import gradio as gr from transformers import AutoTokenizer, AutoModelForCausalLM import torch # Load the model and tokenizer model_name = r"bigscience/bloomz-1b1" #"bigscience/bloomz-560m" tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name) def generate_text(prompt): inputs = tokenizer(prompt, return_tensors="pt") with torch.no_grad(): outputs = model.generate( **inputs, max_new_tokens=300, temperature=0.9, do_sample=True, top_k=50, top_p=0.95 ) return tokenizer.decode(outputs[0], skip_special_tokens=True) # Gradio interface demo = gr.Interface(fn=generate_text, inputs=gr.Textbox(lines=2, placeholder="Enter a prompt..."), outputs="text", title="🌍 BLOOMZ-560M Multilingual Generator") demo.launch()