)
|
|
|
|
|
|
|
| 559 |
refined_mask = cv2.GaussianBlur(refined_mask, (3, 3), 1.0)
|
|
|
|
|
|
|
| 560 |
edges = cv2.Canny(refined_mask, 50, 150)
|
| 561 |
edge_enhancement = cv2.dilate(edges, np.ones((2, 2), np.uint8), iterations=1)
|
| 562 |
refined_mask = cv2.bitwise_or(refined_mask, edge_enhancement // 4)
|
|
|
|
|
|
|
| 563 |
dist_transform = cv2.distanceTransform(refined_mask, cv2.DIST_L2, 5)
|
| 564 |
dist_transform = cv2.normalize(dist_transform, None, 0, 255, cv2.NORM_MINMAX, dtype=cv2.CV_8U)
|
|
|
|
|
|
|
| 565 |
alpha = 0.7
|
| 566 |
refined_mask = cv2.addWeighted(refined_mask, alpha, dist_transform, 1-alpha, 0)
|
|
|
|
|
|
|
| 567 |
refined_mask = cv2.medianBlur(refined_mask, 3)
|
|
|
|
|
|
|
| 568 |
refined_mask = cv2.GaussianBlur(refined_mask, (1, 1), 0.5)
|
|
|
|
| 569 |
return refined_mask
|
|
|
|
| 570 |
except Exception as e:
|
| 571 |
logger.warning(f"Enhanced matting error: {e}")
|
| 572 |
return mask if len(mask.shape) == 2 else cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
|
|
|
| 573 |
return EnhancedMattingFallback()
|
| 574 |
|
|
|
|
|
|
|
|
|
|
| 575 |
def segment_person_hq(image):
|
| 576 |
"""High-quality person segmentation using SAM2 or fallback with optimized points"""
|
| 577 |
try:
|
|
|
|
| 578 |
sam2_predictor.set_image(image)
|
|
|
|
| 579 |
h, w = image.shape[:2]
|
|
|
|
|
|
|
| 580 |
points = np.array([
|
| 581 |
[w//2, h//4], # Top-center (head)
|
| 582 |
[w//2, h//2], # Center (torso)
|
|
|
|
| 586 |
[w//5, h//5], # Top-left (hair/accessories)
|
| 587 |
[4*w//5, h//5] # Top-right (hair/accessories)
|
| 588 |
])
|
| 589 |
+
labels = np.ones(len(points))
|
|
|
|
|
|
|
| 590 |
masks, scores, _ = sam2_predictor.predict(
|
| 591 |
point_coords=points,
|
| 592 |
point_labels=labels,
|
| 593 |
multimask_output=True
|
| 594 |
)
|
|
|
|
|
|
|
| 595 |
best_idx = np.argmax(scores)
|
| 596 |
best_mask = masks[best_idx]
|
|
|
|
|
|
|
| 597 |
if len(best_mask.shape) > 2:
|
| 598 |
best_mask = best_mask.squeeze()
|
|
|
|
|
|
|
| 599 |
if best_mask.dtype != np.uint8:
|
| 600 |
best_mask = (best_mask * 255).astype(np.uint8)
|
|
|
|
|
|
|
| 601 |
kernel = np.ones((3, 3), np.uint8)
|
| 602 |
best_mask = cv2.morphologyEx(best_mask, cv2.MORPH_CLOSE, kernel)
|
| 603 |
+
best_mask = cv2.GaussianBlur(best_mask.astype(np.float32), (3, 3), 0.8)
|
|
|
|
|
|
|
|
|
|
| 604 |
return (best_mask * 255).astype(np.uint8) if best_mask.max() <= 1.0 else best_mask.astype(np.uint8)
|
|
|
|
| 605 |
except Exception as e:
|
| 606 |
logger.error(f"Segmentation error: {e}")
|
|
|
|
| 607 |
h, w = image.shape[:2]
|
| 608 |
fallback_mask = np.zeros((h, w), dtype=np.uint8)
|
| 609 |
x1, y1 = w//4, h//6
|
|
|
|
| 614 |
def refine_mask_hq(image, mask):
|
| 615 |
"""Cinema-quality mask refinement with stronger edge preservation"""
|
| 616 |
try:
|
| 617 |
+
image_filtered = cv2.bilateralFilter(image, 10, 75, 75)
|
|
|
|
|
|
|
|
|
|
| 618 |
refined_mask = matanyone_model.infer(image_filtered, mask)
|
|
|
|
|
|
|
| 619 |
if len(refined_mask.shape) == 3:
|
| 620 |
refined_mask = cv2.cvtColor(refined_mask, cv2.COLOR_BGR2GRAY)
|
| 621 |
+
refined_mask = cv2.bilateralFilter(refined_mask, 10, 75, 75)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 622 |
refined_mask = cv2.medianBlur(refined_mask, 3)
|
|
|
|
| 623 |
return refined_mask
|
|
|
|
| 624 |
except Exception as e:
|
| 625 |
logger.error(f"Mask refinement error: {e}")
|
|
|
|
| 626 |
return mask if len(mask.shape) == 2 else cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
| 627 |
|
| 628 |
def create_green_screen_background(frame):
|
| 629 |
"""Create green screen background (Stage 1 of two-stage process)"""
|
| 630 |
h, w = frame.shape[:2]
|
| 631 |
+
green_screen = np.full((h, w, 3), (0, 177, 64), dtype=np.uint8)
|
| 632 |
return green_screen
|
| 633 |
|
| 634 |
def create_professional_background(bg_config, width, height):
|
| 635 |
"""Create professional background based on configuration"""
|
| 636 |
try:
|
| 637 |
if bg_config["type"] == "color":
|
|
|
|
| 638 |
color_hex = bg_config["colors"][0].lstrip('#')
|
| 639 |
color_rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
|
| 640 |
+
color_bgr = color_rgb[::-1]
|
| 641 |
background = np.full((height, width, 3), color_bgr, dtype=np.uint8)
|
|
|
|
| 642 |
elif bg_config["type"] == "gradient":
|
| 643 |
background = create_gradient_background(bg_config, width, height)
|
|
|
|
| 644 |
else:
|
|
|
|
| 645 |
background = np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
|
|
|
|
| 646 |
return background
|
|
|
|
| 647 |
except Exception as e:
|
| 648 |
logger.error(f"Background creation error: {e}")
|
|
|
|
| 649 |
return np.full((height, width, 3), (128, 128, 128), dtype=np.uint8)
|
| 650 |
|
| 651 |
def create_gradient_background(bg_config, width, height):
|
|
|
|
| 653 |
try:
|
| 654 |
colors = bg_config["colors"]
|
| 655 |
direction = bg_config.get("direction", "vertical")
|
| 656 |
+
# Convert hex to RGB
|
|
|
|
| 657 |
rgb_colors = []
|
| 658 |
for color_hex in colors:
|
| 659 |
color_hex = color_hex.lstrip('#')
|
|
|
|
| 661 |
rgb = tuple(int(color_hex[i:i+2], 16) for i in (0, 2, 4))
|
| 662 |
rgb_colors.append(rgb)
|
| 663 |
except ValueError:
|
|
|
|
| 664 |
rgb_colors.append((128, 128, 128))
|
|
|
|
| 665 |
if not rgb_colors:
|
| 666 |
+
rgb_colors = [(128, 128, 128)]
|
|
|
|
|
|
|
| 667 |
pil_img = Image.new('RGB', (width, height))
|
| 668 |
draw = ImageDraw.Draw(pil_img)
|
|
|
|
|
|
|
| 669 |
def interpolate_color(colors, progress):
|
| 670 |
if len(colors) == 1:
|
| 671 |
return colors[0]
|
|
|
|
| 675 |
b = int(colors[0][2] + (colors[1][2] - colors[0][2]) * progress)
|
| 676 |
return (r, g, b)
|
| 677 |
else:
|
|
|
|
| 678 |
segment = progress * (len(colors) - 1)
|
| 679 |
idx = int(segment)
|
| 680 |
local_progress = segment - idx
|
|
|
|
| 681 |
if idx >= len(colors) - 1:
|
| 682 |
return colors[-1]
|
| 683 |
else:
|
|
|
|
| 686 |
g = int(c1[1] + (c2[1] - c1[1]) * local_progress)
|
| 687 |
b = int(c1[2] + (c2[2] - c1[2]) * local_progress)
|
| 688 |
return (r, g, b)
|
|
|
|
| 689 |
if direction == "vertical":
|
|
|
|
| 690 |
for y in range(height):
|
| 691 |
progress = y / height if height > 0 else 0
|
| 692 |
color = interpolate_color(rgb_colors, progress)
|
| 693 |
draw.line([(0, y), (width, y)], fill=color)
|
|
|
|
| 694 |
elif direction == "horizontal":
|
|
|
|
| 695 |
for x in range(width):
|
| 696 |
progress = x / width if width > 0 else 0
|
| 697 |
color = interpolate_color(rgb_colors, progress)
|
| 698 |
draw.line([(x, 0), (x, height)], fill=color)
|
|
|
|
| 699 |
elif direction == "diagonal":
|
|
|
|
| 700 |
max_distance = width + height
|
| 701 |
for y in range(height):
|
| 702 |
for x in range(width):
|
|
|
|
| 704 |
progress = min(1.0, progress)
|
| 705 |
color = interpolate_color(rgb_colors, progress)
|
| 706 |
pil_img.putpixel((x, y), color)
|
|
|
|
| 707 |
elif direction in ["radial", "soft_radial"]:
|
|
|
|
| 708 |
center_x, center_y = width // 2, height // 2
|
| 709 |
max_distance = np.sqrt(center_x**2 + center_y**2)
|
|
|
|
| 710 |
for y in range(height):
|
| 711 |
for x in range(width):
|
| 712 |
distance = np.sqrt((x - center_x)**2 + (y - center_y)**2)
|
| 713 |
progress = distance / max_distance if max_distance > 0 else 0
|
| 714 |
progress = min(1.0, progress)
|
|
|
|
| 715 |
if direction == "soft_radial":
|
| 716 |
+
progress = progress**0.7
|
|
|
|
| 717 |
color = interpolate_color(rgb_colors, progress)
|
| 718 |
pil_img.putpixel((x, y), color)
|
|
|
|
| 719 |
else:
|
|
|
|
| 720 |
for y in range(height):
|
| 721 |
progress = y / height if height > 0 else 0
|
| 722 |
color = interpolate_color(rgb_colors, progress)
|
| 723 |
draw.line([(0, y), (width, y)], fill=color)
|
|
|
|
|
|
|
| 724 |
background = cv2.cvtColor(np.array(pil_img), cv2.COLOR_RGB2BGR)
|
| 725 |
return background
|
|
|
|
| 726 |
except Exception as e:
|
| 727 |
logger.error(f"Gradient creation error: {e}")
|
|
|
|
| 728 |
background = np.zeros((height, width, 3), dtype=np.uint8)
|
| 729 |
for y in range(height):
|
| 730 |
intensity = int(255 * (y / height)) if height > 0 else 128
|
|
|
|
| 734 |
def replace_background_hq(frame, mask, background):
|
| 735 |
"""High-quality background replacement with advanced compositing"""
|
| 736 |
try:
|
| 737 |
+
background = cv2.resize(background, (frame.shape[1], frame.shape[0]), interpolation=cv2.INTER_LANCZOS4)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 738 |
if len(mask.shape) == 3:
|
| 739 |
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
|
|
|
|
|
|
| 740 |
mask_float = mask.astype(np.float32) / 255.0
|
|
|
|
|
|
|
| 741 |
feather_radius = 3
|
| 742 |
kernel_size = feather_radius * 2 + 1
|
| 743 |
mask_feathered = cv2.GaussianBlur(mask_float, (kernel_size, kernel_size), feather_radius/3)
|
|
|
|
|
|
|
| 744 |
mask_3channel = np.stack([mask_feathered] * 3, axis=2)
|
|
|
|
|
|
|
| 745 |
frame_linear = np.power(frame.astype(np.float32) / 255.0, 2.2)
|
| 746 |
background_linear = np.power(background.astype(np.float32) / 255.0, 2.2)
|
|
|
|
|
|
|
| 747 |
result_linear = frame_linear * mask_3channel + background_linear * (1 - mask_3channel)
|
|
|
|
|
|
|
| 748 |
result = np.power(result_linear, 1/2.2) * 255.0
|
| 749 |
result = np.clip(result, 0, 255).astype(np.uint8)
|
|
|
|
| 750 |
return result
|
|
|
|
| 751 |
except Exception as e:
|
| 752 |
logger.error(f"Background replacement error: {e}")
|
|
|
|
| 753 |
try:
|
| 754 |
if len(mask.shape) == 3:
|
| 755 |
mask = cv2.cvtColor(mask, cv2.COLOR_BGR2GRAY)
|
|
|
|
| 756 |
background = cv2.resize(background, (frame.shape[1], frame.shape[0]))
|
| 757 |
mask_normalized = mask.astype(np.float32) / 255.0
|
| 758 |
mask_3channel = np.stack([mask_normalized] * 3, axis=2)
|
|
|
|
| 759 |
result = frame * mask_3channel + background * (1 - mask_3channel)
|
| 760 |
return result.astype(np.uint8)
|
| 761 |
except:
|
|
|
|
| 762 |
return frame
|
| 763 |
|
| 764 |
def get_model_status():
|
|
|
|
| 775 |
gpu_info = " (GPU Available)"
|
| 776 |
else:
|
| 777 |
gpu_info = " (CPU Mode)"
|
|
|
|
| 778 |
return f"✅ ENHANCED high-quality models loaded{gpu_info}"
|
| 779 |
except:
|
| 780 |
return "✅ ENHANCED high-quality models loaded"
|
| 781 |
else:
|
| 782 |
return "⏳ Models not loaded. Click 'Load Models' for ENHANCED cinema-quality processing."
|
| 783 |
|
| 784 |
+
def validate_video_file(video_path):
|
| 785 |
+
"""Validate video file format and basic properties"""
|
| 786 |
+
if not video_path or not os.path.exists(video_path):
|
| 787 |
+
return False, "Video file not found"
|
| 788 |
+
try:
|
| 789 |
+
cap = cv2.VideoCapture(video_path)
|
| 790 |
+
if not cap.isOpened():
|
| 791 |
+
return False, "Cannot open video file"
|
| 792 |
+
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
| 793 |
+
if frame_count == 0:
|
| 794 |
+
return False, "Video appears to be empty"
|
| 795 |
+
cap.release()
|
| 796 |
+
return True, "Video file valid"
|
| 797 |
+
except Exception as e:
|
| 798 |
+
return False, f"Error validating video: {str(e)}"
|
| 799 |
+
|
| 800 |
+
def cleanup_temp_files():
|
| 801 |
+
"""Clean up temporary files to free disk space"""
|
| 802 |
+
try:
|
| 803 |
+
temp_patterns = [
|
| 804 |
+
"/tmp/processed_video_*.mp4",
|
| 805 |
+
"/tmp/final_output_*.mp4",
|
| 806 |
+
"/tmp/greenscreen_*.mp4",
|
| 807 |
+
"/tmp/gradient_*.png",
|
| 808 |
+
"/tmp/*.pt", # Model checkpoints
|
| 809 |
+
]
|
| 810 |
+
import glob
|
| 811 |
+
for pattern in temp_patterns:
|
| 812 |
+
for file_path in glob.glob(pattern):
|
| 813 |
+
try:
|
| 814 |
+
if os.path.exists(file_path):
|
| 815 |
+
if time.time() - os.path.getmtime(file_path) > 3600:
|
| 816 |
+
os.remove(file_path)
|
| 817 |
+
logger.info(f"Cleaned up: {file_path}")
|
| 818 |
+
except Exception as e:
|
| 819 |
+
logger.warning(f"Could not clean up {file_path}: {e}")
|
| 820 |
+
except Exception as e:
|
| 821 |
+
logger.warning(f"Cleanup error: {e}")
|
| 822 |
+
|
| 823 |
+
def get_available_backgrounds():
|
| 824 |
+
"""Get list of available professional backgrounds"""
|
| 825 |
+
return {key: config["name"] for key, config in PROFESSIONAL_BACKGROUNDS.items()}
|
| 826 |
+
|
| 827 |
+
def create_custom_gradient(colors, direction="vertical", width=1920, height=1080):
|
| 828 |
+
"""
|
| 829 |
+
Create a custom gradient background
|
| 830 |
+
Args:
|
| 831 |
+
colors: List of hex colors (e.g., ["#ff0000", "#00ff00"])
|
| 832 |
+
direction: "vertical", "horizontal", "diagonal", "radial"
|
| 833 |
+
width, height: Dimensions
|
| 834 |
+
Returns:
|
| 835 |
+
numpy array of the generated background
|
| 836 |
+
"""
|
| 837 |
+
try:
|
| 838 |
+
bg_config = {
|
| 839 |
+
"type": "gradient",
|
| 840 |
+
"colors": colors,
|
| 841 |
+
"direction": direction
|
| 842 |
+
}
|
| 843 |
+
return create_gradient_background(bg_config, width, height)
|
| 844 |
+
except Exception as e:
|
| 845 |
+
logger.error(f"Error creating custom gradient: {e}")
|
| 846 |
+
return None
|
| 847 |
+
|
| 848 |
+
def create_directories():
|
| 849 |
+
"""Create necessary directories for the application"""
|
| 850 |
+
try:
|
| 851 |
+
directories = [
|
| 852 |
+
"/tmp/MyAvatar",
|
| 853 |
+
"/tmp/MyAvatar/My_Videos",
|
| 854 |
+
os.path.expanduser("~/.cache/sam2"),
|
| 855 |
+
]
|
| 856 |
+
for directory in directories:
|
| 857 |
+
os.makedirs(directory, exist_ok=True)
|
| 858 |
+
logger.info(f"📁 Created/verified directory: {directory}")
|
| 859 |
+
return True
|
| 860 |
+
except Exception as e:
|
| 861 |
+
logger.error(f"Error creating directories: {e}")
|
| 862 |
+
return False
|
| 863 |
+
|
| 864 |
+
def optimize_memory_usage():
|
| 865 |
+
"""Optimize memory usage by cleaning up unused resources"""
|
| 866 |
+
try:
|
| 867 |
+
if torch.cuda.is_available():
|
| 868 |
+
torch.cuda.empty_cache()
|
| 869 |
+
gc.collect()
|
| 870 |
+
cv2.ocl.setUseOpenCL(False)
|
| 871 |
+
return True
|
| 872 |
+
except Exception as e:
|
| 873 |
+
logger.warning(f"Memory optimization failed: {e}")
|
| 874 |
+
return False
|
| 875 |
def create_procedural_background(prompt, style, width, height):
|
| 876 |
"""Create procedural background based on text prompt and style"""
|
| 877 |
try:
|
|
|
|
| 878 |
prompt_lower = prompt.lower()
|
|
|
|
|
|
|
| 879 |
color_map = {
|
| 880 |
'blue': ['#1e3c72', '#2a5298', '#3498db'],
|
| 881 |
'ocean': ['#74b9ff', '#0984e3', '#00cec9'],
|
|
|
|
| 899 |
'minimal': ['#ffffff', '#f1f2f6', '#ddd'],
|
| 900 |
'abstract': ['#6c5ce7', '#a29bfe', '#fd79a8']
|
| 901 |
}
|
| 902 |
+
selected_colors = ['#3498db', '#2ecc71', '#e74c3c']
|
|
|
|
|
|
|
| 903 |
for keyword, colors in color_map.items():
|
| 904 |
if keyword in prompt_lower:
|
| 905 |
selected_colors = colors
|
| 906 |
break
|
| 907 |
+
|
|
|
|
| 908 |
if style == "abstract":
|
| 909 |
return create_abstract_background(selected_colors, width, height)
|
| 910 |
elif style == "minimalist":
|
|
|
|
| 916 |
elif style == "artistic":
|
| 917 |
return create_artistic_background(selected_colors, width, height)
|
| 918 |
else:
|
|
|
|
| 919 |
bg_config = {
|
| 920 |
"type": "gradient",
|
| 921 |
"colors": selected_colors[:2],
|
| 922 |
"direction": "diagonal"
|
| 923 |
}
|
| 924 |
return create_gradient_background(bg_config, width, height)
|
|
|
|
| 925 |
except Exception as e:
|
| 926 |
logger.error(f"Procedural background creation failed: {e}")
|
| 927 |
return None
|
|
|
|
| 930 |
"""Create abstract geometric background"""
|
| 931 |
try:
|
| 932 |
background = np.zeros((height, width, 3), dtype=np.uint8)
|
|
|
|
|
|
|
| 933 |
bgr_colors = []
|
| 934 |
for color in colors:
|
| 935 |
hex_color = color.lstrip('#')
|
| 936 |
rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
| 937 |
bgr = rgb[::-1]
|
| 938 |
bgr_colors.append(bgr)
|
|
|
|
|
|
|
| 939 |
for y in range(height):
|
| 940 |
progress = y / height
|
| 941 |
color = [
|
|
|
|
| 943 |
for i in range(3)
|
| 944 |
]
|
| 945 |
background[y, :] = color
|
|
|
|
|
|
|
| 946 |
import random
|
| 947 |
+
random.seed(42)
|
|
|
|
| 948 |
for _ in range(8):
|
| 949 |
center_x = random.randint(width//4, 3*width//4)
|
| 950 |
center_y = random.randint(height//4, 3*height//4)
|
| 951 |
radius = random.randint(width//20, width//8)
|
| 952 |
color = bgr_colors[random.randint(0, len(bgr_colors)-1)]
|
|
|
|
| 953 |
overlay = background.copy()
|
| 954 |
cv2.circle(overlay, (center_x, center_y), radius, color, -1)
|
| 955 |
cv2.addWeighted(background, 0.7, overlay, 0.3, 0, background)
|
|
|
|
| 956 |
return background
|
|
|
|
| 957 |
except Exception as e:
|
| 958 |
logger.error(f"Abstract background creation failed: {e}")
|
| 959 |
return None
|
|
|
|
| 967 |
"direction": "soft_radial"
|
| 968 |
}
|
| 969 |
background = create_gradient_background(bg_config, width, height)
|
|
|
|
|
|
|
| 970 |
overlay = background.copy()
|
| 971 |
center_x, center_y = width//2, height//2
|
|
|
|
| 972 |
hex_color = colors[0].lstrip('#')
|
| 973 |
rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
| 974 |
bgr = rgb[::-1]
|
|
|
|
| 975 |
cv2.circle(overlay, (center_x, center_y), min(width, height)//3, bgr, -1)
|
| 976 |
cv2.addWeighted(background, 0.95, overlay, 0.05, 0, background)
|
|
|
|
| 977 |
return background
|
|
|
|
| 978 |
except Exception as e:
|
| 979 |
logger.error(f"Minimalist background creation failed: {e}")
|
| 980 |
return None
|
|
|
|
| 988 |
"direction": "diagonal"
|
| 989 |
}
|
| 990 |
background = create_gradient_background(bg_config, width, height)
|
|
|
|
|
|
|
| 991 |
grid_color = (80, 80, 80)
|
| 992 |
grid_spacing = width // 20
|
|
|
|
| 993 |
for x in range(0, width, grid_spacing):
|
| 994 |
cv2.line(background, (x, 0), (x, height), grid_color, 1)
|
|
|
|
| 995 |
for y in range(0, height, grid_spacing):
|
| 996 |
cv2.line(background, (0, y), (width, y), grid_color, 1)
|
|
|
|
| 997 |
background = cv2.GaussianBlur(background, (3, 3), 1.0)
|
| 998 |
return background
|
|
|
|
| 999 |
except Exception as e:
|
| 1000 |
logger.error(f"Corporate background creation failed: {e}")
|
| 1001 |
return None
|
|
|
|
| 1009 |
"direction": "vertical"
|
| 1010 |
}
|
| 1011 |
background = create_gradient_background(bg_config, width, height)
|
|
|
|
|
|
|
| 1012 |
import random
|
| 1013 |
random.seed(42)
|
|
|
|
| 1014 |
overlay = background.copy()
|
|
|
|
| 1015 |
for _ in range(5):
|
| 1016 |
center_x = random.randint(width//6, 5*width//6)
|
| 1017 |
center_y = random.randint(height//6, 5*height//6)
|
|
|
|
| 1018 |
axes_x = random.randint(width//20, width//6)
|
| 1019 |
axes_y = random.randint(height//20, height//6)
|
| 1020 |
angle = random.randint(0, 180)
|
|
|
|
| 1021 |
color = (random.randint(40, 80), random.randint(120, 160), random.randint(30, 70))
|
| 1022 |
cv2.ellipse(overlay, (center_x, center_y), (axes_x, axes_y), angle, 0, 360, color, -1)
|
|
|
|
| 1023 |
cv2.addWeighted(background, 0.8, overlay, 0.2, 0, background)
|
| 1024 |
background = cv2.GaussianBlur(background, (5, 5), 2.0)
|
|
|
|
| 1025 |
return background
|
|
|
|
| 1026 |
except Exception as e:
|
| 1027 |
logger.error(f"Nature background creation failed: {e}")
|
| 1028 |
return None
|
|
|
|
| 1030 |
def create_artistic_background(colors, width, height):
|
| 1031 |
"""Create artistic background with creative elements"""
|
| 1032 |
try:
|
|
|
|
| 1033 |
bg_config = {
|
| 1034 |
"type": "gradient",
|
| 1035 |
"colors": colors,
|
| 1036 |
"direction": "diagonal"
|
| 1037 |
}
|
| 1038 |
background = create_gradient_background(bg_config, width, height)
|
|
|
|
|
|
|
| 1039 |
import random
|
| 1040 |
random.seed(42)
|
|
|
|
|
|
|
| 1041 |
bgr_colors = []
|
| 1042 |
for color in colors:
|
| 1043 |
hex_color = color.lstrip('#')
|
| 1044 |
rgb = tuple(int(hex_color[i:i+2], 16) for i in (0, 2, 4))
|
| 1045 |
bgr_colors.append(rgb[::-1])
|
|
|
|
| 1046 |
overlay = background.copy()
|
|
|
|
|
|
|
| 1047 |
for i in range(3):
|
| 1048 |
pts = []
|
| 1049 |
for x in range(0, width, width//10):
|
| 1050 |
y = int(height//2 + (height//4) * np.sin(2 * np.pi * x / width + i))
|
| 1051 |
pts.append([x, y])
|
|
|
|
| 1052 |
pts = np.array(pts, np.int32)
|
| 1053 |
color = bgr_colors[i % len(bgr_colors)]
|
| 1054 |
cv2.polylines(overlay, [pts], False, color, thickness=width//50)
|
|
|
|
|
|
|
| 1055 |
cv2.addWeighted(background, 0.7, overlay, 0.3, 0, background)
|
|
|
|
|
|
|
| 1056 |
background = cv2.GaussianBlur(background, (3, 3), 1.0)
|
|
|
|
| 1057 |
return background
|
|
|
|
| 1058 |
except Exception as e:
|
| 1059 |
logger.error(f"Artistic background creation failed: {e}")
|
| 1060 |
return None
|
| 1061 |
|
| 1062 |
+
# ========== END OF FILE ==========
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1063 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|