#!/usr/bin/env python3 # ============================================================================= # CHAPTER 0: INTRO & OVERVIEW # ============================================================================= """ Enhanced Video Background Replacement (SAM2 + MatAnyone + AI Backgrounds) - Strict tensor shapes for MatAnyone (image: 3xHxW, first-frame prob mask: 1xHxW) - First frame uses PROB path (no idx_mask / objects) to avoid assertion - Memory management & cleanup - SDXL / Playground / OpenAI backgrounds - Gradio UI with "CHAPTER" dividers - FIXED: Enhanced positioning with debug logging and coordinate precision """ # ============================================================================= # CHAPTER 1: IMPORTS & GLOBALS # ============================================================================= import os import sys import gc import cv2 import psutil import time import json import base64 import random import shutil import logging import traceback import subprocess import tempfile import threading from dataclasses import dataclass from contextlib import contextmanager from pathlib import Path from typing import Optional, Tuple, List import numpy as np from PIL import Image import gradio as gr from moviepy.editor import VideoFileClip logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") logger = logging.getLogger("bgx") # Environment tuning (safe defaults) os.environ.setdefault("CUDA_MODULE_LOADING", "LAZY") os.environ.setdefault("TORCH_CUDNN_V8_API_ENABLED", "1") os.environ.setdefault("PYTHONUNBUFFERED", "1") os.environ.setdefault("MKL_NUM_THREADS", "4") os.environ.setdefault("BFX_QUALITY", "max") os.environ.setdefault("PYTORCH_CUDA_ALLOC_CONF", "max_split_size_mb:128,roundup_power2_divisions:16") os.environ.setdefault("HYDRA_FULL_ERROR", "1") os.environ["OMP_NUM_THREADS"] = "2" # Paths BASE_DIR = Path(__file__).resolve().parent CHECKPOINTS = BASE_DIR / "checkpoints" TEMP_DIR = BASE_DIR / "temp" OUT_DIR = BASE_DIR / "outputs" BACKGROUND_DIR = OUT_DIR / "backgrounds" for p in (CHECKPOINTS, TEMP_DIR, OUT_DIR, BACKGROUND_DIR): p.mkdir(parents=True, exist_ok=True) # Torch/device try: import torch TORCH_AVAILABLE = True CUDA_AVAILABLE = torch.cuda.is_available() DEVICE = "cuda" if CUDA_AVAILABLE else "cpu" try: if torch.backends.cuda.is_built(): torch.backends.cuda.matmul.allow_tf32 = True if hasattr(torch.backends, "cudnn"): torch.backends.cudnn.benchmark = True torch.backends.cudnn.deterministic = False if CUDA_AVAILABLE: torch.cuda.set_per_process_memory_fraction(0.8) except Exception: pass except Exception: TORCH_AVAILABLE = False CUDA_AVAILABLE = False DEVICE = "cpu" # ============================================================================= # CHAPTER 2: UI CONSTANTS & UTILS # ============================================================================= GRADIENT_PRESETS = { "Blue Fade": ((128, 64, 0), (255, 128, 0)), "Sunset": ((255, 128, 0), (255, 0, 128)), "Green Field": ((64, 128, 64), (160, 255, 160)), "Slate": ((40, 40, 48), (96, 96, 112)), "Ocean": ((255, 140, 0), (255, 215, 0)), "Forest": ((34, 139, 34), (144, 238, 144)), "Sunset Pink": ((255, 182, 193), (255, 105, 180)), "Cool Blue": ((173, 216, 230), (0, 191, 255)), } AI_PROMPT_SUGGESTIONS = [ "Custom (write your own)", "modern minimalist office with soft lighting, clean desk, blurred background", "elegant conference room with large windows and city view", "contemporary workspace with plants and natural light", "luxury hotel lobby with marble floors and warm ambient lighting", "professional studio with clean white background and soft lighting", "modern corporate meeting room with glass walls and city skyline", "sophisticated home office with bookshelf and warm wood tones", "sleek coworking space with industrial design elements", "abstract geometric patterns in blue and gold, modern art style", "soft watercolor texture with pastel colors, dreamy atmosphere", ] def _make_vertical_gradient(width: int, height: int, c1, c2) -> np.ndarray: width = max(1, int(width)) height = max(1, int(height)) top = np.array(c1, dtype=np.float32) bot = np.array(c2, dtype=np.float32) rows = np.linspace(top, bot, num=height, dtype=np.float32) grad = np.repeat(rows[:, None, :], repeats=width, axis=1) return np.clip(grad, 0, 255).astype(np.uint8) def run_ffmpeg(args: list, fail_ok=False) -> bool: cmd = ["ffmpeg", "-y", "-hide_banner", "-loglevel", "error"] + args try: subprocess.run(cmd, check=True, capture_output=True) return True except Exception as e: if not fail_ok: logger.error(f"ffmpeg failed: {e}") return False def write_video_h264(clip, path: str, fps: Optional[int] = None, crf: int = 18, preset: str = "medium"): fps = fps or max(1, int(round(getattr(clip, "fps", None) or 24))) clip.write_videofile( path, audio=False, fps=fps, codec="libx264", preset=preset, ffmpeg_params=["-crf", str(crf), "-pix_fmt", "yuv420p", "-profile:v", "high", "-movflags", "+faststart"], logger=None, verbose=False, ) def download_file(url: str, dest: Path, name: str) -> bool: if dest.exists(): logger.info(f"{name} already exists") return True try: import requests logger.info(f"Downloading {name} ...") with requests.get(url, stream=True, timeout=300) as r: r.raise_for_status() with open(dest, "wb") as f: for chunk in r.iter_content(chunk_size=8192): if chunk: f.write(chunk) return True except Exception as e: logger.error(f"Failed to download {name}: {e}") if dest.exists(): try: dest.unlink() except Exception: pass return False def ensure_repo(repo_name: str, git_url: str) -> Optional[Path]: repo_path = CHECKPOINTS / f"{repo_name}_repo" if not repo_path.exists(): try: subprocess.run(["git", "clone", "--depth", "1", git_url, str(repo_path)], check=True, timeout=300, capture_output=True) logger.info(f"{repo_name} cloned") except Exception as e: logger.error(f"Failed to clone {repo_name}: {e}") return None repo_str = str(repo_path) if repo_str not in sys.path: sys.path.insert(0, repo_str) return repo_path def _reset_hydra(): try: from hydra.core.global_hydra import GlobalHydra if GlobalHydra().is_initialized(): GlobalHydra.instance().clear() except Exception: pass # ============================================================================= # CHAPTER 3: MEMORY MANAGER # ============================================================================= @dataclass class MemoryStats: cpu_percent: float cpu_memory_mb: float gpu_memory_mb: float = 0.0 gpu_memory_reserved_mb: float = 0.0 temp_files_count: int = 0 temp_files_size_mb: float = 0.0 class MemoryManager: def __init__(self): self.temp_files: List[str] = [] self.cleanup_lock = threading.Lock() self.torch_available = TORCH_AVAILABLE self.cuda_available = CUDA_AVAILABLE def get_memory_stats(self) -> MemoryStats: process = psutil.Process() cpu_percent = psutil.cpu_percent(interval=0.1) cpu_memory_mb = process.memory_info().rss / (1024 * 1024) gpu_memory_mb = 0.0 gpu_memory_reserved_mb = 0.0 if self.torch_available and self.cuda_available: try: import torch gpu_memory_mb = torch.cuda.memory_allocated() / (1024 * 1024) gpu_memory_reserved_mb = torch.cuda.memory_reserved() / (1024 * 1024) except Exception: pass temp_count, temp_size_mb = 0, 0.0 for tf in self.temp_files: if os.path.exists(tf): temp_count += 1 try: temp_size_mb += os.path.getsize(tf) / (1024 * 1024) except Exception: pass return MemoryStats(cpu_percent, cpu_memory_mb, gpu_memory_mb, gpu_memory_reserved_mb, temp_count, temp_size_mb) def register_temp_file(self, path: str): with self.cleanup_lock: if path not in self.temp_files: self.temp_files.append(path) def cleanup_temp_files(self): with self.cleanup_lock: cleaned = 0 for tf in self.temp_files[:]: try: if os.path.isdir(tf): shutil.rmtree(tf, ignore_errors=True) elif os.path.exists(tf): os.unlink(tf) cleaned += 1 except Exception as e: logger.warning(f"Failed to cleanup {tf}: {e}") finally: try: self.temp_files.remove(tf) except Exception: pass if cleaned: logger.info(f"Cleaned {cleaned} temp paths") def aggressive_cleanup(self): logger.info("Aggressive cleanup...") gc.collect() if self.torch_available and self.cuda_available: try: import torch torch.cuda.empty_cache() torch.cuda.synchronize() except Exception: pass self.cleanup_temp_files() gc.collect() @contextmanager def mem_context(self, name="op"): stats = self.get_memory_stats() logger.info(f"Start {name} | CPU {stats.cpu_memory_mb:.1f}MB, GPU {stats.gpu_memory_mb:.1f}MB") try: yield self finally: self.aggressive_cleanup() stats = self.get_memory_stats() logger.info(f"End {name} | CPU {stats.cpu_memory_mb:.1f}MB, GPU {stats.gpu_memory_mb:.1f}MB") memory_manager = MemoryManager() # ============================================================================= # CHAPTER 4: SYSTEM STATE # ============================================================================= class SystemState: def __init__(self): self.torch_available = TORCH_AVAILABLE self.cuda_available = CUDA_AVAILABLE self.device = DEVICE self.sam2_ready = False self.matanyone_ready = False self.sam2_error = None self.matanyone_error = None def status_text(self) -> str: stats = memory_manager.get_memory_stats() return ( "=== SYSTEM STATUS ===\n" f"PyTorch: {'✅' if self.torch_available else '❌'}\n" f"CUDA: {'✅' if self.cuda_available else '❌'}\n" f"Device: {self.device}\n" f"SAM2: {'✅' if self.sam2_ready else ('❌' if self.sam2_error else '⏳')}\n" f"MatAnyone: {'✅' if self.matanyone_ready else ('❌' if self.matanyone_error else '⏳')}\n\n" "=== MEMORY ===\n" f"CPU: {stats.cpu_percent:.1f}% ({stats.cpu_memory_mb:.1f} MB)\n" f"GPU: {stats.gpu_memory_mb:.1f} MB (Reserved {stats.gpu_memory_reserved_mb:.1f} MB)\n" f"Temp: {stats.temp_files_count} files ({stats.temp_files_size_mb:.1f} MB)\n" ) state = SystemState() # ============================================================================= # CHAPTER 5: SAM2 HANDLER (CUDA-only) # ============================================================================= class SAM2Handler: def __init__(self): self.predictor = None self.initialized = False def initialize(self) -> bool: if not (TORCH_AVAILABLE and CUDA_AVAILABLE): state.sam2_error = "SAM2 requires CUDA" return False with memory_manager.mem_context("SAM2 init"): try: _reset_hydra() repo_path = ensure_repo("sam2", "https://github.com/facebookresearch/segment-anything-2.git") if not repo_path: state.sam2_error = "Clone failed" return False ckpt = CHECKPOINTS / "sam2.1_hiera_large.pt" url = "https://dl.fbaipublicfiles.com/segment_anything_2/092824/sam2.1_hiera_large.pt" if not download_file(url, ckpt, "SAM2 Large"): state.sam2_error = "SAM2 ckpt download failed" return False from hydra.core.global_hydra import GlobalHydra from hydra import initialize_config_dir from sam2.build_sam import build_sam2 from sam2.sam2_image_predictor import SAM2ImagePredictor config_dir = (repo_path / "sam2" / "configs").as_posix() if GlobalHydra().is_initialized(): GlobalHydra.instance().clear() initialize_config_dir(config_dir=config_dir, version_base=None) model = build_sam2("sam2.1/sam2.1_hiera_l.yaml", str(ckpt), device="cuda") self.predictor = SAM2ImagePredictor(model) # Smoke test test = np.zeros((64, 64, 3), dtype=np.uint8) self.predictor.set_image(test) masks, scores, _ = self.predictor.predict( point_coords=np.array([[32, 32]]), point_labels=np.ones(1, dtype=np.int64), multimask_output=True, ) ok = masks is not None and len(masks) > 0 self.initialized = ok state.sam2_ready = ok if not ok: state.sam2_error = "SAM2 verify failed" return ok except Exception as e: state.sam2_error = f"SAM2 init error: {e}" return False def create_mask(self, image_rgb: np.ndarray) -> Optional[np.ndarray]: if not self.initialized: return None with memory_manager.mem_context("SAM2 mask"): try: self.predictor.set_image(image_rgb) h, w = image_rgb.shape[:2] strategies = [ np.array([[w // 2, h // 2]]), np.array([[w // 2, h // 3]]), np.array([[w // 2, h // 3], [w // 2, (2 * h) // 3]]), ] best, best_score = None, -1.0 for pc in strategies: masks, scores, _ = self.predictor.predict( point_coords=pc, point_labels=np.ones(len(pc), dtype=np.int64), multimask_output=True, ) if masks is not None and len(masks) > 0: i = int(np.argmax(scores)) sc = float(scores[i]) if sc > best_score: best_score, best = sc, masks[i] if best is None: return None mask_u8 = (best * 255).astype(np.uint8) k = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (5, 5)) mask_clean = cv2.morphologyEx(mask_u8, cv2.MORPH_CLOSE, k) mask_clean = cv2.morphologyEx(mask_clean, cv2.MORPH_OPEN, k) mask_clean = cv2.GaussianBlur(mask_clean, (3, 3), 1.0) return mask_clean except Exception as e: logger.error(f"SAM2 mask error: {e}") return None # ============================================================================= # CHAPTER 6: MATANYONE HANDLER (FIXED - Uses existing matanyone_fixed files) # ============================================================================= class MatAnyoneHandler: """ FIXED MatAnyone handler using existing matanyone_fixed files """ def __init__(self): self.core = None self.initialized = False # ----- tensor helpers ----- def _to_chw_float(self, img01: np.ndarray) -> "torch.Tensor": """img01: HxWx3 in [0,1] -> torch float (3,H,W) on DEVICE (no batch).""" assert img01.ndim == 3 and img01.shape[2] == 3, f"Expected HxWx3, got {img01.shape}" t = torch.from_numpy(img01.transpose(2, 0, 1)).contiguous().float() # (3,H,W) return t.to(DEVICE, non_blocking=CUDA_AVAILABLE) def _prob_hw_from_mask_u8(self, mask_u8: np.ndarray, w: int, h: int) -> "torch.Tensor": """mask_u8: HxW -> torch float (H,W) in [0,1] on DEVICE (no batch, no channel).""" if mask_u8.shape[0] != h or mask_u8.shape[1] != w: mask_u8 = cv2.resize(mask_u8, (w, h), interpolation=cv2.INTER_NEAREST) prob = (mask_u8.astype(np.float32) / 255.0) # (H,W) t = torch.from_numpy(prob).contiguous().float() return t.to(DEVICE, non_blocking=CUDA_AVAILABLE) def _prob_1hw_from_mask_u8(self, mask_u8: np.ndarray, w: int, h: int) -> "torch.Tensor": """Optional: 1xHxW (channel-first, still unbatched).""" if mask_u8.shape[0] != h or mask_u8.shape[1] != w: mask_u8 = cv2.resize(mask_u8, (w, h), interpolation=cv2.INTER_NEAREST) prob = (mask_u8.astype(np.float32) / 255.0)[None, ...] # (1,H,W) t = torch.from_numpy(prob).contiguous().float() return t.to(DEVICE, non_blocking=CUDA_AVAILABLE) def _alpha_to_u8_hw(self, alpha_like) -> np.ndarray: """ Accepts torch / numpy / tuple(list) outputs. Returns uint8 HxW (0..255). Squeezes common shapes down to HxW. """ if isinstance(alpha_like, (list, tuple)) and len(alpha_like) > 1: alpha_like = alpha_like[1] # (indices, probs) -> take probs if isinstance(alpha_like, torch.Tensor): t = alpha_like.detach() if t.is_cuda: t = t.cpu() a = t.float().clamp(0, 1).numpy() else: a = np.asarray(alpha_like, dtype=np.float32) a = np.clip(a, 0, 1) a = np.squeeze(a) if a.ndim == 3 and a.shape[0] >= 1: # (1,H,W) -> (H,W) a = a[0] if a.ndim != 2: raise ValueError(f"Alpha must be HxW; got {a.shape}") return np.clip(a * 255.0, 0, 255).astype(np.uint8) def initialize(self) -> bool: """ FIXED MatAnyone initialization using existing matanyone_fixed files """ if not TORCH_AVAILABLE: state.matanyone_error = "PyTorch required" return False with memory_manager.mem_context("MatAnyone init"): try: # Use existing matanyone_fixed directory local_matanyone = BASE_DIR / "matanyone_fixed" if not local_matanyone.exists(): state.matanyone_error = "matanyone_fixed directory not found" return False # Add the fixed matanyone path to Python path matanyone_str = str(local_matanyone) if matanyone_str not in sys.path: sys.path.insert(0, matanyone_str) # Import fixed modules try: from inference.inference_core import InferenceCore from utils.get_default_model import get_matanyone_model except Exception as e: state.matanyone_error = f"Import error: {e}" return False # Download model checkpoint if needed ckpt = CHECKPOINTS / "matanyone.pth" if not ckpt.exists(): url = "https://github.com/pq-yang/MatAnyone/releases/download/v1.0.0/matanyone.pth" if not download_file(url, ckpt, "MatAnyone"): logger.warning("MatAnyone checkpoint download failed, using random weights") # Load model using fixed interface net = get_matanyone_model(str(ckpt), device=DEVICE) if net is None: state.matanyone_error = "Model creation failed" return False # Create inference core with fixed implementation self.core = InferenceCore(net) self.initialized = True state.matanyone_ready = True logger.info("Fixed MatAnyone initialized successfully") return True except Exception as e: state.matanyone_error = f"MatAnyone init error: {e}" logger.error(f"MatAnyone initialization failed: {e}") return False def _try_step_variants_seed(self, img_chw_t: "torch.Tensor", prob_hw_t: "torch.Tensor", prob_1hw_t: "torch.Tensor"): """ Simplified step variants using fixed MatAnyone """ # The fixed MatAnyone handles tensor format internally try: return self.core.step(img_chw_t, prob_hw_t) except Exception as e: try: return self.core.step(img_chw_t, prob_1hw_t) except Exception as e2: # Final fallback: no probability guidance return self.core.step(img_chw_t) def _try_step_variants_noseed(self, img_chw_t: "torch.Tensor"): """ Simplified noseed variants using fixed MatAnyone """ return self.core.step(img_chw_t) # ----- video matting using first-frame PROB mask -------------------------- def process_video(self, input_path: str, mask_path: str, output_path: str) -> str: """ Produce a single-channel alpha mp4 matching input fps & size. First frame: pass a soft seed prob (~HW) alongside the image. Remaining frames: call step(image) only. """ if not self.initialized or self.core is None: raise RuntimeError("MatAnyone not initialized") out_dir = Path(output_path) out_dir.mkdir(parents=True, exist_ok=True) alpha_path = out_dir / "alpha.mp4" cap = cv2.VideoCapture(input_path) if not cap.isOpened(): raise RuntimeError("Could not open input video") fps = cap.get(cv2.CAP_PROP_FPS) or 24.0 w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) # soft seed prob - prepare tensor versions only seed_mask = cv2.imread(mask_path, cv2.IMREAD_GRAYSCALE) if seed_mask is None: cap.release() raise RuntimeError("Seed mask read failed") prob_hw_t = self._prob_hw_from_mask_u8(seed_mask, w, h) # (H,W) torch prob_1hw_t = self._prob_1hw_from_mask_u8(seed_mask, w, h) # (1,H,W) torch # temp frames tmp_dir = TEMP_DIR / f"ma_{int(time.time())}_{random.randint(1000,9999)}" tmp_dir.mkdir(parents=True, exist_ok=True) memory_manager.register_temp_file(str(tmp_dir)) frame_idx = 0 # --- first frame (with soft prob) --- ok, frame_bgr = cap.read() if not ok or frame_bgr is None: cap.release() raise RuntimeError("Empty first frame") frame_rgb01 = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0 img_chw_t = self._to_chw_float(frame_rgb01) # (3,H,W) torch with torch.no_grad(): out_prob = self._try_step_variants_seed( img_chw_t, prob_hw_t, prob_1hw_t ) alpha_u8 = self._alpha_to_u8_hw(out_prob) cv2.imwrite(str(tmp_dir / f"{frame_idx:06d}.png"), alpha_u8) frame_idx += 1 # --- remaining frames (no seed) --- while True: ok, frame_bgr = cap.read() if not ok or frame_bgr is None: break frame_rgb01 = cv2.cvtColor(frame_bgr, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0 img_chw_t = self._to_chw_float(frame_rgb01) with torch.no_grad(): out_prob = self._try_step_variants_noseed(img_chw_t) alpha_u8 = self._alpha_to_u8_hw(out_prob) cv2.imwrite(str(tmp_dir / f"{frame_idx:06d}.png"), alpha_u8) frame_idx += 1 cap.release() # --- encode PNGs → alpha mp4 --- list_file = tmp_dir / "list.txt" with open(list_file, "w") as f: for i in range(frame_idx): f.write(f"file '{(tmp_dir / f'{i:06d}.png').as_posix()}'\n") cmd = [ "ffmpeg", "-y", "-hide_banner", "-loglevel", "error", "-f", "concat", "-safe", "0", "-r", f"{fps:.6f}", "-i", str(list_file), "-vf", f"format=gray,scale={w}:{h}:flags=area", "-pix_fmt", "yuv420p", "-c:v", "libx264", "-preset", "medium", "-crf", "18", str(alpha_path) ] subprocess.run(cmd, check=True) return str(alpha_path) # ============================================================================= # CHAPTER 7: AI BACKGROUNDS # ============================================================================= def _maybe_enable_xformers(pipe): try: pipe.enable_xformers_memory_efficient_attention() except Exception: pass def _setup_memory_efficient_pipeline(pipe, require_gpu: bool): _maybe_enable_xformers(pipe) if not require_gpu: try: if hasattr(pipe, "enable_attention_slicing"): pipe.enable_attention_slicing("auto") if hasattr(pipe, "enable_model_cpu_offload"): pipe.enable_model_cpu_offload() if hasattr(pipe, "enable_sequential_cpu_offload"): pipe.enable_sequential_cpu_offload() except Exception: pass def generate_sdxl_background(width:int, height:int, prompt:str, steps:int=30, guidance:float=7.0, seed:Optional[int]=None, require_gpu:bool=False) -> str: if not TORCH_AVAILABLE: raise RuntimeError("PyTorch required for SDXL") with memory_manager.mem_context("SDXL background"): try: from diffusers import StableDiffusionXLPipeline except ImportError as e: raise RuntimeError("Install diffusers/transformers/accelerate") from e if require_gpu and not CUDA_AVAILABLE: raise RuntimeError("Force GPU enabled but CUDA not available") device = "cuda" if CUDA_AVAILABLE else "cpu" torch_dtype = torch.float16 if CUDA_AVAILABLE else torch.float32 generator = torch.Generator(device=device) if seed is None: seed = random.randint(0, 2**31 - 1) generator.manual_seed(int(seed)) pipe = StableDiffusionXLPipeline.from_pretrained( "stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch_dtype, add_watermarker=False, ).to(device) _setup_memory_efficient_pipeline(pipe, require_gpu) enhanced = f"{prompt}, professional studio lighting, high detail, clean composition" img = pipe( prompt=enhanced, height=int(height), width=int(width), num_inference_steps=int(steps), guidance_scale=float(guidance), generator=generator ).images[0] out = TEMP_DIR / f"sdxl_bg_{int(time.time())}_{seed or 0:08d}.jpg" img.save(out, quality=95, optimize=True) memory_manager.register_temp_file(str(out)) del pipe, img return str(out) def generate_playground_v25_background(width:int, height:int, prompt:str, steps:int=30, guidance:float=7.0, seed:Optional[int]=None, require_gpu:bool=False) -> str: if not TORCH_AVAILABLE: raise RuntimeError("PyTorch required for Playground v2.5") with memory_manager.mem_context("Playground v2.5 background"): try: from diffusers import DiffusionPipeline except ImportError as e: raise RuntimeError("Install diffusers/transformers/accelerate") from e if require_gpu and not CUDA_AVAILABLE: raise RuntimeError("Force GPU enabled but CUDA not available") device = "cuda" if CUDA_AVAILABLE else "cpu" torch_dtype = torch.float16 if CUDA_AVAILABLE else torch.float32 generator = torch.Generator(device=device) if seed is None: seed = random.randint(0, 2**31 - 1) generator.manual_seed(int(seed)) repo_id = "playgroundai/playground-v2.5-1024px-aesthetic" pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=torch_dtype).to(device) _setup_memory_efficient_pipeline(pipe, require_gpu) enhanced = f"{prompt}, professional quality, soft light, minimal distractions" img = pipe( prompt=enhanced, height=int(height), width=int(width), num_inference_steps=int(steps), guidance_scale=float(guidance), generator=generator ).images[0] out = TEMP_DIR / f"pg25_bg_{int(time.time())}_{seed or 0:08d}.jpg" img.save(out, quality=95, optimize=True) memory_manager.register_temp_file(str(out)) del pipe, img return str(out) def generate_sd15_background(width:int, height:int, prompt:str, steps:int=25, guidance:float=7.5, seed:Optional[int]=None, require_gpu:bool=False) -> str: if not TORCH_AVAILABLE: raise RuntimeError("PyTorch required for SD 1.5") with memory_manager.mem_context("SD1.5 background"): try: from diffusers import StableDiffusionPipeline except ImportError as e: raise RuntimeError("Install diffusers/transformers/accelerate") from e if require_gpu and not CUDA_AVAILABLE: raise RuntimeError("Force GPU enabled but CUDA not available") device = "cuda" if CUDA_AVAILABLE else "cpu" torch_dtype = torch.float16 if CUDA_AVAILABLE else torch.float32 generator = torch.Generator(device=device) if seed is None: seed = random.randint(0, 2**31 - 1) generator.manual_seed(int(seed)) pipe = StableDiffusionPipeline.from_pretrained( "runwayml/stable-diffusion-v1-5", torch_dtype=torch_dtype, safety_checker=None, requires_safety_checker=False ).to(device) _setup_memory_efficient_pipeline(pipe, require_gpu) enhanced = f"{prompt}, professional background, clean composition" img = pipe( prompt=enhanced, height=int(height), width=int(width), num_inference_steps=int(steps), guidance_scale=float(guidance), generator=generator ).images[0] out = TEMP_DIR / f"sd15_bg_{int(time.time())}_{seed or 0:08d}.jpg" img.save(out, quality=95, optimize=True) memory_manager.register_temp_file(str(out)) del pipe, img return str(out) def generate_openai_background(width:int, height:int, prompt:str, api_key:str, model:str="gpt-image-1") -> str: if not api_key or not isinstance(api_key, str) or len(api_key) < 10: raise RuntimeError("Missing or invalid OpenAI API key") with memory_manager.mem_context("OpenAI background"): target = "1024x1024" url = "https://api.openai.com/v1/images/generations" headers = {"Authorization": f"Bearer {api_key}", "Content-Type": "application/json"} body = {"model": model, "prompt": f"{prompt}, professional background, studio lighting, minimal distractions, high detail", "size": target, "n": 1, "quality": "high"} import requests r = requests.post(url, headers=headers, data=json.dumps(body), timeout=120) if r.status_code != 200: raise RuntimeError(f"OpenAI API error: {r.status_code} {r.text}") data = r.json() b64 = data["data"][0]["b64_json"] raw = base64.b64decode(b64) tmp_png = TEMP_DIR / f"openai_raw_{int(time.time())}_{random.randint(1000,9999)}.png" with open(tmp_png, "wb") as f: f.write(raw) img = Image.open(tmp_png).convert("RGB").resize((int(width), int(height)), Image.LANCZOS) out = TEMP_DIR / f"openai_bg_{int(time.time())}_{random.randint(1000,9999)}.jpg" img.save(out, quality=95, optimize=True) try: os.unlink(tmp_png) except Exception: pass memory_manager.register_temp_file(str(out)) return str(out) def generate_ai_background_router(width:int, height:int, prompt:str, model:str="SDXL", steps:int=30, guidance:float=7.0, seed:Optional[int]=None, openai_key:Optional[str]=None, require_gpu:bool=False) -> str: try: if model == "OpenAI (gpt-image-1)": if not openai_key: raise RuntimeError("OpenAI API key not provided") return generate_openai_background(width, height, prompt, openai_key, model="gpt-image-1") elif model == "Playground v2.5": return generate_playground_v25_background(width, height, prompt, steps, guidance, seed, require_gpu) elif model == "SDXL": return generate_sdxl_background(width, height, prompt, steps, guidance, seed, require_gpu) else: return generate_sd15_background(width, height, prompt, steps, guidance, seed, require_gpu) except Exception as e: logger.warning(f"{model} generation failed: {e}; falling back to SD1.5/gradient") try: return generate_sd15_background(width, height, prompt, steps, guidance, seed, require_gpu=False) except Exception: grad = _make_vertical_gradient(width, height, (235, 240, 245), (210, 220, 230)) out = TEMP_DIR / f"bg_fallback_{int(time.time())}.jpg" cv2.imwrite(str(out), grad) memory_manager.register_temp_file(str(out)) return str(out) # ============================================================================= # CHAPTER 8: CHUNKED PROCESSOR (optional) # ============================================================================= class ChunkedVideoProcessor: def __init__(self, chunk_size_frames: int = 60): self.chunk_size = int(chunk_size_frames) def _extract_chunk(self, video_path: str, start_frame: int, end_frame: int, fps: float) -> str: chunk_path = str(TEMP_DIR / f"chunk_{start_frame}_{end_frame}_{random.randint(1000,9999)}.mp4") start_time = start_frame / fps duration = max(0.001, (end_frame - start_frame) / fps) cmd = [ "ffmpeg", "-y", "-hide_banner", "-loglevel", "error", "-ss", f"{start_time:.6f}", "-i", video_path, "-t", f"{duration:.6f}", "-vf", "scale=trunc(iw/2)*2:trunc(ih/2)*2", "-c:v", "libx264", "-preset", "veryfast", "-crf", "20", "-an", chunk_path ] subprocess.run(cmd, check=True) return chunk_path def _merge_chunks(self, chunk_paths: List[str], fps: float, width: int, height: int) -> str: if not chunk_paths: raise ValueError("No chunks to merge") if len(chunk_paths) == 1: return chunk_paths[0] concat_file = TEMP_DIR / f"concat_{random.randint(1000,9999)}.txt" with open(concat_file, "w") as f: for c in chunk_paths: f.write(f"file '{c}'\n") out = TEMP_DIR / f"merged_{random.randint(1000,9999)}.mp4" cmd = ["ffmpeg", "-y", "-hide_banner", "-loglevel", "error", "-f", "concat", "-safe", "0", "-i", str(concat_file), "-c", "copy", str(out)] subprocess.run(cmd, check=True) return str(out) def process_video_chunks(self, video_path: str, processor_func, **kwargs) -> str: cap = cv2.VideoCapture(video_path) total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT)) fps = cap.get(cv2.CAP_PROP_FPS) or 24.0 width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH)) height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT)) cap.release() processed: List[str] = [] for start in range(0, total, self.chunk_size): end = min(start + self.chunk_size, total) with memory_manager.mem_context(f"chunk {start}-{end}"): ch = self._extract_chunk(video_path, start, end, fps) memory_manager.register_temp_file(ch) out = processor_func(ch, **kwargs) memory_manager.register_temp_file(out) processed.append(out) return self._merge_chunks(processed, fps, width, height) # ============================================================================= # CHAPTER 9: MAIN PIPELINE (SAM2 → MatAnyone → Composite) - FIXED VERSION # ============================================================================= def process_video_main( video_path: str, background_path: Optional[str] = None, trim_duration: Optional[float] = None, crf: int = 18, preserve_audio_flag: bool = True, placement: Optional[dict] = None, use_chunked_processing: bool = False, progress: gr.Progress = gr.Progress(track_tqdm=True), ) -> Tuple[Optional[str], str]: messages: List[str] = [] with memory_manager.mem_context("Pipeline"): try: progress(0, desc="Initializing models") sam2 = SAM2Handler() matanyone = MatAnyoneHandler() if not sam2.initialize(): return None, f"SAM2 init failed: {state.sam2_error}" if not matanyone.initialize(): return None, f"MatAnyone init failed: {state.matanyone_error}" messages.append("✅ SAM2 & MatAnyone initialized") progress(0.1, desc="Preparing video") input_video = video_path # Optional trim if trim_duration and float(trim_duration) > 0: trimmed = TEMP_DIR / f"trimmed_{int(time.time())}_{random.randint(1000,9999)}.mp4" memory_manager.register_temp_file(str(trimmed)) with VideoFileClip(video_path) as clip: d = min(float(trim_duration), float(clip.duration or trim_duration)) sub = clip.subclip(0, d) write_video_h264(sub, str(trimmed), crf=int(crf)) sub.close() input_video = str(trimmed) messages.append(f"✂️ Trimmed to {d:.1f}s") else: with VideoFileClip(video_path) as clip: messages.append(f"🎞️ Full video: {clip.duration:.1f}s") progress(0.2, desc="Creating SAM2 mask") cap = cv2.VideoCapture(input_video) ret, first_frame = cap.read() cap.release() if not ret or first_frame is None: return None, "Could not read video" h, w = first_frame.shape[:2] rgb0 = cv2.cvtColor(first_frame, cv2.COLOR_BGR2RGB) mask = sam2.create_mask(rgb0) if mask is None: return None, "SAM2 mask failed" mask_path = TEMP_DIR / f"mask_{int(time.time())}_{random.randint(1000,9999)}.png" memory_manager.register_temp_file(str(mask_path)) cv2.imwrite(str(mask_path), mask) messages.append("✅ Person mask created") progress(0.35, desc="Matting video") if use_chunked_processing: chunker = ChunkedVideoProcessor(chunk_size_frames=60) alpha_video = chunker.process_video_chunks( input_video, lambda chunk_path, **_k: matanyone.process_video( input_path=chunk_path, mask_path=str(mask_path), output_path=str(TEMP_DIR / f"matanyone_chunk_{int(time.time())}_{random.randint(1000,9999)}") ) ) memory_manager.register_temp_file(alpha_video) else: out_dir = TEMP_DIR / f"matanyone_out_{int(time.time())}_{random.randint(1000,9999)}" out_dir.mkdir(parents=True, exist_ok=True) memory_manager.register_temp_file(str(out_dir)) alpha_video = matanyone.process_video( input_path=input_video, mask_path=str(mask_path), output_path=str(out_dir) ) if not alpha_video or not os.path.exists(alpha_video): return None, "MatAnyone did not produce alpha video" messages.append("✅ Alpha video generated") progress(0.55, desc="Preparing background") original_clip = VideoFileClip(input_video) alpha_clip = VideoFileClip(alpha_video) if background_path and os.path.exists(background_path): messages.append("🖼️ Using background file") bg_bgr = cv2.imread(background_path) bg_bgr = cv2.resize(bg_bgr, (w, h)) bg_rgb = cv2.cvtColor(bg_bgr, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0 else: messages.append("🖼️ Using gradient background") grad = _make_vertical_gradient(w, h, (200, 205, 215), (160, 170, 190)) bg_rgb = cv2.cvtColor(grad, cv2.COLOR_BGR2RGB).astype(np.float32) / 255.0 # FIXED: Enhanced placement parameters with validation and debugging placement = placement or {} px = max(0.0, min(1.0, float(placement.get("x", 0.5)))) py = max(0.0, min(1.0, float(placement.get("y", 0.75)))) ps = max(0.3, min(2.0, float(placement.get("scale", 1.0)))) feather_px = max(0, min(50, int(placement.get("feather", 3)))) # Debug logging for placement parameters logger.info(f"POSITIONING DEBUG: px={px:.3f}, py={py:.3f}, ps={ps:.3f}, feather={feather_px}") logger.info(f"VIDEO DIMENSIONS: {w}x{h}") logger.info(f"TARGET CENTER: ({int(px * w)}, {int(py * h)})") frame_count = 0 def composite_frame(get_frame, t): nonlocal frame_count frame_count += 1 # Get original frame frame = get_frame(t).astype(np.float32) / 255.0 hh, ww = frame.shape[:2] # FIXED: Better alpha temporal synchronization alpha_duration = getattr(alpha_clip, 'duration', None) if alpha_duration and alpha_duration > 0: # Ensure we don't go beyond alpha video duration alpha_t = min(t, alpha_duration - 0.01) alpha_t = max(0.0, alpha_t) else: alpha_t = 0.0 try: a = alpha_clip.get_frame(alpha_t) # Handle multi-channel alpha if a.ndim == 3: a = a[:, :, 0] a = a.astype(np.float32) / 255.0 # FIXED: Ensure alpha matches frame dimensions exactly if a.shape != (hh, ww): logger.warning(f"Alpha size mismatch: {a.shape} vs {(hh, ww)}, resizing...") a = cv2.resize(a, (ww, hh), interpolation=cv2.INTER_LINEAR) except Exception as e: logger.error(f"Alpha frame error at t={t:.3f}: {e}") return (bg_rgb * 255).astype(np.uint8) # FIXED: Calculate scaled dimensions with better rounding sw = max(1, round(ww * ps)) # Use round instead of int for better precision sh = max(1, round(hh * ps)) # FIXED: Scale both frame and alpha consistently try: fg_scaled = cv2.resize(frame, (sw, sh), interpolation=cv2.INTER_AREA if ps < 1.0 else cv2.INTER_LINEAR) a_scaled = cv2.resize(a, (sw, sh), interpolation=cv2.INTER_AREA if ps < 1.0 else cv2.INTER_LINEAR) except Exception as e: logger.error(f"Scaling error: {e}") return (bg_rgb * 255).astype(np.uint8) # Create canvases fg_canvas = np.zeros_like(frame, dtype=np.float32) a_canvas = np.zeros((hh, ww), dtype=np.float32) # FIXED: More precise center calculations cx = round(px * ww) cy = round(py * hh) # FIXED: Use floor division for consistent centering x0 = cx - sw // 2 y0 = cy - sh // 2 # Debug logging for first few frames if frame_count <= 3: logger.info(f"FRAME {frame_count}: scaled_size=({sw}, {sh}), center=({cx}, {cy}), top_left=({x0}, {y0})") # FIXED: Robust bounds checking with edge case handling xs0 = max(0, x0) ys0 = max(0, y0) xs1 = min(ww, x0 + sw) ys1 = min(hh, y0 + sh) # Check for valid placement region if xs1 <= xs0 or ys1 <= ys0: if frame_count <= 3: logger.warning(f"Subject outside bounds: dest=({xs0},{ys0})-({xs1},{ys1})") return (bg_rgb * 255).astype(np.uint8) # FIXED: Calculate source region with bounds validation src_x0 = xs0 - x0 # Will be 0 if x0 >= 0, positive if x0 < 0 src_y0 = ys0 - y0 # Will be 0 if y0 >= 0, positive if y0 < 0 src_x1 = src_x0 + (xs1 - xs0) src_y1 = src_y0 + (ys1 - ys0) # Validate source bounds if (src_x1 > sw or src_y1 > sh or src_x0 < 0 or src_y0 < 0 or src_x1 <= src_x0 or src_y1 <= src_y0): if frame_count <= 3: logger.error(f"Invalid source region: ({src_x0},{src_y0})-({src_x1},{src_y1}) for {sw}x{sh} scaled") return (bg_rgb * 255).astype(np.uint8) # FIXED: Safe canvas placement with error handling try: fg_canvas[ys0:ys1, xs0:xs1, :] = fg_scaled[src_y0:src_y1, src_x0:src_x1, :] a_canvas[ys0:ys1, xs0:xs1] = a_scaled[src_y0:src_y1, src_x0:src_x1] except Exception as e: logger.error(f"Canvas placement failed: {e}") logger.error(f"Dest: [{ys0}:{ys1}, {xs0}:{xs1}], Src: [{src_y0}:{src_y1}, {src_x0}:{src_x1}]") return (bg_rgb * 255).astype(np.uint8) # FIXED: Apply feathering with bounds checking if feather_px > 0: kernel_size = max(3, feather_px * 2 + 1) if kernel_size % 2 == 0: kernel_size += 1 # Ensure odd kernel size try: a_canvas = cv2.GaussianBlur(a_canvas, (kernel_size, kernel_size), feather_px / 3.0) except Exception as e: logger.warning(f"Feathering failed: {e}") # FIXED: Composite with proper alpha handling a3 = np.expand_dims(a_canvas, axis=2) # More explicit than [:, :, None] comp = a3 * fg_canvas + (1.0 - a3) * bg_rgb result = np.clip(comp * 255, 0, 255).astype(np.uint8) return result progress(0.7, desc="Compositing") final_clip = original_clip.fl(composite_frame) output_path = OUT_DIR / f"processed_{int(time.time())}_{random.randint(1000,9999)}.mp4" temp_video_path = TEMP_DIR / f"temp_video_{int(time.time())}_{random.randint(1000,9999)}.mp4" memory_manager.register_temp_file(str(temp_video_path)) write_video_h264(final_clip, str(temp_video_path), crf=int(crf)) original_clip.close(); alpha_clip.close(); final_clip.close() progress(0.85, desc="Merging audio") if preserve_audio_flag: success = run_ffmpeg([ "-i", str(temp_video_path), "-i", video_path, "-map", "0:v:0", "-map", "1:a:0?", "-c:v", "copy", "-c:a", "aac", "-b:a", "192k", "-shortest", str(output_path) ], fail_ok=True) if success: messages.append("🔊 Original audio preserved") else: shutil.copy2(str(temp_video_path), str(output_path)) messages.append("⚠️ Audio merge failed, saved w/o audio") else: shutil.copy2(str(temp_video_path), str(output_path)) messages.append("🔇 Saved without audio") messages.append("✅ Done") stats = memory_manager.get_memory_stats() messages.append(f"📊 CPU {stats.cpu_memory_mb:.1f}MB, GPU {stats.gpu_memory_mb:.1f}MB") messages.append(f"🎯 Processed {frame_count} frames with placement ({px:.2f}, {py:.2f}) @ {ps:.2f}x scale") progress(1.0, desc="Done") return str(output_path), "\n".join(messages) except Exception as e: err = f"Processing failed: {str(e)}\n\n{traceback.format_exc()}" return None, err # ============================================================================= # CHAPTER 10: GRADIO UI # ============================================================================= def create_interface(): def diag(): return state.status_text() def cleanup(): memory_manager.aggressive_cleanup() s = memory_manager.get_memory_stats() return f"🧹 Cleanup\nCPU: {s.cpu_memory_mb:.1f}MB\nGPU: {s.gpu_memory_mb:.1f}MB\nTemp: {s.temp_files_count} files" def preload(ai_model, openai_key, force_gpu, progress=gr.Progress()): try: progress(0, desc="Preloading...") msg = "" if ai_model in ("SDXL", "Playground v2.5", "SD 1.5 (fallback)"): try: if ai_model == "SDXL": _ = generate_sdxl_background(64, 64, "plain", steps=2, guidance=3.5, seed=42, require_gpu=bool(force_gpu)) elif ai_model == "Playground v2.5": _ = generate_playground_v25_background(64, 64, "plain", steps=2, guidance=3.5, seed=42, require_gpu=bool(force_gpu)) else: _ = generate_sd15_background(64, 64, "plain", steps=2, guidance=3.5, seed=42, require_gpu=bool(force_gpu)) msg += f"{ai_model} preloaded.\n" except Exception as e: msg += f"{ai_model} preload failed: {e}\n" _reset_hydra() s, m = SAM2Handler(), MatAnyoneHandler() ok_s = s.initialize() _reset_hydra() ok_m = m.initialize() progress(1.0, desc="Preload complete") return f"✅ Preload\n{msg}SAM2: {'ready' if ok_s else 'failed'}\nMatAnyone: {'ready' if ok_m else 'failed'}" except Exception as e: return f"❌ Preload error: {e}" def generate_background_safe(video_file, ai_prompt, ai_steps, ai_guidance, ai_seed, ai_model, openai_key, force_gpu, progress=gr.Progress()): if not video_file: return None, "Upload a video first", gr.update(visible=False), None with memory_manager.mem_context("Background generation"): try: video_path = video_file.name if hasattr(video_file, 'name') else str(video_file) if not os.path.exists(video_path): return None, "Video not found", gr.update(visible=False), None cap = cv2.VideoCapture(video_path) if not cap.isOpened(): return None, "Could not open video", gr.update(visible=False), None ret, frame = cap.read() cap.release() if not ret or frame is None: return None, "Could not read frame", gr.update(visible=False), None h, w = int(frame.shape[0]), int(frame.shape[1]) steps = max(1, min(50, int(ai_steps or 30))) guidance = max(1.0, min(15.0, float(ai_guidance or 7.0))) try: seed_val = int(ai_seed) if ai_seed and str(ai_seed).strip() else None except Exception: seed_val = None progress(0.1, desc=f"Generating {ai_model}") bg_path = generate_ai_background_router( width=w, height=h, prompt=str(ai_prompt or "professional office background").strip(), model=str(ai_model or "SDXL"), steps=steps, guidance=guidance, seed=seed_val, openai_key=openai_key, require_gpu=bool(force_gpu) ) progress(1.0, desc="Background ready") if bg_path and os.path.exists(bg_path): return bg_path, f"AI background generated with {ai_model}", gr.update(visible=True), bg_path else: return None, "No output file", gr.update(visible=False), None except Exception as e: logger.error(f"Background generation error: {e}") return None, f"Background generation failed: {str(e)}", gr.update(visible=False), None def approve_background(bg_path): try: if not bg_path or not (isinstance(bg_path, str) and os.path.exists(bg_path)): return None, "Generate a background first", gr.update(visible=False) ext = os.path.splitext(bg_path)[1].lower() or ".jpg" safe_name = f"approved_{int(time.time())}_{random.randint(1000,9999)}{ext}" dest = BACKGROUND_DIR / safe_name shutil.copy2(bg_path, dest) return str(dest), f"✅ Background approved → {dest.name}", gr.update(visible=False) except Exception as e: return None, f"⚠️ Approve failed: {e}", gr.update(visible=False) css = """ .gradio-container { font-size: 16px !important; } label { font-size: 18px !important; font-weight: 600 !important; color: #2d3748 !important; } .process-button { font-size: 20px !important; font-weight: 700 !important; padding: 16px 28px !important; } .memory-info { background: #f8fafc; border: 1px solid #e2e8f0; border-radius: 8px; padding: 12px; } """ with gr.Blocks(title="Enhanced Video Background Replacement", theme=gr.themes.Soft(), css=css) as interface: gr.Markdown("# 🎬 Enhanced Video Background Replacement") gr.Markdown("_SAM2 + MatAnyone + AI Backgrounds — with strict tensor shapes & memory management_") gr.HTML(f"""
Device: {DEVICE}    PyTorch: {'✅' if TORCH_AVAILABLE else '❌'}    CUDA: {'✅' if CUDA_AVAILABLE else '❌'}
""") with gr.Row(): with gr.Column(scale=1): video_input = gr.Video(label="Input Video") gr.Markdown("### Background") bg_method = gr.Radio(choices=["Upload Image", "Gradients", "AI Generated"], value="AI Generated", label="Background Method") # Upload group (hidden by default) with gr.Group(visible=False) as upload_group: upload_img = gr.Image(label="Background Image", type="filepath") # Gradient group (hidden by default) with gr.Group(visible=False) as gradient_group: gradient_choice = gr.Dropdown(label="Gradient Style", choices=list(GRADIENT_PRESETS.keys()), value="Slate") # AI group (visible by default) with gr.Group(visible=True) as ai_group: prompt_suggestions = gr.Dropdown(label="💡 Prompt Inspiration", choices=AI_PROMPT_SUGGESTIONS, value="Custom (write your own)") ai_prompt = gr.Textbox(label="Background Description", value="professional office background", lines=3) ai_model = gr.Radio(["SDXL", "Playground v2.5", "SD 1.5 (fallback)", "OpenAI (gpt-image-1)"], value="SDXL", label="AI Model") with gr.Accordion("Connect services (optional)", open=False): openai_api_key = gr.Textbox(label="OpenAI API Key", type="password", placeholder="sk-... (kept only in this session)") with gr.Row(): ai_steps = gr.Slider(10, 50, value=30, step=1, label="Quality (steps)") ai_guidance = gr.Slider(1.0, 15.0, value=7.0, step=0.1, label="Guidance") ai_seed = gr.Number(label="Seed (optional)", precision=0) force_gpu_ai = gr.Checkbox(value=True, label="Force GPU for AI background") preload_btn = gr.Button("📦 Preload Models") preload_status = gr.Textbox(label="Preload Status", lines=4) generate_bg_btn = gr.Button("Generate AI Background", variant="primary") ai_generated_bg = gr.Image(label="Generated Background", type="filepath") approve_bg_btn = gr.Button("✅ Approve Background", visible=False) approved_background_path = gr.State(value=None) last_generated_bg = gr.State(value=None) ai_status = gr.Textbox(label="Generation Status", lines=2) gr.Markdown("### Processing") with gr.Row(): trim_enabled = gr.Checkbox(label="Trim Video", value=False) trim_seconds = gr.Number(label="Trim Duration (seconds)", value=5, precision=1) with gr.Row(): crf_value = gr.Slider(0, 30, value=18, step=1, label="Quality (CRF - lower=better)") audio_enabled = gr.Checkbox(label="Preserve Audio", value=True) with gr.Row(): use_chunked = gr.Checkbox(label="Use Chunked Processing", value=False) gr.Markdown("### Subject Placement") with gr.Row(): place_x = gr.Slider(0.0, 1.0, value=0.5, step=0.01, label="Horizontal") place_y = gr.Slider(0.0, 1.0, value=0.75, step=0.01, label="Vertical") with gr.Row(): place_scale = gr.Slider(0.3, 2.0, value=1.0, step=0.01, label="Scale") place_feather = gr.Slider(0, 15, value=3, step=1, label="Edge feather (px)") process_btn = gr.Button("🚀 Process Video", variant="primary", elem_classes=["process-button"]) gr.Markdown("### System") with gr.Row(): diagnostics_btn = gr.Button("📊 System Diagnostics") cleanup_btn = gr.Button("🧹 Memory Cleanup") diagnostics_output = gr.Textbox(label="System Status", lines=10) with gr.Column(scale=1): output_video = gr.Video(label="Processed Video") download_file = gr.File(label="Download Processed Video") status_output = gr.Textbox(label="Processing Status", lines=20) # --- Wiring --- def update_background_visibility(method): return ( gr.update(visible=(method == "Upload Image")), gr.update(visible=(method == "Gradients")), gr.update(visible=(method == "AI Generated")), ) def update_prompt_from_suggestion(suggestion): if suggestion == "Custom (write your own)": return gr.update(value="", placeholder="Describe the background you want...") return gr.update(value=suggestion) bg_method.change( update_background_visibility, inputs=[bg_method], outputs=[upload_group, gradient_group, ai_group] ) prompt_suggestions.change(update_prompt_from_suggestion, inputs=[prompt_suggestions], outputs=[ai_prompt]) preload_btn.click(preload, inputs=[ai_model, openai_api_key, force_gpu_ai], outputs=[preload_status], show_progress=True ) generate_bg_btn.click( generate_background_safe, inputs=[video_input, ai_prompt, ai_steps, ai_guidance, ai_seed, ai_model, openai_api_key, force_gpu_ai], outputs=[ai_generated_bg, ai_status, approve_bg_btn, last_generated_bg], show_progress=True ) approve_bg_btn.click( approve_background, inputs=[ai_generated_bg], outputs=[approved_background_path, ai_status, approve_bg_btn] ) diagnostics_btn.click(diag, outputs=[diagnostics_output]) cleanup_btn.click(cleanup, outputs=[diagnostics_output]) def process_video( video_file, bg_method, upload_img, gradient_choice, approved_background_path, last_generated_bg, trim_enabled, trim_seconds, crf_value, audio_enabled, use_chunked, place_x, place_y, place_scale, place_feather, progress=gr.Progress(track_tqdm=True), ): try: if not video_file: return None, None, "Please upload a video file" video_path = video_file.name if hasattr(video_file, 'name') else str(video_file) # Resolve background bg_path = None try: if bg_method == "Upload Image" and upload_img: bg_path = upload_img if isinstance(upload_img, str) else getattr(upload_img, "name", None) elif bg_method == "Gradients": cap = cv2.VideoCapture(video_path) ret, frame = cap.read(); cap.release() if ret and frame is not None: h, w = frame.shape[:2] if gradient_choice in GRADIENT_PRESETS: grad = _make_vertical_gradient(w, h, *GRADIENT_PRESETS[gradient_choice]) tmp_bg = tempfile.NamedTemporaryFile(suffix=".jpg", delete=False, dir=TEMP_DIR).name cv2.imwrite(tmp_bg, grad) memory_manager.register_temp_file(tmp_bg) bg_path = tmp_bg else: # AI Generated if approved_background_path: bg_path = approved_background_path elif last_generated_bg and isinstance(last_generated_bg, str) and os.path.exists(last_generated_bg): bg_path = last_generated_bg except Exception as e: logger.error(f"Background setup error: {e}") return None, None, f"Background setup failed: {str(e)}" result_path, status = process_video_main( video_path=video_path, background_path=bg_path, trim_duration=float(trim_seconds) if (trim_enabled and float(trim_seconds) > 0) else None, crf=int(crf_value), preserve_audio_flag=bool(audio_enabled), placement=dict(x=float(place_x), y=float(place_y), scale=float(place_scale), feather=int(place_feather)), use_chunked_processing=bool(use_chunked), progress=progress, ) if result_path and os.path.exists(result_path): return result_path, result_path, f"✅ Success\n\n{status}" else: return None, None, f"❌ Failed\n\n{status or 'Unknown error'}" except Exception as e: tb = traceback.format_exc() return None, None, f"❌ Crash: {e}\n\n{tb}" process_btn.click( process_video, inputs=[ video_input, bg_method, upload_img, gradient_choice, approved_background_path, last_generated_bg, trim_enabled, trim_seconds, crf_value, audio_enabled, use_chunked, place_x, place_y, place_scale, place_feather, ], outputs=[output_video, download_file, status_output], show_progress=True ) return interface # ============================================================================= # CHAPTER 11: MAIN # ============================================================================= def main(): logger.info("Starting Enhanced Background Replacement") stats = memory_manager.get_memory_stats() logger.info(f"Initial memory: CPU {stats.cpu_memory_mb:.1f}MB, GPU {stats.gpu_memory_mb:.1f}MB") interface = create_interface() interface.queue(max_size=3) try: interface.launch( server_name="0.0.0.0", server_port=7860, share=False, inbrowser=False, show_error=True ) finally: logger.info("Shutting down - cleanup") memory_manager.cleanup_temp_files() memory_manager.aggressive_cleanup() if __name__ == "__main__": main()