Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,4 +1,18 @@
|
|
1 |
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
"""
|
3 |
High-Quality Video Background Replacement - MAIN APPLICATION
|
4 |
Upload video β Choose professional background β Replace with cinema quality
|
@@ -6,7 +20,6 @@
|
|
6 |
cinema-quality processing, lazy loading, and enhanced stability
|
7 |
"""
|
8 |
|
9 |
-
import os
|
10 |
import sys
|
11 |
import tempfile
|
12 |
import cv2
|
@@ -25,24 +38,17 @@
|
|
25 |
import queue
|
26 |
from typing import Optional, Tuple, Dict, Any
|
27 |
import logging
|
|
|
28 |
|
29 |
-
# Import all utilities
|
|
|
|
|
30 |
from utilities import *
|
31 |
|
32 |
-
#
|
33 |
-
try:
|
34 |
-
if 'OMP_NUM_THREADS' in os.environ:
|
35 |
-
del os.environ['OMP_NUM_THREADS']
|
36 |
-
except:
|
37 |
-
pass
|
38 |
-
|
39 |
-
# Suppress warnings and optimize for quality
|
40 |
-
import warnings
|
41 |
warnings.filterwarnings("ignore")
|
42 |
-
os.environ['PYTORCH_CUDA_ALLOC_CONF'] = 'max_split_size_mb:1024'
|
43 |
-
os.environ['CUDA_LAUNCH_BLOCKING'] = '0'
|
44 |
|
45 |
-
# Setup logging
|
46 |
logging.basicConfig(level=logging.INFO)
|
47 |
logger = logging.getLogger(__name__)
|
48 |
|
@@ -66,97 +72,163 @@ def patched_get_type(schema):
|
|
66 |
logger.warning(f"β οΈ Could not apply Gradio monkey patch: {e}")
|
67 |
|
68 |
# ============================================================================ #
|
69 |
-
|
70 |
-
|
|
|
71 |
"""
|
72 |
Loads the SAM2 model and returns a SAM2ImagePredictor instance.
|
73 |
-
- Tries to load 'sam2_hiera_large'
|
74 |
-
-
|
75 |
-
- Assumes YAML configs are in ./Configs/ (capital C), as required by upstream.
|
76 |
"""
|
77 |
import hydra
|
78 |
from omegaconf import OmegaConf
|
79 |
-
import torch
|
80 |
-
import logging
|
81 |
|
82 |
-
|
83 |
configs_dir = os.path.abspath("Configs")
|
84 |
-
|
85 |
|
86 |
if not os.path.isdir(configs_dir):
|
87 |
-
|
88 |
-
|
|
|
|
|
|
|
89 |
|
90 |
tried = []
|
91 |
|
92 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
try:
|
94 |
checkpoint_path = os.path.join("./checkpoints", checkpoint_name)
|
95 |
-
|
96 |
|
97 |
if not os.path.exists(checkpoint_path):
|
98 |
-
|
99 |
-
|
100 |
from huggingface_hub import hf_hub_download
|
|
|
101 |
checkpoint_path = hf_hub_download(
|
102 |
-
repo_id=
|
103 |
filename=checkpoint_name,
|
104 |
cache_dir="./checkpoints",
|
105 |
local_dir_use_symlinks=False
|
106 |
)
|
107 |
-
|
108 |
|
|
|
109 |
if hydra.core.global_hydra.GlobalHydra.instance().is_initialized():
|
110 |
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
111 |
|
112 |
hydra.initialize(config_path=os.path.relpath(configs_dir), job_name=f"sam2_load_{int(time.time())}")
|
113 |
-
|
|
|
114 |
|
115 |
-
logger.info(f"Trying to load {config_name} on {device} with checkpoint {checkpoint_path}")
|
116 |
-
progress(0.3, desc=f"Loading {config_name}...")
|
117 |
-
|
118 |
from sam2.build_sam import build_sam2
|
119 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
120 |
|
121 |
-
|
|
|
|
|
|
|
|
|
122 |
sam2_model.to(device)
|
123 |
predictor = SAM2ImagePredictor(sam2_model)
|
124 |
-
|
125 |
return predictor
|
126 |
except Exception as e:
|
127 |
-
error_msg = f"Failed to load {
|
128 |
tried.append(error_msg)
|
129 |
-
|
130 |
return None
|
131 |
|
132 |
predictor = try_load("sam2_hiera_large.yaml", "sam2_hiera_large.pt")
|
133 |
-
# if predictor is None:
|
134 |
-
# logger.warning("Could not load large model, falling back to tiny model.")
|
135 |
-
# predictor = try_load("sam2_hiera_tiny.yaml", "sam2_hiera_tiny.pt")
|
136 |
-
# if predictor:
|
137 |
-
# logger.warning("β οΈ Using Tiny model as fallback (less accurate, but faster and lighter).")
|
138 |
|
139 |
if predictor is None:
|
140 |
-
error_message = "SAM2 loading failed for large model. Reasons
|
141 |
-
|
142 |
raise gr.Error(error_message)
|
143 |
|
144 |
return predictor
|
145 |
|
146 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
147 |
|
148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
149 |
sam2_predictor = None
|
150 |
matanyone_model = None
|
151 |
models_loaded = False
|
152 |
loading_lock = threading.Lock()
|
153 |
|
154 |
-
|
155 |
-
|
156 |
-
def download_and_setup_models(progress=gr.Progress()):
|
157 |
"""
|
158 |
-
Download and setup models (SAM2 and
|
159 |
-
Uses local YAML config, falls back to Tiny if Large can't be loaded.
|
160 |
"""
|
161 |
global sam2_predictor, matanyone_model, models_loaded
|
162 |
|
@@ -166,77 +238,79 @@ def download_and_setup_models(progress=gr.Progress()):
|
|
166 |
try:
|
167 |
logger.info("π Starting ENHANCED model loading with fallback...")
|
168 |
|
169 |
-
# --- Load SAM2 ---
|
170 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
171 |
-
sam2_predictor_local = load_sam2_predictor(device, progress)
|
172 |
-
sam2_predictor = sam2_predictor_local
|
173 |
|
174 |
-
# --- Load
|
175 |
-
|
176 |
-
|
|
|
|
|
|
|
177 |
try:
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
"PeiqingYang/MatAnyone-v1.0",
|
182 |
-
device=device,
|
183 |
-
cfg={}
|
184 |
-
)
|
185 |
-
matanyone_loaded = True
|
186 |
-
logger.info("β
MatAnyone loaded via HuggingFace Hub")
|
187 |
except Exception as e:
|
188 |
-
logger.warning(f"β
|
189 |
-
|
190 |
-
if not matanyone_loaded:
|
191 |
raise RuntimeError("MatAnyone model could not be loaded.")
|
192 |
|
193 |
-
matanyone_model = matanyone_model_local
|
194 |
-
|
195 |
models_loaded = True
|
196 |
logger.info("--- β
All models loaded successfully ---")
|
197 |
-
return "β
SAM2 +
|
198 |
except Exception as e:
|
199 |
logger.error(f"β Enhanced loading failed: {str(e)}")
|
200 |
logger.error(f"Full traceback: {traceback.format_exc()}")
|
201 |
return f"β Enhanced loading failed: {str(e)}"
|
202 |
-
# =======================================================================
|
203 |
-
# [START REST OF YOUR MAIN APP, UNCHANGED]
|
204 |
-
# =======================================================================
|
205 |
|
206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
207 |
"""TWO-STAGE High-quality video processing: Original β Green Screen β Final Background"""
|
208 |
if not models_loaded:
|
209 |
return None, "β Models not loaded. Click 'Load Models' first."
|
210 |
-
|
211 |
if not video_path:
|
212 |
return None, "β No video file provided."
|
213 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
214 |
try:
|
215 |
-
|
216 |
-
|
217 |
# Validate and read video
|
218 |
if not os.path.exists(video_path):
|
219 |
return None, f"β Video file not found: {video_path}"
|
220 |
-
|
221 |
cap = cv2.VideoCapture(video_path)
|
222 |
if not cap.isOpened():
|
223 |
return None, "β Could not open video file. Please check the format."
|
224 |
-
|
225 |
# Get video properties
|
226 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
227 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
228 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
229 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
230 |
-
|
231 |
logger.info(f"Video properties: {frame_width}x{frame_height}, {fps}fps, {total_frames} frames")
|
232 |
-
|
233 |
if total_frames == 0:
|
234 |
return None, "β Video appears to be empty or corrupted."
|
235 |
-
|
236 |
# Prepare final background for Stage 2
|
237 |
background = None
|
238 |
background_name = ""
|
239 |
-
|
240 |
if background_choice == "custom" and custom_background_path:
|
241 |
try:
|
242 |
background = cv2.imread(custom_background_path)
|
@@ -258,125 +332,125 @@ def process_video_hq(video_path, background_choice, custom_background_path, prog
|
|
258 |
return None, f"β Error creating background: {str(e)}"
|
259 |
else:
|
260 |
return None, f"β Invalid background selection: {background_choice}"
|
261 |
-
|
262 |
if background is None:
|
263 |
return None, "β Failed to create background."
|
264 |
-
|
265 |
# Setup codec and timestamp
|
266 |
timestamp = int(time.time())
|
267 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
268 |
-
|
269 |
# STAGE 1: Create green screen video (Original β Green Screen)
|
270 |
-
|
271 |
greenscreen_path = f"/tmp/greenscreen_{timestamp}.mp4"
|
272 |
greenscreen_writer = cv2.VideoWriter(greenscreen_path, fourcc, fps, (frame_width, frame_height))
|
273 |
-
|
274 |
if not greenscreen_writer.isOpened():
|
275 |
return None, "β Could not create green screen video file."
|
276 |
-
|
277 |
frame_count = 0
|
278 |
-
|
279 |
# Process original video to green screen
|
280 |
while True:
|
281 |
ret, frame = cap.read()
|
282 |
if not ret:
|
283 |
break
|
284 |
-
|
285 |
try:
|
286 |
progress_pct = 0.1 + (frame_count / total_frames) * 0.4
|
287 |
-
|
288 |
-
|
289 |
# Segment person and create green screen frame
|
290 |
mask = segment_person_hq(frame)
|
291 |
refined_mask = refine_mask_hq(frame, mask)
|
292 |
green_screen = create_green_screen_background(frame)
|
293 |
green_screen_frame = replace_background_hq(frame, refined_mask, green_screen)
|
294 |
-
|
295 |
greenscreen_writer.write(green_screen_frame)
|
296 |
frame_count += 1
|
297 |
-
|
298 |
if frame_count % 100 == 0:
|
299 |
gc.collect()
|
300 |
if torch.cuda.is_available():
|
301 |
torch.cuda.empty_cache()
|
302 |
-
|
303 |
except Exception as e:
|
304 |
logger.warning(f"Error in Stage 1 frame {frame_count}: {e}")
|
305 |
greenscreen_writer.write(frame)
|
306 |
frame_count += 1
|
307 |
-
|
308 |
greenscreen_writer.release()
|
309 |
cap.release()
|
310 |
-
|
311 |
# STAGE 2: Replace green screen with final background (Green Screen β Final)
|
312 |
-
|
313 |
-
|
314 |
final_path = f"/tmp/final_output_{timestamp}.mp4"
|
315 |
final_writer = cv2.VideoWriter(final_path, fourcc, fps, (frame_width, frame_height))
|
316 |
-
|
317 |
if not final_writer.isOpened():
|
318 |
return None, "β Could not create final output video file."
|
319 |
-
|
320 |
# Open green screen video
|
321 |
greenscreen_cap = cv2.VideoCapture(greenscreen_path)
|
322 |
if not greenscreen_cap.isOpened():
|
323 |
return None, "β Could not open green screen video."
|
324 |
-
|
325 |
frame_count = 0
|
326 |
-
|
327 |
# Process green screen video to final background with enhanced green detection
|
328 |
while True:
|
329 |
ret, green_frame = greenscreen_cap.read()
|
330 |
if not ret:
|
331 |
break
|
332 |
-
|
333 |
try:
|
334 |
progress_pct = 0.5 + (frame_count / total_frames) * 0.4
|
335 |
-
|
336 |
-
|
337 |
# Detect green screen with wider detection range
|
338 |
hsv = cv2.cvtColor(green_frame, cv2.COLOR_BGR2HSV)
|
339 |
-
lower_green = np.array([25, 30, 30])
|
340 |
-
upper_green = np.array([100, 255, 255])
|
341 |
green_mask = cv2.inRange(hsv, lower_green, upper_green)
|
342 |
-
|
343 |
# Additional mask processing for cleaner edges
|
344 |
-
kernel = np.ones((3,3), np.uint8)
|
345 |
green_mask = cv2.morphologyEx(green_mask, cv2.MORPH_OPEN, kernel)
|
346 |
green_mask = cv2.morphologyEx(green_mask, cv2.MORPH_CLOSE, kernel)
|
347 |
green_mask = 255 - green_mask # Invert mask (person = white, green = black)
|
348 |
-
|
349 |
result_frame = replace_background_hq(green_frame, green_mask, background)
|
350 |
final_writer.write(result_frame)
|
351 |
frame_count += 1
|
352 |
-
|
353 |
if frame_count % 100 == 0:
|
354 |
gc.collect()
|
355 |
if torch.cuda.is_available():
|
356 |
torch.cuda.empty_cache()
|
357 |
-
|
358 |
except Exception as e:
|
359 |
logger.warning(f"Error in Stage 2 frame {frame_count}: {e}")
|
360 |
final_writer.write(green_frame)
|
361 |
frame_count += 1
|
362 |
-
|
363 |
greenscreen_cap.release()
|
364 |
final_writer.release()
|
365 |
-
|
366 |
# Cleanup intermediate green screen file
|
367 |
try:
|
368 |
os.remove(greenscreen_path)
|
369 |
-
except:
|
370 |
pass
|
371 |
-
|
372 |
if frame_count == 0:
|
373 |
return None, "β No frames were processed successfully."
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
# Add audio back with high quality settings
|
378 |
final_output = f"/tmp/final_output_hq_{timestamp}.mp4"
|
379 |
-
|
380 |
try:
|
381 |
audio_cmd = (
|
382 |
f'ffmpeg -y -i "{final_path}" -i "{video_path}" '
|
@@ -384,13 +458,12 @@ def process_video_hq(video_path, background_choice, custom_background_path, prog
|
|
384 |
f'-c:a aac -b:a 192k -ac 2 -ar 48000 '
|
385 |
f'-map 0:v:0 -map 1:a:0? -shortest "{final_output}"'
|
386 |
)
|
387 |
-
|
388 |
result = os.system(audio_cmd)
|
389 |
-
|
390 |
if result != 0 or not os.path.exists(final_output):
|
391 |
logger.warning("Audio merging failed, using video without audio")
|
392 |
shutil.copy2(final_path, final_output)
|
393 |
-
|
394 |
except Exception as e:
|
395 |
logger.warning(f"Audio processing error: {e}, using video without audio")
|
396 |
try:
|
@@ -398,50 +471,53 @@ def process_video_hq(video_path, background_choice, custom_background_path, prog
|
|
398 |
except Exception as e2:
|
399 |
logger.error(f"Failed to copy video file: {e2}")
|
400 |
return None, f"β Failed to finalize video: {str(e2)}"
|
401 |
-
|
402 |
# Save to MyAvatar/My Videos directory
|
403 |
try:
|
404 |
myavatar_path = "/tmp/MyAvatar/My_Videos/"
|
405 |
os.makedirs(myavatar_path, exist_ok=True)
|
406 |
-
|
407 |
saved_filename = f"two_stage_bg_replaced_{timestamp}.mp4"
|
408 |
saved_path = os.path.join(myavatar_path, saved_filename)
|
409 |
shutil.copy2(final_output, saved_path)
|
410 |
-
|
411 |
logger.info(f"Video saved to: {saved_path}")
|
412 |
except Exception as e:
|
413 |
logger.warning(f"Could not save to MyAvatar directory: {e}")
|
414 |
saved_filename = os.path.basename(final_output)
|
415 |
-
|
416 |
# Cleanup temporary files
|
417 |
try:
|
418 |
if os.path.exists(final_path):
|
419 |
os.remove(final_path)
|
420 |
-
except:
|
421 |
pass
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
success_message = (
|
426 |
f"β
TWO-STAGE Success!\n"
|
427 |
f"π’ Stage 1: Original β Green Screen\n"
|
428 |
f"π¬ Stage 2: Green Screen β {background_name}\n"
|
429 |
-
f"π Processed: {frame_count}
|
430 |
f"π Saved: MyAvatar/My Videos/{saved_filename}\n"
|
431 |
-
f"π― Quality: Cinema-grade with SAM2 +
|
432 |
f"π Method: Professional two-stage compositing"
|
433 |
)
|
434 |
-
|
435 |
return final_output, success_message
|
436 |
-
|
437 |
except Exception as e:
|
438 |
error_msg = f"β TWO-STAGE Processing Error: {str(e)}"
|
439 |
logger.error(f"Video processing error: {traceback.format_exc()}")
|
440 |
return None, error_msg
|
441 |
|
|
|
|
|
|
|
442 |
def create_interface():
|
443 |
"""Create enhanced Gradio interface with comprehensive features and 4-method background system"""
|
444 |
-
|
445 |
def extract_video_path(v):
|
446 |
# Robustly extract file path from input (tuple, list, or string)
|
447 |
if isinstance(v, (tuple, list)) and len(v) > 0:
|
@@ -449,36 +525,32 @@ def extract_video_path(v):
|
|
449 |
return v
|
450 |
|
451 |
with gr.Blocks(
|
452 |
-
title="ENHANCED High-Quality Video Background Replacement",
|
453 |
theme=gr.themes.Soft(),
|
454 |
css="""
|
455 |
-
.gradio-container {
|
456 |
-
|
457 |
-
}
|
458 |
-
.progress-bar {
|
459 |
-
background: linear-gradient(90deg, #3498db, #2ecc71) !important;
|
460 |
-
}
|
461 |
"""
|
462 |
) as demo:
|
463 |
-
|
464 |
# Header
|
465 |
gr.Markdown("# π¬ Cinema-Quality Video Background Replacement")
|
466 |
gr.Markdown("**Upload a video β Choose a background β Get professional results with AI**")
|
467 |
-
gr.Markdown("*Powered by SAM2 +
|
468 |
gr.Markdown("---")
|
469 |
-
|
470 |
with gr.Row():
|
471 |
# Left column - Input and controls
|
472 |
with gr.Column(scale=1):
|
473 |
gr.Markdown("### π₯ Step 1: Upload Your Video")
|
474 |
gr.Markdown("*Supports MP4, MOV, AVI, and other common formats*")
|
475 |
-
|
476 |
video_input = gr.Video(
|
477 |
-
label="π₯ Drop your video here",
|
478 |
height=300
|
479 |
)
|
480 |
|
481 |
-
#
|
482 |
video_preview = gr.Video(
|
483 |
label="πΊ Preview of Uploaded Video",
|
484 |
height=200,
|
@@ -489,23 +561,24 @@ def extract_video_path(v):
|
|
489 |
inputs=video_input,
|
490 |
outputs=video_preview
|
491 |
)
|
492 |
-
# ================= END VIDEO PREVIEW BLOCK =================
|
493 |
|
494 |
gr.Markdown("### π¨ Step 2: Choose Background Method")
|
495 |
gr.Markdown("*Select your preferred background creation method*")
|
496 |
-
|
497 |
-
#
|
498 |
background_method = gr.Radio(
|
499 |
-
choices=[
|
500 |
-
("A) π· Upload Image", "upload"),
|
501 |
-
("B) π¨ Professional Presets", "professional"),
|
502 |
-
("C) π Colors/Gradients", "colors"),
|
503 |
-
("D) π€ AI Generated", "ai")
|
504 |
-
],
|
505 |
value="professional",
|
506 |
label="Background Method"
|
507 |
)
|
508 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
509 |
# Method A: Upload Image
|
510 |
with gr.Group(visible=False) as upload_group:
|
511 |
gr.Markdown("**π· Upload Your Background Image**")
|
@@ -513,7 +586,7 @@ def extract_video_path(v):
|
|
513 |
label="Drop your background image here",
|
514 |
type="filepath"
|
515 |
)
|
516 |
-
|
517 |
# Method B: Professional Presets
|
518 |
with gr.Group(visible=True) as professional_group:
|
519 |
gr.Markdown("**π¨ Professional Background Presets**")
|
@@ -522,114 +595,110 @@ def extract_video_path(v):
|
|
522 |
value="office_modern",
|
523 |
label="Select Professional Background"
|
524 |
)
|
525 |
-
|
526 |
# Method C: Colors/Gradients
|
527 |
with gr.Group(visible=False) as colors_group:
|
528 |
gr.Markdown("**π Custom Colors & Gradients**")
|
529 |
-
|
530 |
gradient_type = gr.Dropdown(
|
531 |
choices=["solid", "vertical", "horizontal", "diagonal", "radial", "soft_radial"],
|
532 |
value="vertical",
|
533 |
label="Gradient Type"
|
534 |
)
|
535 |
-
|
536 |
with gr.Row():
|
537 |
color1 = gr.ColorPicker(label="π¨ Color 1", value="#3498db")
|
538 |
color2 = gr.ColorPicker(label="π¨ Color 2", value="#2ecc71")
|
539 |
-
|
540 |
with gr.Row():
|
541 |
color3 = gr.ColorPicker(label="π¨ Color 3", value="#e74c3c")
|
542 |
use_third_color = gr.Checkbox(label="Use 3rd color", value=False)
|
543 |
-
|
544 |
# Method D: AI Generated
|
545 |
with gr.Group(visible=False) as ai_group:
|
546 |
gr.Markdown("**π€ AI Generated Background**")
|
547 |
-
|
548 |
ai_prompt = gr.Textbox(
|
549 |
label="Describe your background",
|
550 |
placeholder="e.g., 'modern office with plants', 'sunset over mountains', 'abstract tech pattern'",
|
551 |
lines=2
|
552 |
)
|
553 |
-
|
554 |
ai_style = gr.Dropdown(
|
555 |
choices=["photorealistic", "artistic", "abstract", "minimalist", "corporate", "nature"],
|
556 |
value="photorealistic",
|
557 |
label="Style"
|
558 |
)
|
559 |
-
|
560 |
with gr.Row():
|
561 |
generate_ai_btn = gr.Button("π¨ Generate Background", variant="secondary")
|
562 |
ai_generated_image = gr.Image(label="Generated Background", type="filepath", visible=False)
|
563 |
-
|
564 |
# Background method switching function
|
565 |
def switch_background_method(method):
|
566 |
return (
|
567 |
gr.update(visible=(method == "upload")), # upload_group
|
568 |
-
gr.update(visible=(method == "professional")), # professional_group
|
569 |
gr.update(visible=(method == "colors")), # colors_group
|
570 |
gr.update(visible=(method == "ai")) # ai_group
|
571 |
)
|
572 |
-
|
573 |
background_method.change(
|
574 |
fn=switch_background_method,
|
575 |
inputs=background_method,
|
576 |
outputs=[upload_group, professional_group, colors_group, ai_group]
|
577 |
)
|
578 |
-
|
579 |
gr.Markdown("### π¬ Processing Controls")
|
580 |
gr.Markdown("*First load the AI models, then process your video*")
|
581 |
-
|
582 |
with gr.Row():
|
583 |
load_models_btn = gr.Button(
|
584 |
-
"π Step 1: Load AI Models",
|
585 |
-
variant="secondary",
|
586 |
-
size="lg"
|
587 |
)
|
588 |
process_btn = gr.Button(
|
589 |
-
"β¨ Step 2: Process Video",
|
590 |
-
variant="primary",
|
591 |
-
size="lg"
|
592 |
)
|
593 |
-
|
594 |
# System status
|
595 |
status_text = gr.Textbox(
|
596 |
-
label="π§ System Status",
|
597 |
-
value=get_model_status(),
|
598 |
interactive=False,
|
599 |
lines=3
|
600 |
)
|
601 |
-
|
602 |
# Right column - Results and preview
|
603 |
with gr.Column(scale=1):
|
604 |
gr.Markdown("### π€ Your Results")
|
605 |
gr.Markdown("*Processed video will appear here after Step 2*")
|
606 |
-
|
607 |
video_output = gr.Video(
|
608 |
-
label="π¬ Your Processed Video",
|
609 |
height=400
|
610 |
)
|
611 |
-
|
612 |
result_text = gr.Textbox(
|
613 |
-
label="π Processing Results",
|
614 |
interactive=False,
|
615 |
lines=6,
|
616 |
placeholder="Processing status and results will appear here..."
|
617 |
)
|
618 |
-
|
619 |
gr.Markdown("### π¨ Professional Backgrounds Available")
|
620 |
-
|
621 |
# Create background preview grid
|
622 |
bg_preview_html = """
|
623 |
<div style='display: grid; grid-template-columns: repeat(3, 1fr); gap: 8px; padding: 10px; max-height: 400px; overflow-y: auto; border: 1px solid #ddd; border-radius: 8px;'>
|
624 |
"""
|
625 |
-
|
626 |
for key, config in PROFESSIONAL_BACKGROUNDS.items():
|
627 |
colors = config["colors"]
|
628 |
if len(colors) >= 2:
|
629 |
gradient = f"linear-gradient(45deg, {colors[0]}, {colors[-1]})"
|
630 |
else:
|
631 |
gradient = colors[0]
|
632 |
-
|
633 |
bg_preview_html += f"""
|
634 |
<div style='
|
635 |
padding: 12px 8px;
|
@@ -648,23 +717,20 @@ def switch_background_method(method):
|
|
648 |
</div>
|
649 |
</div>
|
650 |
"""
|
651 |
-
|
652 |
bg_preview_html += "</div>"
|
653 |
gr.HTML(bg_preview_html)
|
654 |
-
|
655 |
# AI Background Generation Function
|
656 |
def generate_ai_background(prompt, style):
|
657 |
"""Generate AI background using procedural methods"""
|
658 |
if not prompt or not prompt.strip():
|
659 |
return None, "β Please enter a prompt"
|
660 |
-
|
661 |
try:
|
662 |
# Create procedural background based on prompt
|
663 |
bg_image = create_procedural_background(prompt, style, 1920, 1080)
|
664 |
-
|
665 |
if bg_image is not None:
|
666 |
-
# Save generated image
|
667 |
-
import tempfile
|
668 |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
669 |
cv2.imwrite(tmp.name, bg_image)
|
670 |
return tmp.name, f"β
Background generated: {prompt[:50]}..."
|
@@ -673,90 +739,89 @@ def generate_ai_background(prompt, style):
|
|
673 |
except Exception as e:
|
674 |
logger.error(f"AI generation error: {e}")
|
675 |
return None, f"β Generation error: {str(e)}"
|
676 |
-
|
677 |
# Enhanced video processing function that handles all 4 methods
|
678 |
-
def process_video_enhanced(
|
679 |
-
|
680 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
681 |
"""Process video with any of the 4 background methods using TWO-STAGE approach"""
|
682 |
-
|
683 |
if not models_loaded:
|
684 |
return None, "β Models not loaded. Click 'Load Models' first."
|
685 |
-
|
686 |
if not video_path:
|
687 |
return None, "β No video file provided."
|
688 |
-
|
689 |
try:
|
690 |
-
progress(0, desc="π¬ Preparing background...")
|
691 |
-
|
692 |
-
# Determine which background to use based on method
|
693 |
if bg_method == "upload":
|
694 |
if custom_img and os.path.exists(custom_img):
|
695 |
return process_video_hq(video_path, "custom", custom_img, progress)
|
696 |
else:
|
697 |
return None, "β No image uploaded. Please upload a background image."
|
698 |
-
|
699 |
elif bg_method == "professional":
|
700 |
if prof_choice and prof_choice in PROFESSIONAL_BACKGROUNDS:
|
701 |
return process_video_hq(video_path, prof_choice, None, progress)
|
702 |
else:
|
703 |
return None, f"β Invalid professional background: {prof_choice}"
|
704 |
-
|
705 |
elif bg_method == "colors":
|
706 |
-
# Create custom gradient as temporary image
|
707 |
try:
|
708 |
colors = [color1 or "#3498db", color2 or "#2ecc71"]
|
709 |
if use_third and color3:
|
710 |
colors.append(color3)
|
711 |
-
|
712 |
bg_config = {
|
713 |
"type": "gradient" if grad_type != "solid" else "color",
|
714 |
-
"colors": colors,
|
715 |
"direction": grad_type if grad_type != "solid" else "vertical"
|
716 |
}
|
717 |
-
|
718 |
-
if grad_type == "solid":
|
719 |
-
bg_config["colors"] = [colors[0]]
|
720 |
-
|
721 |
-
# Create temporary image for gradient
|
722 |
gradient_bg = create_professional_background(bg_config, 1920, 1080)
|
723 |
temp_path = f"/tmp/gradient_{int(time.time())}.png"
|
724 |
cv2.imwrite(temp_path, gradient_bg)
|
725 |
-
|
726 |
return process_video_hq(video_path, "custom", temp_path, progress)
|
727 |
except Exception as e:
|
728 |
return None, f"β Error creating gradient: {str(e)}"
|
729 |
-
|
730 |
elif bg_method == "ai":
|
731 |
if ai_img and os.path.exists(ai_img):
|
732 |
return process_video_hq(video_path, "custom", ai_img, progress)
|
733 |
else:
|
734 |
return None, "β No AI background generated. Click 'Generate Background' first."
|
735 |
-
|
736 |
else:
|
737 |
return None, f"β Unknown background method: {bg_method}"
|
738 |
-
|
739 |
except Exception as e:
|
740 |
logger.error(f"Enhanced processing error: {e}")
|
741 |
return None, f"β Processing error: {str(e)}"
|
742 |
-
|
743 |
-
#
|
744 |
load_models_btn.click(
|
745 |
fn=download_and_setup_models,
|
746 |
outputs=status_text
|
747 |
)
|
748 |
-
|
749 |
generate_ai_btn.click(
|
750 |
fn=generate_ai_background,
|
751 |
inputs=[ai_prompt, ai_style],
|
752 |
outputs=[ai_generated_image, status_text]
|
753 |
)
|
754 |
-
|
755 |
process_btn.click(
|
756 |
fn=process_video_enhanced,
|
757 |
inputs=[
|
758 |
video_input, # video_path
|
759 |
-
background_method, # bg_method
|
760 |
custom_background, # custom_img
|
761 |
professional_choice, # prof_choice
|
762 |
gradient_type, # grad_type
|
@@ -765,92 +830,58 @@ def process_video_enhanced(video_path, bg_method, custom_img, prof_choice, grad_
|
|
765 |
],
|
766 |
outputs=[video_output, result_text]
|
767 |
)
|
768 |
-
|
769 |
-
#
|
770 |
with gr.Accordion("βΉοΈ ENHANCED Quality & Features", open=False):
|
771 |
gr.Markdown("""
|
772 |
### π TWO-STAGE Cinema-Quality Features:
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
**π€ Advanced AI Models:**
|
780 |
-
- **SAM2**: State-of-the-art segmentation (Large/Tiny auto-selection)
|
781 |
-
- **MatAnyone**: CVPR 2025 professional matting technology
|
782 |
-
- **Multi-Fallback Loading**: 4+ methods each for maximum reliability
|
783 |
-
- **OpenCV Fallbacks**: Enhanced backup systems for compatibility
|
784 |
-
|
785 |
-
**π¨ 4 Background Methods:**
|
786 |
-
- **A) Upload Image**: Use any custom image as background
|
787 |
-
- **B) Professional Presets**: 15+ high-quality professional backgrounds
|
788 |
-
- **C) Colors/Gradients**: Custom color combinations with 6 gradient types
|
789 |
-
- **D) AI Generated**: Procedural backgrounds from text prompts
|
790 |
-
|
791 |
-
**π¬ Professional Quality:**
|
792 |
-
- **β¨ Edge Feathering**: Smooth, natural transitions
|
793 |
-
- **π¬ Gamma Correction**: Professional color compositing
|
794 |
-
- **π Multi-Point Segmentation**: 7-point strategic person detection
|
795 |
-
- **π§Ή Morphological Processing**: Advanced mask cleanup
|
796 |
-
- **π’ Green Screen Intermediate**: Professional chroma key workflow
|
797 |
-
|
798 |
-
**π΅ Audio & Video:**
|
799 |
-
- **High-Quality Audio**: 192kbps AAC preservation
|
800 |
-
- **πΊ H.264 Codec**: CRF 18 for broadcast quality
|
801 |
-
- **ποΈ Frame Processing**: Advanced error handling
|
802 |
-
- **πΎ Smart Caching**: Optimized memory management
|
803 |
-
|
804 |
-
### π‘ Usage Tips:
|
805 |
-
- Upload videos in common formats (MP4, MOV, AVI)
|
806 |
-
- For best results, ensure good lighting in original video
|
807 |
-
- Custom backgrounds work best with high resolution images
|
808 |
-
- AI prompts: Try "modern office", "sunset mountain", "abstract tech"
|
809 |
-
- GPU processing is faster but CPU fallback always available
|
810 |
-
- Two-stage processing gives cinema-quality results
|
811 |
""")
|
812 |
-
|
813 |
-
# Footer
|
814 |
gr.Markdown("---")
|
815 |
-
gr.Markdown(
|
816 |
-
|
817 |
-
"Enhanced with TWO-STAGE processing and 4-method background system*"
|
818 |
-
)
|
819 |
-
|
820 |
return demo
|
821 |
|
|
|
|
|
|
|
822 |
def main():
|
823 |
"""Main application entry point"""
|
824 |
try:
|
825 |
print("π¬ Cinema-Quality Video Background Replacement")
|
826 |
print("=" * 50)
|
827 |
-
|
828 |
-
# Initialize application
|
829 |
os.makedirs("/tmp/MyAvatar/My_Videos/", exist_ok=True)
|
830 |
os.makedirs(os.path.expanduser("~/.cache/sam2"), exist_ok=True)
|
831 |
-
|
832 |
print("π Features:")
|
833 |
-
print(" β’ SAM2 +
|
834 |
print(" β’ TWO-STAGE processing (Original β Green Screen β Final)")
|
835 |
print(" β’ 4 background methods (Upload/Professional/Colors/AI)")
|
836 |
print(" β’ Multi-fallback loading system")
|
837 |
print(" β’ Cinema-quality processing")
|
838 |
print(" β’ Enhanced stability & error handling")
|
839 |
print("=" * 50)
|
840 |
-
|
841 |
# Create and launch interface
|
842 |
logger.info("π Creating Gradio interface...")
|
843 |
demo = create_interface()
|
844 |
-
|
845 |
logger.info("π Launching application...")
|
846 |
-
|
847 |
demo.launch(
|
848 |
server_name="0.0.0.0",
|
849 |
server_port=7860,
|
850 |
share=True,
|
851 |
show_error=True
|
852 |
)
|
853 |
-
|
854 |
except KeyboardInterrupt:
|
855 |
logger.info("π Application stopped by user")
|
856 |
print("\nπ Application stopped by user")
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
+
# ========================= PRE-IMPORT ENV GUARDS =========================
|
3 |
+
# Must run BEFORE importing numpy/cv2/torch to avoid libgomp errors.
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Remove invalid OMP setting or tame thread counts
|
7 |
+
os.environ.pop("OMP_NUM_THREADS", None) # or set to e.g. "1"
|
8 |
+
os.environ.setdefault("MKL_NUM_THREADS", "1")
|
9 |
+
os.environ.setdefault("OPENBLAS_NUM_THREADS", "1")
|
10 |
+
os.environ.setdefault("NUMEXPR_NUM_THREADS", "1")
|
11 |
+
# Optional CUDA allocator tuning
|
12 |
+
os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "max_split_size_mb:1024")
|
13 |
+
os.environ.setdefault("CUDA_LAUNCH_BLOCKING", "0")
|
14 |
+
# ========================================================================
|
15 |
+
|
16 |
"""
|
17 |
High-Quality Video Background Replacement - MAIN APPLICATION
|
18 |
Upload video β Choose professional background β Replace with cinema quality
|
|
|
20 |
cinema-quality processing, lazy loading, and enhanced stability
|
21 |
"""
|
22 |
|
|
|
23 |
import sys
|
24 |
import tempfile
|
25 |
import cv2
|
|
|
38 |
import queue
|
39 |
from typing import Optional, Tuple, Dict, Any
|
40 |
import logging
|
41 |
+
import warnings
|
42 |
|
43 |
+
# Import all utilities (must provide: PROFESSIONAL_BACKGROUNDS,
|
44 |
+
# create_professional_background, create_procedural_background,
|
45 |
+
# segment_person_hq, refine_mask_hq, replace_background_hq, get_model_status)
|
46 |
from utilities import *
|
47 |
|
48 |
+
# Suppress warnings
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
49 |
warnings.filterwarnings("ignore")
|
|
|
|
|
50 |
|
51 |
+
# Setup logging
|
52 |
logging.basicConfig(level=logging.INFO)
|
53 |
logger = logging.getLogger(__name__)
|
54 |
|
|
|
72 |
logger.warning(f"β οΈ Could not apply Gradio monkey patch: {e}")
|
73 |
|
74 |
# ============================================================================ #
|
75 |
+
# SAM2 LOADER (Hydra cfg, correct build)
|
76 |
+
# ============================================================================ #
|
77 |
+
def load_sam2_predictor(device: str = "cuda", progress: Optional[gr.Progress] = None):
|
78 |
"""
|
79 |
Loads the SAM2 model and returns a SAM2ImagePredictor instance.
|
80 |
+
- Tries to load 'sam2_hiera_large' model config from ./Configs
|
81 |
+
- Downloads checkpoint via HF if not present
|
|
|
82 |
"""
|
83 |
import hydra
|
84 |
from omegaconf import OmegaConf
|
|
|
|
|
85 |
|
86 |
+
sam_logger = logging.getLogger("SAM2Loader")
|
87 |
configs_dir = os.path.abspath("Configs")
|
88 |
+
sam_logger.info(f"Looking for SAM2 configs in absolute path: {configs_dir}")
|
89 |
|
90 |
if not os.path.isdir(configs_dir):
|
91 |
+
sam_logger.error(
|
92 |
+
f"FATAL: Configs directory not found at '{configs_dir}'. "
|
93 |
+
f"Please ensure the 'Configs' folder exists at repository root."
|
94 |
+
)
|
95 |
+
raise gr.Error("FATAL: SAM2 Configs directory not found.")
|
96 |
|
97 |
tried = []
|
98 |
|
99 |
+
def _maybe_progress(pct: float, desc: str):
|
100 |
+
if progress is not None:
|
101 |
+
try:
|
102 |
+
progress(pct, desc=desc)
|
103 |
+
except Exception:
|
104 |
+
pass
|
105 |
+
|
106 |
+
def try_load(config_name_with_yaml: str, checkpoint_name: str):
|
107 |
try:
|
108 |
checkpoint_path = os.path.join("./checkpoints", checkpoint_name)
|
109 |
+
sam_logger.info(f"Attempting to use checkpoint: {checkpoint_path}")
|
110 |
|
111 |
if not os.path.exists(checkpoint_path):
|
112 |
+
sam_logger.info(f"Downloading {checkpoint_name} from Hugging Face Hub...")
|
113 |
+
_maybe_progress(0.1, f"Downloading {checkpoint_name}...")
|
114 |
from huggingface_hub import hf_hub_download
|
115 |
+
repo = f"facebook/{config_name_with_yaml.replace('.yaml','')}" # e.g. facebook/sam2_hiera_large
|
116 |
checkpoint_path = hf_hub_download(
|
117 |
+
repo_id=repo,
|
118 |
filename=checkpoint_name,
|
119 |
cache_dir="./checkpoints",
|
120 |
local_dir_use_symlinks=False
|
121 |
)
|
122 |
+
sam_logger.info(f"β
Download complete: {checkpoint_path}")
|
123 |
|
124 |
+
# Reset & init Hydra
|
125 |
if hydra.core.global_hydra.GlobalHydra.instance().is_initialized():
|
126 |
hydra.core.global_hydra.GlobalHydra.instance().clear()
|
127 |
|
128 |
hydra.initialize(config_path=os.path.relpath(configs_dir), job_name=f"sam2_load_{int(time.time())}")
|
129 |
+
cfg_name = config_name_with_yaml.replace(".yaml", "")
|
130 |
+
cfg = hydra.compose(config_name=cfg_name)
|
131 |
|
|
|
|
|
|
|
132 |
from sam2.build_sam import build_sam2
|
133 |
from sam2.sam2_image_predictor import SAM2ImagePredictor
|
134 |
|
135 |
+
sam_logger.info(f"Trying to load {config_name_with_yaml} on {device} with checkpoint {checkpoint_path}")
|
136 |
+
_maybe_progress(0.3, f"Loading {config_name_with_yaml}...")
|
137 |
+
|
138 |
+
# IMPORTANT: pass cfg (not the string)
|
139 |
+
sam2_model = build_sam2(cfg, checkpoint_path)
|
140 |
sam2_model.to(device)
|
141 |
predictor = SAM2ImagePredictor(sam2_model)
|
142 |
+
sam_logger.info(f"β
Loaded {config_name_with_yaml} successfully on {device}")
|
143 |
return predictor
|
144 |
except Exception as e:
|
145 |
+
error_msg = f"Failed to load {config_name_with_yaml}: {e}\nTraceback: {traceback.format_exc()}"
|
146 |
tried.append(error_msg)
|
147 |
+
sam_logger.warning(error_msg)
|
148 |
return None
|
149 |
|
150 |
predictor = try_load("sam2_hiera_large.yaml", "sam2_hiera_large.pt")
|
|
|
|
|
|
|
|
|
|
|
151 |
|
152 |
if predictor is None:
|
153 |
+
error_message = "SAM2 loading failed for large model. Reasons:\n" + "\n".join(tried)
|
154 |
+
sam_logger.error(f"β {error_message}")
|
155 |
raise gr.Error(error_message)
|
156 |
|
157 |
return predictor
|
158 |
|
159 |
+
# ============================================================================ #
|
160 |
+
# MatAnyOne LOADER (robust cfg + net + core)
|
161 |
+
# ============================================================================ #
|
162 |
+
def load_matanyone(device: str):
|
163 |
+
"""
|
164 |
+
Robust MatAnyOne loader:
|
165 |
+
- Loads an OmegaConf cfg from common paths or creates a minimal default
|
166 |
+
- Builds the network and wraps with InferenceCore
|
167 |
+
- Tries multiple import layouts to accommodate different repos
|
168 |
+
"""
|
169 |
+
from omegaconf import OmegaConf
|
170 |
|
171 |
+
ma_logger = logging.getLogger("MatAnyOneLoader")
|
172 |
+
|
173 |
+
# Try to locate a config file; otherwise minimal default
|
174 |
+
cfg_path_candidates = [
|
175 |
+
"Configs/matanyone.yaml",
|
176 |
+
"configs/matanyone.yaml",
|
177 |
+
]
|
178 |
+
cfg = None
|
179 |
+
for p in cfg_path_candidates:
|
180 |
+
if os.path.exists(p):
|
181 |
+
ma_logger.info(f"Loading MatAnyOne cfg: {p}")
|
182 |
+
cfg = OmegaConf.load(p)
|
183 |
+
break
|
184 |
+
if cfg is None:
|
185 |
+
ma_logger.warning("No MatAnyOne cfg found, using minimal defaults.")
|
186 |
+
cfg = OmegaConf.create({
|
187 |
+
"model": {"backbone": "swinB"},
|
188 |
+
"inference": {"amp": True},
|
189 |
+
"device": device,
|
190 |
+
})
|
191 |
+
|
192 |
+
last_err = None
|
193 |
+
|
194 |
+
# Layout A (common in forks): separate model + inference modules
|
195 |
+
try:
|
196 |
+
from matanyone.model.matanyone import MatAnyOne
|
197 |
+
from matanyone.inference.inference_core import InferenceCore
|
198 |
+
net = MatAnyOne(cfg)
|
199 |
+
net.to(device)
|
200 |
+
core = InferenceCore(net, cfg)
|
201 |
+
ma_logger.info("β
MatAnyOne loaded (layout A)")
|
202 |
+
return core
|
203 |
+
except Exception as e:
|
204 |
+
last_err = e
|
205 |
+
ma_logger.warning(f"Layout A failed: {e}")
|
206 |
+
|
207 |
+
# Layout B (single package exposing classes)
|
208 |
+
try:
|
209 |
+
from matanyone import MatAnyOne, InferenceCore
|
210 |
+
net = MatAnyOne(cfg)
|
211 |
+
net.to(device)
|
212 |
+
core = InferenceCore(net, cfg)
|
213 |
+
ma_logger.info("β
MatAnyOne loaded (layout B)")
|
214 |
+
return core
|
215 |
+
except Exception as e:
|
216 |
+
last_err = e
|
217 |
+
ma_logger.warning(f"Layout B failed: {e}")
|
218 |
+
|
219 |
+
raise RuntimeError(f"Failed to initialize MatAnyOne/InferenceCore. Last error: {last_err}")
|
220 |
+
|
221 |
+
# ============================================================================ #
|
222 |
+
# GLOBALS & MODEL SETUP
|
223 |
+
# ============================================================================ #
|
224 |
sam2_predictor = None
|
225 |
matanyone_model = None
|
226 |
models_loaded = False
|
227 |
loading_lock = threading.Lock()
|
228 |
|
229 |
+
def download_and_setup_models(progress: Optional[gr.Progress] = None):
|
|
|
|
|
230 |
"""
|
231 |
+
Download and setup models (SAM2 and MatAnyOne), robust to HF Spaces and local dev.
|
|
|
232 |
"""
|
233 |
global sam2_predictor, matanyone_model, models_loaded
|
234 |
|
|
|
238 |
try:
|
239 |
logger.info("π Starting ENHANCED model loading with fallback...")
|
240 |
|
|
|
241 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
|
242 |
|
243 |
+
# --- Load SAM2 ---
|
244 |
+
local_sam2 = load_sam2_predictor(device=device, progress=progress)
|
245 |
+
# keep global
|
246 |
+
sam2_predictor = local_sam2
|
247 |
+
|
248 |
+
# --- Load MatAnyOne ---
|
249 |
try:
|
250 |
+
local_matanyone = load_matanyone(device)
|
251 |
+
matanyone_model = local_matanyone
|
252 |
+
logger.info("β
MatAnyOne loaded")
|
|
|
|
|
|
|
|
|
|
|
|
|
253 |
except Exception as e:
|
254 |
+
logger.warning(f"β MatAnyOne load failed: {e}")
|
|
|
|
|
255 |
raise RuntimeError("MatAnyone model could not be loaded.")
|
256 |
|
|
|
|
|
257 |
models_loaded = True
|
258 |
logger.info("--- β
All models loaded successfully ---")
|
259 |
+
return "β
SAM2 + MatAnyOne loaded successfully!"
|
260 |
except Exception as e:
|
261 |
logger.error(f"β Enhanced loading failed: {str(e)}")
|
262 |
logger.error(f"Full traceback: {traceback.format_exc()}")
|
263 |
return f"β Enhanced loading failed: {str(e)}"
|
|
|
|
|
|
|
264 |
|
265 |
+
# ============================================================================ #
|
266 |
+
# TWO-STAGE PROCESSING PIPELINE
|
267 |
+
# ============================================================================ #
|
268 |
+
def process_video_hq(
|
269 |
+
video_path,
|
270 |
+
background_choice,
|
271 |
+
custom_background_path,
|
272 |
+
progress: Optional[gr.Progress] = None
|
273 |
+
):
|
274 |
"""TWO-STAGE High-quality video processing: Original β Green Screen β Final Background"""
|
275 |
if not models_loaded:
|
276 |
return None, "β Models not loaded. Click 'Load Models' first."
|
277 |
+
|
278 |
if not video_path:
|
279 |
return None, "β No video file provided."
|
280 |
+
|
281 |
+
def _prog(pct: float, desc: str):
|
282 |
+
if progress is not None:
|
283 |
+
try:
|
284 |
+
progress(pct, desc=desc)
|
285 |
+
except Exception:
|
286 |
+
pass
|
287 |
+
|
288 |
try:
|
289 |
+
_prog(0.0, "π¬ Initializing TWO-STAGE processing...")
|
290 |
+
|
291 |
# Validate and read video
|
292 |
if not os.path.exists(video_path):
|
293 |
return None, f"β Video file not found: {video_path}"
|
294 |
+
|
295 |
cap = cv2.VideoCapture(video_path)
|
296 |
if not cap.isOpened():
|
297 |
return None, "β Could not open video file. Please check the format."
|
298 |
+
|
299 |
# Get video properties
|
300 |
fps = cap.get(cv2.CAP_PROP_FPS)
|
301 |
total_frames = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
|
302 |
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
303 |
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
304 |
+
|
305 |
logger.info(f"Video properties: {frame_width}x{frame_height}, {fps}fps, {total_frames} frames")
|
306 |
+
|
307 |
if total_frames == 0:
|
308 |
return None, "β Video appears to be empty or corrupted."
|
309 |
+
|
310 |
# Prepare final background for Stage 2
|
311 |
background = None
|
312 |
background_name = ""
|
313 |
+
|
314 |
if background_choice == "custom" and custom_background_path:
|
315 |
try:
|
316 |
background = cv2.imread(custom_background_path)
|
|
|
332 |
return None, f"β Error creating background: {str(e)}"
|
333 |
else:
|
334 |
return None, f"β Invalid background selection: {background_choice}"
|
335 |
+
|
336 |
if background is None:
|
337 |
return None, "β Failed to create background."
|
338 |
+
|
339 |
# Setup codec and timestamp
|
340 |
timestamp = int(time.time())
|
341 |
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
|
342 |
+
|
343 |
# STAGE 1: Create green screen video (Original β Green Screen)
|
344 |
+
_prog(0.1, "π’ STAGE 1: Creating green screen version...")
|
345 |
greenscreen_path = f"/tmp/greenscreen_{timestamp}.mp4"
|
346 |
greenscreen_writer = cv2.VideoWriter(greenscreen_path, fourcc, fps, (frame_width, frame_height))
|
347 |
+
|
348 |
if not greenscreen_writer.isOpened():
|
349 |
return None, "β Could not create green screen video file."
|
350 |
+
|
351 |
frame_count = 0
|
352 |
+
|
353 |
# Process original video to green screen
|
354 |
while True:
|
355 |
ret, frame = cap.read()
|
356 |
if not ret:
|
357 |
break
|
358 |
+
|
359 |
try:
|
360 |
progress_pct = 0.1 + (frame_count / total_frames) * 0.4
|
361 |
+
_prog(progress_pct, f"π’ Green screen frame {frame_count + 1}/{total_frames}")
|
362 |
+
|
363 |
# Segment person and create green screen frame
|
364 |
mask = segment_person_hq(frame)
|
365 |
refined_mask = refine_mask_hq(frame, mask)
|
366 |
green_screen = create_green_screen_background(frame)
|
367 |
green_screen_frame = replace_background_hq(frame, refined_mask, green_screen)
|
368 |
+
|
369 |
greenscreen_writer.write(green_screen_frame)
|
370 |
frame_count += 1
|
371 |
+
|
372 |
if frame_count % 100 == 0:
|
373 |
gc.collect()
|
374 |
if torch.cuda.is_available():
|
375 |
torch.cuda.empty_cache()
|
376 |
+
|
377 |
except Exception as e:
|
378 |
logger.warning(f"Error in Stage 1 frame {frame_count}: {e}")
|
379 |
greenscreen_writer.write(frame)
|
380 |
frame_count += 1
|
381 |
+
|
382 |
greenscreen_writer.release()
|
383 |
cap.release()
|
384 |
+
|
385 |
# STAGE 2: Replace green screen with final background (Green Screen β Final)
|
386 |
+
_prog(0.5, f"π¨ STAGE 2: Replacing green screen with {background_name}...")
|
387 |
+
|
388 |
final_path = f"/tmp/final_output_{timestamp}.mp4"
|
389 |
final_writer = cv2.VideoWriter(final_path, fourcc, fps, (frame_width, frame_height))
|
390 |
+
|
391 |
if not final_writer.isOpened():
|
392 |
return None, "β Could not create final output video file."
|
393 |
+
|
394 |
# Open green screen video
|
395 |
greenscreen_cap = cv2.VideoCapture(greenscreen_path)
|
396 |
if not greenscreen_cap.isOpened():
|
397 |
return None, "β Could not open green screen video."
|
398 |
+
|
399 |
frame_count = 0
|
400 |
+
|
401 |
# Process green screen video to final background with enhanced green detection
|
402 |
while True:
|
403 |
ret, green_frame = greenscreen_cap.read()
|
404 |
if not ret:
|
405 |
break
|
406 |
+
|
407 |
try:
|
408 |
progress_pct = 0.5 + (frame_count / total_frames) * 0.4
|
409 |
+
_prog(progress_pct, f"π¬ Final compositing frame {frame_count + 1}/{total_frames}")
|
410 |
+
|
411 |
# Detect green screen with wider detection range
|
412 |
hsv = cv2.cvtColor(green_frame, cv2.COLOR_BGR2HSV)
|
413 |
+
lower_green = np.array([25, 30, 30])
|
414 |
+
upper_green = np.array([100, 255, 255])
|
415 |
green_mask = cv2.inRange(hsv, lower_green, upper_green)
|
416 |
+
|
417 |
# Additional mask processing for cleaner edges
|
418 |
+
kernel = np.ones((3, 3), np.uint8)
|
419 |
green_mask = cv2.morphologyEx(green_mask, cv2.MORPH_OPEN, kernel)
|
420 |
green_mask = cv2.morphologyEx(green_mask, cv2.MORPH_CLOSE, kernel)
|
421 |
green_mask = 255 - green_mask # Invert mask (person = white, green = black)
|
422 |
+
|
423 |
result_frame = replace_background_hq(green_frame, green_mask, background)
|
424 |
final_writer.write(result_frame)
|
425 |
frame_count += 1
|
426 |
+
|
427 |
if frame_count % 100 == 0:
|
428 |
gc.collect()
|
429 |
if torch.cuda.is_available():
|
430 |
torch.cuda.empty_cache()
|
431 |
+
|
432 |
except Exception as e:
|
433 |
logger.warning(f"Error in Stage 2 frame {frame_count}: {e}")
|
434 |
final_writer.write(green_frame)
|
435 |
frame_count += 1
|
436 |
+
|
437 |
greenscreen_cap.release()
|
438 |
final_writer.release()
|
439 |
+
|
440 |
# Cleanup intermediate green screen file
|
441 |
try:
|
442 |
os.remove(greenscreen_path)
|
443 |
+
except Exception:
|
444 |
pass
|
445 |
+
|
446 |
if frame_count == 0:
|
447 |
return None, "β No frames were processed successfully."
|
448 |
+
|
449 |
+
_prog(0.9, "π΅ Adding high-quality audio...")
|
450 |
+
|
451 |
# Add audio back with high quality settings
|
452 |
final_output = f"/tmp/final_output_hq_{timestamp}.mp4"
|
453 |
+
|
454 |
try:
|
455 |
audio_cmd = (
|
456 |
f'ffmpeg -y -i "{final_path}" -i "{video_path}" '
|
|
|
458 |
f'-c:a aac -b:a 192k -ac 2 -ar 48000 '
|
459 |
f'-map 0:v:0 -map 1:a:0? -shortest "{final_output}"'
|
460 |
)
|
|
|
461 |
result = os.system(audio_cmd)
|
462 |
+
|
463 |
if result != 0 or not os.path.exists(final_output):
|
464 |
logger.warning("Audio merging failed, using video without audio")
|
465 |
shutil.copy2(final_path, final_output)
|
466 |
+
|
467 |
except Exception as e:
|
468 |
logger.warning(f"Audio processing error: {e}, using video without audio")
|
469 |
try:
|
|
|
471 |
except Exception as e2:
|
472 |
logger.error(f"Failed to copy video file: {e2}")
|
473 |
return None, f"β Failed to finalize video: {str(e2)}"
|
474 |
+
|
475 |
# Save to MyAvatar/My Videos directory
|
476 |
try:
|
477 |
myavatar_path = "/tmp/MyAvatar/My_Videos/"
|
478 |
os.makedirs(myavatar_path, exist_ok=True)
|
479 |
+
|
480 |
saved_filename = f"two_stage_bg_replaced_{timestamp}.mp4"
|
481 |
saved_path = os.path.join(myavatar_path, saved_filename)
|
482 |
shutil.copy2(final_output, saved_path)
|
483 |
+
|
484 |
logger.info(f"Video saved to: {saved_path}")
|
485 |
except Exception as e:
|
486 |
logger.warning(f"Could not save to MyAvatar directory: {e}")
|
487 |
saved_filename = os.path.basename(final_output)
|
488 |
+
|
489 |
# Cleanup temporary files
|
490 |
try:
|
491 |
if os.path.exists(final_path):
|
492 |
os.remove(final_path)
|
493 |
+
except Exception:
|
494 |
pass
|
495 |
+
|
496 |
+
_prog(1.0, "β
TWO-STAGE processing complete!")
|
497 |
+
|
498 |
success_message = (
|
499 |
f"β
TWO-STAGE Success!\n"
|
500 |
f"π’ Stage 1: Original β Green Screen\n"
|
501 |
f"π¬ Stage 2: Green Screen β {background_name}\n"
|
502 |
+
f"π Processed: {frame_count} frames\n"
|
503 |
f"π Saved: MyAvatar/My Videos/{saved_filename}\n"
|
504 |
+
f"π― Quality: Cinema-grade with SAM2 + MatAnyOne\n"
|
505 |
f"π Method: Professional two-stage compositing"
|
506 |
)
|
507 |
+
|
508 |
return final_output, success_message
|
509 |
+
|
510 |
except Exception as e:
|
511 |
error_msg = f"β TWO-STAGE Processing Error: {str(e)}"
|
512 |
logger.error(f"Video processing error: {traceback.format_exc()}")
|
513 |
return None, error_msg
|
514 |
|
515 |
+
# ============================================================================ #
|
516 |
+
# GRADIO UI
|
517 |
+
# ============================================================================ #
|
518 |
def create_interface():
|
519 |
"""Create enhanced Gradio interface with comprehensive features and 4-method background system"""
|
520 |
+
|
521 |
def extract_video_path(v):
|
522 |
# Robustly extract file path from input (tuple, list, or string)
|
523 |
if isinstance(v, (tuple, list)) and len(v) > 0:
|
|
|
525 |
return v
|
526 |
|
527 |
with gr.Blocks(
|
528 |
+
title="ENHANCED High-Quality Video Background Replacement",
|
529 |
theme=gr.themes.Soft(),
|
530 |
css="""
|
531 |
+
.gradio-container { max-width: 1200px !important; }
|
532 |
+
.progress-bar { background: linear-gradient(90deg, #3498db, #2ecc71) !important; }
|
|
|
|
|
|
|
|
|
533 |
"""
|
534 |
) as demo:
|
535 |
+
|
536 |
# Header
|
537 |
gr.Markdown("# π¬ Cinema-Quality Video Background Replacement")
|
538 |
gr.Markdown("**Upload a video β Choose a background β Get professional results with AI**")
|
539 |
+
gr.Markdown("*Powered by SAM2 + MatAnyOne with multi-fallback loading for maximum reliability*")
|
540 |
gr.Markdown("---")
|
541 |
+
|
542 |
with gr.Row():
|
543 |
# Left column - Input and controls
|
544 |
with gr.Column(scale=1):
|
545 |
gr.Markdown("### π₯ Step 1: Upload Your Video")
|
546 |
gr.Markdown("*Supports MP4, MOV, AVI, and other common formats*")
|
547 |
+
|
548 |
video_input = gr.Video(
|
549 |
+
label="π₯ Drop your video here",
|
550 |
height=300
|
551 |
)
|
552 |
|
553 |
+
# Video preview
|
554 |
video_preview = gr.Video(
|
555 |
label="πΊ Preview of Uploaded Video",
|
556 |
height=200,
|
|
|
561 |
inputs=video_input,
|
562 |
outputs=video_preview
|
563 |
)
|
|
|
564 |
|
565 |
gr.Markdown("### π¨ Step 2: Choose Background Method")
|
566 |
gr.Markdown("*Select your preferred background creation method*")
|
567 |
+
|
568 |
+
# FIXED Radio (flat choices)
|
569 |
background_method = gr.Radio(
|
570 |
+
choices=["upload", "professional", "colors", "ai"],
|
|
|
|
|
|
|
|
|
|
|
571 |
value="professional",
|
572 |
label="Background Method"
|
573 |
)
|
574 |
+
# Labels hint
|
575 |
+
gr.Markdown(
|
576 |
+
"- **upload** = π· Upload Image \n"
|
577 |
+
"- **professional** = π¨ Professional Presets \n"
|
578 |
+
"- **colors** = π Colors/Gradients \n"
|
579 |
+
"- **ai** = π€ AI Generated"
|
580 |
+
)
|
581 |
+
|
582 |
# Method A: Upload Image
|
583 |
with gr.Group(visible=False) as upload_group:
|
584 |
gr.Markdown("**π· Upload Your Background Image**")
|
|
|
586 |
label="Drop your background image here",
|
587 |
type="filepath"
|
588 |
)
|
589 |
+
|
590 |
# Method B: Professional Presets
|
591 |
with gr.Group(visible=True) as professional_group:
|
592 |
gr.Markdown("**π¨ Professional Background Presets**")
|
|
|
595 |
value="office_modern",
|
596 |
label="Select Professional Background"
|
597 |
)
|
598 |
+
|
599 |
# Method C: Colors/Gradients
|
600 |
with gr.Group(visible=False) as colors_group:
|
601 |
gr.Markdown("**π Custom Colors & Gradients**")
|
602 |
+
|
603 |
gradient_type = gr.Dropdown(
|
604 |
choices=["solid", "vertical", "horizontal", "diagonal", "radial", "soft_radial"],
|
605 |
value="vertical",
|
606 |
label="Gradient Type"
|
607 |
)
|
608 |
+
|
609 |
with gr.Row():
|
610 |
color1 = gr.ColorPicker(label="π¨ Color 1", value="#3498db")
|
611 |
color2 = gr.ColorPicker(label="π¨ Color 2", value="#2ecc71")
|
612 |
+
|
613 |
with gr.Row():
|
614 |
color3 = gr.ColorPicker(label="π¨ Color 3", value="#e74c3c")
|
615 |
use_third_color = gr.Checkbox(label="Use 3rd color", value=False)
|
616 |
+
|
617 |
# Method D: AI Generated
|
618 |
with gr.Group(visible=False) as ai_group:
|
619 |
gr.Markdown("**π€ AI Generated Background**")
|
620 |
+
|
621 |
ai_prompt = gr.Textbox(
|
622 |
label="Describe your background",
|
623 |
placeholder="e.g., 'modern office with plants', 'sunset over mountains', 'abstract tech pattern'",
|
624 |
lines=2
|
625 |
)
|
626 |
+
|
627 |
ai_style = gr.Dropdown(
|
628 |
choices=["photorealistic", "artistic", "abstract", "minimalist", "corporate", "nature"],
|
629 |
value="photorealistic",
|
630 |
label="Style"
|
631 |
)
|
632 |
+
|
633 |
with gr.Row():
|
634 |
generate_ai_btn = gr.Button("π¨ Generate Background", variant="secondary")
|
635 |
ai_generated_image = gr.Image(label="Generated Background", type="filepath", visible=False)
|
636 |
+
|
637 |
# Background method switching function
|
638 |
def switch_background_method(method):
|
639 |
return (
|
640 |
gr.update(visible=(method == "upload")), # upload_group
|
641 |
+
gr.update(visible=(method == "professional")), # professional_group
|
642 |
gr.update(visible=(method == "colors")), # colors_group
|
643 |
gr.update(visible=(method == "ai")) # ai_group
|
644 |
)
|
645 |
+
|
646 |
background_method.change(
|
647 |
fn=switch_background_method,
|
648 |
inputs=background_method,
|
649 |
outputs=[upload_group, professional_group, colors_group, ai_group]
|
650 |
)
|
651 |
+
|
652 |
gr.Markdown("### π¬ Processing Controls")
|
653 |
gr.Markdown("*First load the AI models, then process your video*")
|
654 |
+
|
655 |
with gr.Row():
|
656 |
load_models_btn = gr.Button(
|
657 |
+
"π Step 1: Load AI Models",
|
658 |
+
variant="secondary",
|
|
|
659 |
)
|
660 |
process_btn = gr.Button(
|
661 |
+
"β¨ Step 2: Process Video",
|
662 |
+
variant="primary",
|
|
|
663 |
)
|
664 |
+
|
665 |
# System status
|
666 |
status_text = gr.Textbox(
|
667 |
+
label="π§ System Status",
|
668 |
+
value=get_model_status(),
|
669 |
interactive=False,
|
670 |
lines=3
|
671 |
)
|
672 |
+
|
673 |
# Right column - Results and preview
|
674 |
with gr.Column(scale=1):
|
675 |
gr.Markdown("### π€ Your Results")
|
676 |
gr.Markdown("*Processed video will appear here after Step 2*")
|
677 |
+
|
678 |
video_output = gr.Video(
|
679 |
+
label="π¬ Your Processed Video",
|
680 |
height=400
|
681 |
)
|
682 |
+
|
683 |
result_text = gr.Textbox(
|
684 |
+
label="π Processing Results",
|
685 |
interactive=False,
|
686 |
lines=6,
|
687 |
placeholder="Processing status and results will appear here..."
|
688 |
)
|
689 |
+
|
690 |
gr.Markdown("### π¨ Professional Backgrounds Available")
|
691 |
+
|
692 |
# Create background preview grid
|
693 |
bg_preview_html = """
|
694 |
<div style='display: grid; grid-template-columns: repeat(3, 1fr); gap: 8px; padding: 10px; max-height: 400px; overflow-y: auto; border: 1px solid #ddd; border-radius: 8px;'>
|
695 |
"""
|
|
|
696 |
for key, config in PROFESSIONAL_BACKGROUNDS.items():
|
697 |
colors = config["colors"]
|
698 |
if len(colors) >= 2:
|
699 |
gradient = f"linear-gradient(45deg, {colors[0]}, {colors[-1]})"
|
700 |
else:
|
701 |
gradient = colors[0]
|
|
|
702 |
bg_preview_html += f"""
|
703 |
<div style='
|
704 |
padding: 12px 8px;
|
|
|
717 |
</div>
|
718 |
</div>
|
719 |
"""
|
|
|
720 |
bg_preview_html += "</div>"
|
721 |
gr.HTML(bg_preview_html)
|
722 |
+
|
723 |
# AI Background Generation Function
|
724 |
def generate_ai_background(prompt, style):
|
725 |
"""Generate AI background using procedural methods"""
|
726 |
if not prompt or not prompt.strip():
|
727 |
return None, "β Please enter a prompt"
|
728 |
+
|
729 |
try:
|
730 |
# Create procedural background based on prompt
|
731 |
bg_image = create_procedural_background(prompt, style, 1920, 1080)
|
732 |
+
|
733 |
if bg_image is not None:
|
|
|
|
|
734 |
with tempfile.NamedTemporaryFile(suffix='.png', delete=False) as tmp:
|
735 |
cv2.imwrite(tmp.name, bg_image)
|
736 |
return tmp.name, f"β
Background generated: {prompt[:50]}..."
|
|
|
739 |
except Exception as e:
|
740 |
logger.error(f"AI generation error: {e}")
|
741 |
return None, f"β Generation error: {str(e)}"
|
742 |
+
|
743 |
# Enhanced video processing function that handles all 4 methods
|
744 |
+
def process_video_enhanced(
|
745 |
+
video_path,
|
746 |
+
bg_method,
|
747 |
+
custom_img,
|
748 |
+
prof_choice,
|
749 |
+
grad_type,
|
750 |
+
color1, color2, color3, use_third,
|
751 |
+
ai_prompt, ai_style, ai_img,
|
752 |
+
progress: Optional[gr.Progress] = None
|
753 |
+
):
|
754 |
"""Process video with any of the 4 background methods using TWO-STAGE approach"""
|
755 |
+
|
756 |
if not models_loaded:
|
757 |
return None, "β Models not loaded. Click 'Load Models' first."
|
758 |
+
|
759 |
if not video_path:
|
760 |
return None, "β No video file provided."
|
761 |
+
|
762 |
try:
|
|
|
|
|
|
|
763 |
if bg_method == "upload":
|
764 |
if custom_img and os.path.exists(custom_img):
|
765 |
return process_video_hq(video_path, "custom", custom_img, progress)
|
766 |
else:
|
767 |
return None, "β No image uploaded. Please upload a background image."
|
768 |
+
|
769 |
elif bg_method == "professional":
|
770 |
if prof_choice and prof_choice in PROFESSIONAL_BACKGROUNDS:
|
771 |
return process_video_hq(video_path, prof_choice, None, progress)
|
772 |
else:
|
773 |
return None, f"β Invalid professional background: {prof_choice}"
|
774 |
+
|
775 |
elif bg_method == "colors":
|
|
|
776 |
try:
|
777 |
colors = [color1 or "#3498db", color2 or "#2ecc71"]
|
778 |
if use_third and color3:
|
779 |
colors.append(color3)
|
780 |
+
|
781 |
bg_config = {
|
782 |
"type": "gradient" if grad_type != "solid" else "color",
|
783 |
+
"colors": colors if grad_type != "solid" else [colors[0]],
|
784 |
"direction": grad_type if grad_type != "solid" else "vertical"
|
785 |
}
|
786 |
+
|
|
|
|
|
|
|
|
|
787 |
gradient_bg = create_professional_background(bg_config, 1920, 1080)
|
788 |
temp_path = f"/tmp/gradient_{int(time.time())}.png"
|
789 |
cv2.imwrite(temp_path, gradient_bg)
|
790 |
+
|
791 |
return process_video_hq(video_path, "custom", temp_path, progress)
|
792 |
except Exception as e:
|
793 |
return None, f"β Error creating gradient: {str(e)}"
|
794 |
+
|
795 |
elif bg_method == "ai":
|
796 |
if ai_img and os.path.exists(ai_img):
|
797 |
return process_video_hq(video_path, "custom", ai_img, progress)
|
798 |
else:
|
799 |
return None, "β No AI background generated. Click 'Generate Background' first."
|
800 |
+
|
801 |
else:
|
802 |
return None, f"β Unknown background method: {bg_method}"
|
803 |
+
|
804 |
except Exception as e:
|
805 |
logger.error(f"Enhanced processing error: {e}")
|
806 |
return None, f"β Processing error: {str(e)}"
|
807 |
+
|
808 |
+
# Wire up callbacks
|
809 |
load_models_btn.click(
|
810 |
fn=download_and_setup_models,
|
811 |
outputs=status_text
|
812 |
)
|
813 |
+
|
814 |
generate_ai_btn.click(
|
815 |
fn=generate_ai_background,
|
816 |
inputs=[ai_prompt, ai_style],
|
817 |
outputs=[ai_generated_image, status_text]
|
818 |
)
|
819 |
+
|
820 |
process_btn.click(
|
821 |
fn=process_video_enhanced,
|
822 |
inputs=[
|
823 |
video_input, # video_path
|
824 |
+
background_method, # bg_method
|
825 |
custom_background, # custom_img
|
826 |
professional_choice, # prof_choice
|
827 |
gradient_type, # grad_type
|
|
|
830 |
],
|
831 |
outputs=[video_output, result_text]
|
832 |
)
|
833 |
+
|
834 |
+
# Info
|
835 |
with gr.Accordion("βΉοΈ ENHANCED Quality & Features", open=False):
|
836 |
gr.Markdown("""
|
837 |
### π TWO-STAGE Cinema-Quality Features:
|
838 |
+
**Stage 1**: Original β Green Screen (SAM2 + MatAnyOne)
|
839 |
+
**Stage 2**: Green Screen β Final Background (professional chroma key)
|
840 |
+
|
841 |
+
**Background Methods**: Upload image / Professional presets / Gradients / AI generated
|
842 |
+
|
843 |
+
**Quality**: Edge feathering, gamma correction, mask cleanup, H.264 CRF 18, AAC 192kbps.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
844 |
""")
|
845 |
+
|
|
|
846 |
gr.Markdown("---")
|
847 |
+
gr.Markdown("*π¬ Cinema-Quality Video Background Replacement β TWO-STAGE pipeline*")
|
848 |
+
|
|
|
|
|
|
|
849 |
return demo
|
850 |
|
851 |
+
# ============================================================================ #
|
852 |
+
# MAIN
|
853 |
+
# ============================================================================ #
|
854 |
def main():
|
855 |
"""Main application entry point"""
|
856 |
try:
|
857 |
print("π¬ Cinema-Quality Video Background Replacement")
|
858 |
print("=" * 50)
|
859 |
+
|
860 |
+
# Initialize application paths
|
861 |
os.makedirs("/tmp/MyAvatar/My_Videos/", exist_ok=True)
|
862 |
os.makedirs(os.path.expanduser("~/.cache/sam2"), exist_ok=True)
|
863 |
+
|
864 |
print("π Features:")
|
865 |
+
print(" β’ SAM2 + MatAnyOne AI models")
|
866 |
print(" β’ TWO-STAGE processing (Original β Green Screen β Final)")
|
867 |
print(" β’ 4 background methods (Upload/Professional/Colors/AI)")
|
868 |
print(" β’ Multi-fallback loading system")
|
869 |
print(" β’ Cinema-quality processing")
|
870 |
print(" β’ Enhanced stability & error handling")
|
871 |
print("=" * 50)
|
872 |
+
|
873 |
# Create and launch interface
|
874 |
logger.info("π Creating Gradio interface...")
|
875 |
demo = create_interface()
|
876 |
+
|
877 |
logger.info("π Launching application...")
|
|
|
878 |
demo.launch(
|
879 |
server_name="0.0.0.0",
|
880 |
server_port=7860,
|
881 |
share=True,
|
882 |
show_error=True
|
883 |
)
|
884 |
+
|
885 |
except KeyboardInterrupt:
|
886 |
logger.info("π Application stopped by user")
|
887 |
print("\nπ Application stopped by user")
|