import gradio as gr from transformers import AutoModelForCausalLM, AutoTokenizer import torch import os # Access the Hugging Face token from the environment variable HF_TOKEN = os.getenv("HF_Token") from huggingface_hub import login # Log in with token login(token=os.getenv("HF_Token")) # Load the LLaMA 3.2 1B Instruct model and tokenizer model_name = "meta-llama/Llama-3.2-1B-Instruct" # Replace with actual Hugging Face model name tokenizer = AutoTokenizer.from_pretrained(model_name) model = AutoModelForCausalLM.from_pretrained(model_name, device_map="auto", torch_dtype=torch.float16) # Gradio app with gr.Blocks() as demo: chatbot = gr.Chatbot(type="messages") msg = gr.Textbox(label="Your Message", placeholder="Type your message here...") clear = gr.ClearButton([msg, chatbot]) def respond(message, chat_history): # Add user message to chat history chat_history.append({"role": "user", "content": message}) # Prepare input for the model conversation = "\n".join([f"{turn['role'].capitalize()}: {turn['content']}" for turn in chat_history]) input_ids = tokenizer(conversation, return_tensors="pt").input_ids.to(model.device) # Generate response outputs = model.generate(input_ids, max_length=200, num_return_sequences=1, pad_token_id=tokenizer.eos_token_id) bot_message = tokenizer.decode(outputs[0], skip_special_tokens=True) # Add bot response to chat history chat_history.append({"role": "assistant", "content": bot_message}) return "", chat_history msg.submit(respond, [msg, chatbot], [msg, chatbot]) if __name__ == "__main__": demo.launch()