Spaces:
Sleeping
Sleeping
Update interfacetest2.py
Browse files- interfacetest2.py +116 -47
interfacetest2.py
CHANGED
|
@@ -7,27 +7,19 @@ import torch
|
|
| 7 |
import torch.backends.cudnn as cudnn
|
| 8 |
from numpy import random
|
| 9 |
import numpy as np
|
| 10 |
-
from models.experimental import attempt_load
|
| 11 |
-
from utils.datasets import LoadImages
|
| 12 |
-
from utils.general import check_img_size, non_max_suppression, scale_coords, set_logging, increment_path
|
| 13 |
-
from utils.plots import plot_one_box
|
| 14 |
-
from utils.torch_utils import select_device, time_synchronized
|
| 15 |
-
import gradio as gr
|
| 16 |
import ffmpeg
|
|
|
|
| 17 |
from fastapi import FastAPI
|
| 18 |
import uvicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
| 21 |
-
output_path = str(Path(input_path).with_suffix('')) + "_h264.mp4"
|
| 22 |
-
try:
|
| 23 |
-
stream = ffmpeg.input(input_path)
|
| 24 |
-
stream = ffmpeg.output(stream, output_path, vcodec='libx264', acodec='aac', format='mp4', pix_fmt='yuv420p')
|
| 25 |
-
ffmpeg.run(stream, overwrite_output=True)
|
| 26 |
-
return output_path
|
| 27 |
-
except ffmpeg.Error as e:
|
| 28 |
-
print(f"FFmpeg conversion error: {e.stderr.decode()}")
|
| 29 |
-
return input_path
|
| 30 |
-
|
| 31 |
def compute_iou(box1, box2):
|
| 32 |
x1, y1, x2, y2 = box1
|
| 33 |
x1_, y1_, x2_, y2_ = box2
|
|
@@ -43,35 +35,63 @@ def compute_iou(box1, box2):
|
|
| 43 |
union_area = box1_area + box2_area - inter_area
|
| 44 |
return inter_area / union_area if union_area != 0 else 0.0
|
| 45 |
|
| 46 |
-
|
|
|
|
| 47 |
x1, y1, x2, y2 = curr_box
|
| 48 |
curr_centroid = ((x1 + x2) / 2, (y1 + y2) / 2)
|
| 49 |
if scanner_id in prev_centroids:
|
| 50 |
prev_x, prev_y = prev_centroids[scanner_id]
|
| 51 |
distance = np.sqrt((curr_centroid[0] - prev_x)**2 + (curr_centroid[1] - prev_y)**2)
|
| 52 |
return distance > threshold
|
| 53 |
-
return False
|
| 54 |
|
| 55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
save_dir = Path(increment_path(Path(save_dir), exist_ok=True))
|
| 57 |
save_dir.mkdir(parents=True, exist_ok=True)
|
| 58 |
-
|
|
|
|
| 59 |
set_logging()
|
| 60 |
device = select_device(device)
|
| 61 |
half = device.type != 'cpu'
|
|
|
|
|
|
|
| 62 |
model = attempt_load(weights, map_location=device)
|
| 63 |
stride = int(model.stride.max())
|
| 64 |
imgsz = check_img_size(img_size, s=stride)
|
|
|
|
|
|
|
|
|
|
| 65 |
if half:
|
| 66 |
model.half()
|
| 67 |
|
|
|
|
| 68 |
dataset = LoadImages(video_path, img_size=imgsz, stride=stride)
|
|
|
|
|
|
|
| 69 |
names = model.module.names if hasattr(model, 'module') else model.names
|
| 70 |
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
| 71 |
|
|
|
|
| 72 |
vid_path, vid_writer = None, None
|
| 73 |
prev_centroids = {}
|
| 74 |
scanner_id_counter = 0
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
for path, img, im0s, vid_cap in dataset:
|
| 77 |
img = torch.from_numpy(img).to(device)
|
|
@@ -80,10 +100,22 @@ def detect_video(video_path, weights, conf_thres=0.25, iou_thres=0.45, img_size=
|
|
| 80 |
if img.ndimension() == 3:
|
| 81 |
img = img.unsqueeze(0)
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
with torch.no_grad():
|
| 84 |
-
pred = model(img)[0]
|
|
|
|
|
|
|
| 85 |
pred = non_max_suppression(pred, conf_thres, iou_thres)
|
| 86 |
|
|
|
|
| 87 |
for i, det in enumerate(pred):
|
| 88 |
p = Path(path)
|
| 89 |
save_path = str(save_dir / p.name.replace('.mp4', '_output.mp4'))
|
|
@@ -94,6 +126,7 @@ def detect_video(video_path, weights, conf_thres=0.25, iou_thres=0.45, img_size=
|
|
| 94 |
item_boxes, scanner_data, phone_boxes = [], [], []
|
| 95 |
curr_scanner_boxes = []
|
| 96 |
|
|
|
|
| 97 |
for *xyxy, conf, cls in det:
|
| 98 |
x1, y1, x2, y2 = map(int, xyxy)
|
| 99 |
class_name = names[int(cls)]
|
|
@@ -106,21 +139,27 @@ def detect_video(video_path, weights, conf_thres=0.25, iou_thres=0.45, img_size=
|
|
| 106 |
curr_scanner_boxes.append([x1, y1, x2, y2])
|
| 107 |
plot_one_box(xyxy, im0, label=class_name, color=color, line_thickness=2)
|
| 108 |
|
|
|
|
| 109 |
new_prev_centroids = {}
|
| 110 |
if prev_centroids and curr_scanner_boxes:
|
| 111 |
for curr_box in curr_scanner_boxes:
|
| 112 |
curr_centroid = ((curr_box[0] + curr_box[2]) / 2, (curr_box[1] + curr_box[3]) / 2)
|
| 113 |
-
best_match_id = min(prev_centroids.keys(),
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
if best_match_id is not None
|
| 118 |
-
|
| 119 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
else:
|
| 121 |
scanner_id = scanner_id_counter
|
| 122 |
scanner_id_counter += 1
|
| 123 |
-
is_moving = is_scanner_moving(prev_centroids, curr_box, scanner_id)
|
| 124 |
movement_status = "Scanning" if is_moving else "Idle"
|
| 125 |
scanner_data.append([curr_box, movement_status, scanner_id])
|
| 126 |
new_prev_centroids[scanner_id] = curr_centroid
|
|
@@ -135,26 +174,35 @@ def detect_video(video_path, weights, conf_thres=0.25, iou_thres=0.45, img_size=
|
|
| 135 |
|
| 136 |
prev_centroids = new_prev_centroids
|
| 137 |
|
|
|
|
| 138 |
for scanner_box, movement_status, scanner_id in scanner_data:
|
| 139 |
x1, y1, x2, y2 = scanner_box
|
| 140 |
label = f"scanner {movement_status} (ID: {scanner_id})"
|
| 141 |
plot_one_box([x1, y1, x2, y2], im0, label=label, color=colors[names.index("scanner")], line_thickness=2)
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
cv2.putText(im0, payment_scanning_status, (10, 60), cv2.FONT_HERSHEY_SIMPLEX, 0.9, colors[names.index("scanner")], 2)
|
| 157 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 158 |
if vid_path != save_path:
|
| 159 |
vid_path = save_path
|
| 160 |
if isinstance(vid_writer, cv2.VideoWriter):
|
|
@@ -164,27 +212,47 @@ def detect_video(video_path, weights, conf_thres=0.25, iou_thres=0.45, img_size=
|
|
| 164 |
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
| 165 |
vid_writer.write(im0)
|
| 166 |
|
|
|
|
| 167 |
if isinstance(vid_writer, cv2.VideoWriter):
|
| 168 |
vid_writer.release()
|
| 169 |
|
|
|
|
| 170 |
output_h264 = str(Path(save_path).with_name(f"{Path(save_path).stem}_h264.mp4"))
|
| 171 |
try:
|
| 172 |
stream = ffmpeg.input(save_path)
|
| 173 |
stream = ffmpeg.output(stream, output_h264, vcodec='libx264', acodec='aac', format='mp4', pix_fmt='yuv420p')
|
| 174 |
-
ffmpeg.run(stream, overwrite_output=True)
|
| 175 |
os.remove(save_path)
|
| 176 |
return output_h264
|
| 177 |
except ffmpeg.Error as e:
|
| 178 |
-
|
|
|
|
| 179 |
return save_path
|
| 180 |
|
|
|
|
| 181 |
def gradio_interface(video, conf_thres, iou_thres):
|
| 182 |
weights = "/home/myominhtet/Desktop/deepsortfromscratch/yolov7/best.pt"
|
| 183 |
img_size = 640
|
| 184 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 185 |
output_video = detect_video(video, weights, conf_thres, iou_thres, img_size)
|
|
|
|
| 186 |
return output_video if output_video else "Error processing video."
|
| 187 |
|
|
|
|
| 188 |
interface = gr.Interface(
|
| 189 |
fn=gradio_interface,
|
| 190 |
inputs=[
|
|
@@ -197,6 +265,7 @@ interface = gr.Interface(
|
|
| 197 |
description="Upload a video to run YOLO detection with custom parameters."
|
| 198 |
)
|
| 199 |
|
|
|
|
| 200 |
app = FastAPI()
|
| 201 |
app = gr.mount_gradio_app(app, interface, path="/")
|
| 202 |
|
|
|
|
| 7 |
import torch.backends.cudnn as cudnn
|
| 8 |
from numpy import random
|
| 9 |
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
import ffmpeg
|
| 11 |
+
import gradio as gr
|
| 12 |
from fastapi import FastAPI
|
| 13 |
import uvicorn
|
| 14 |
+
import shutil
|
| 15 |
+
from models.experimental import attempt_load
|
| 16 |
+
from utils.datasets import LoadStreams, LoadImages
|
| 17 |
+
from utils.general import check_img_size, check_requirements, check_imshow, non_max_suppression, \
|
| 18 |
+
scale_coords, strip_optimizer, set_logging, increment_path
|
| 19 |
+
from utils.plots import plot_one_box
|
| 20 |
+
from utils.torch_utils import select_device, time_synchronized, TracedModel
|
| 21 |
|
| 22 |
+
# Function to compute IoU between two boxes
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
def compute_iou(box1, box2):
|
| 24 |
x1, y1, x2, y2 = box1
|
| 25 |
x1_, y1_, x2_, y2_ = box2
|
|
|
|
| 35 |
union_area = box1_area + box2_area - inter_area
|
| 36 |
return inter_area / union_area if union_area != 0 else 0.0
|
| 37 |
|
| 38 |
+
# Function to check if a scanner is moving based on centroid displacement
|
| 39 |
+
def is_scanner_moving(prev_centroids, curr_box, scanner_id, threshold=2.0):
|
| 40 |
x1, y1, x2, y2 = curr_box
|
| 41 |
curr_centroid = ((x1 + x2) / 2, (y1 + y2) / 2)
|
| 42 |
if scanner_id in prev_centroids:
|
| 43 |
prev_x, prev_y = prev_centroids[scanner_id]
|
| 44 |
distance = np.sqrt((curr_centroid[0] - prev_x)**2 + (curr_centroid[1] - prev_y)**2)
|
| 45 |
return distance > threshold
|
| 46 |
+
return False # Default to "not moving" if no previous centroid exists
|
| 47 |
|
| 48 |
+
# Function to convert video to H.264 format
|
| 49 |
+
def convert_to_h264(input_path):
|
| 50 |
+
output_path = str(Path(input_path).with_suffix('')) + "_h264.mp4"
|
| 51 |
+
try:
|
| 52 |
+
stream = ffmpeg.input(input_path)
|
| 53 |
+
stream = ffmpeg.output(stream, output_path, vcodec='libx264', acodec='aac', format='mp4', pix_fmt='yuv420p')
|
| 54 |
+
ffmpeg.run(stream, cmd='/usr/bin/ffmpeg', overwrite_output=True)
|
| 55 |
+
return output_path
|
| 56 |
+
except ffmpeg.Error as e:
|
| 57 |
+
stderr = e.stderr.decode('utf-8') if e.stderr else "Unknown FFmpeg error"
|
| 58 |
+
print(f"FFmpeg error: {stderr}")
|
| 59 |
+
return input_path
|
| 60 |
+
|
| 61 |
+
# Detection function adapted from the second script
|
| 62 |
+
def detect_video(video_path, weights, conf_thres=0.25, iou_thres=0.45, img_size=640, device='', save_dir='runs/detect/exp', trace=False):
|
| 63 |
save_dir = Path(increment_path(Path(save_dir), exist_ok=True))
|
| 64 |
save_dir.mkdir(parents=True, exist_ok=True)
|
| 65 |
+
|
| 66 |
+
# Initialize
|
| 67 |
set_logging()
|
| 68 |
device = select_device(device)
|
| 69 |
half = device.type != 'cpu'
|
| 70 |
+
|
| 71 |
+
# Load model
|
| 72 |
model = attempt_load(weights, map_location=device)
|
| 73 |
stride = int(model.stride.max())
|
| 74 |
imgsz = check_img_size(img_size, s=stride)
|
| 75 |
+
|
| 76 |
+
if trace:
|
| 77 |
+
model = TracedModel(model, device, img_size)
|
| 78 |
if half:
|
| 79 |
model.half()
|
| 80 |
|
| 81 |
+
# Set Dataloader
|
| 82 |
dataset = LoadImages(video_path, img_size=imgsz, stride=stride)
|
| 83 |
+
|
| 84 |
+
# Get names and colors
|
| 85 |
names = model.module.names if hasattr(model, 'module') else model.names
|
| 86 |
colors = [[random.randint(0, 255) for _ in range(3)] for _ in names]
|
| 87 |
|
| 88 |
+
# Initialize variables
|
| 89 |
vid_path, vid_writer = None, None
|
| 90 |
prev_centroids = {}
|
| 91 |
scanner_id_counter = 0
|
| 92 |
+
product_scanning_status_global = ""
|
| 93 |
+
payment_scanning_status_global = ""
|
| 94 |
+
old_img_b, old_img_h, old_img_w = 0, 0, 0
|
| 95 |
|
| 96 |
for path, img, im0s, vid_cap in dataset:
|
| 97 |
img = torch.from_numpy(img).to(device)
|
|
|
|
| 100 |
if img.ndimension() == 3:
|
| 101 |
img = img.unsqueeze(0)
|
| 102 |
|
| 103 |
+
# Warmup
|
| 104 |
+
if device.type != 'cpu' and (old_img_b != img.shape[0] or old_img_h != img.shape[2] or old_img_w != img.shape[3]):
|
| 105 |
+
old_img_b = img.shape[0]
|
| 106 |
+
old_img_h = img.shape[2]
|
| 107 |
+
old_img_w = img.shape[3]
|
| 108 |
+
for _ in range(3):
|
| 109 |
+
model(img)[0]
|
| 110 |
+
|
| 111 |
+
# Inference
|
| 112 |
with torch.no_grad():
|
| 113 |
+
pred = model(img, augment=False)[0]
|
| 114 |
+
|
| 115 |
+
# Apply NMS
|
| 116 |
pred = non_max_suppression(pred, conf_thres, iou_thres)
|
| 117 |
|
| 118 |
+
# Process detections
|
| 119 |
for i, det in enumerate(pred):
|
| 120 |
p = Path(path)
|
| 121 |
save_path = str(save_dir / p.name.replace('.mp4', '_output.mp4'))
|
|
|
|
| 126 |
item_boxes, scanner_data, phone_boxes = [], [], []
|
| 127 |
curr_scanner_boxes = []
|
| 128 |
|
| 129 |
+
# Process each detection
|
| 130 |
for *xyxy, conf, cls in det:
|
| 131 |
x1, y1, x2, y2 = map(int, xyxy)
|
| 132 |
class_name = names[int(cls)]
|
|
|
|
| 139 |
curr_scanner_boxes.append([x1, y1, x2, y2])
|
| 140 |
plot_one_box(xyxy, im0, label=class_name, color=color, line_thickness=2)
|
| 141 |
|
| 142 |
+
# Match scanner boxes with previous frames
|
| 143 |
new_prev_centroids = {}
|
| 144 |
if prev_centroids and curr_scanner_boxes:
|
| 145 |
for curr_box in curr_scanner_boxes:
|
| 146 |
curr_centroid = ((curr_box[0] + curr_box[2]) / 2, (curr_box[1] + curr_box[3]) / 2)
|
| 147 |
+
best_match_id = min(prev_centroids.keys(),
|
| 148 |
+
key=lambda k: np.sqrt((curr_centroid[0] - prev_centroids[k][0])**2 +
|
| 149 |
+
(curr_centroid[1] - prev_centroids[k][1])**2),
|
| 150 |
+
default=None)
|
| 151 |
+
if best_match_id is not None:
|
| 152 |
+
distance = np.sqrt((curr_centroid[0] - prev_centroids[best_match_id][0])**2 +
|
| 153 |
+
(curr_centroid[1] - prev_centroids[best_match_id][1])**2)
|
| 154 |
+
if distance < 50:
|
| 155 |
+
scanner_id = best_match_id
|
| 156 |
+
else:
|
| 157 |
+
scanner_id = scanner_id_counter
|
| 158 |
+
scanner_id_counter += 1
|
| 159 |
else:
|
| 160 |
scanner_id = scanner_id_counter
|
| 161 |
scanner_id_counter += 1
|
| 162 |
+
is_moving = is_scanner_moving(prev_centroids, curr_box, scanner_id, threshold=2.0)
|
| 163 |
movement_status = "Scanning" if is_moving else "Idle"
|
| 164 |
scanner_data.append([curr_box, movement_status, scanner_id])
|
| 165 |
new_prev_centroids[scanner_id] = curr_centroid
|
|
|
|
| 174 |
|
| 175 |
prev_centroids = new_prev_centroids
|
| 176 |
|
| 177 |
+
# Redraw scanner boxes with movement status
|
| 178 |
for scanner_box, movement_status, scanner_id in scanner_data:
|
| 179 |
x1, y1, x2, y2 = scanner_box
|
| 180 |
label = f"scanner {movement_status} (ID: {scanner_id})"
|
| 181 |
plot_one_box([x1, y1, x2, y2], im0, label=label, color=colors[names.index("scanner")], line_thickness=2)
|
| 182 |
|
| 183 |
+
# Check for overlaps only if scanning status hasn't been set
|
| 184 |
+
if not product_scanning_status_global:
|
| 185 |
+
for item_box in item_boxes:
|
| 186 |
+
iou = compute_iou(scanner_box, item_box)
|
| 187 |
+
if movement_status == "Scanning" and iou > 0.02:
|
| 188 |
+
product_scanning_status_global = "Product scanning is finished"
|
| 189 |
+
print(f"Product scanning finished at frame {i}")
|
| 190 |
+
if not payment_scanning_status_global:
|
| 191 |
+
for phone_box in phone_boxes:
|
| 192 |
+
iou = compute_iou(scanner_box, phone_box)
|
| 193 |
+
if movement_status == "Scanning" and iou > 0.02:
|
| 194 |
+
payment_scanning_status_global = "Payment scanning is finished"
|
| 195 |
+
print(f"Payment scanning finished at frame {i}")
|
|
|
|
| 196 |
|
| 197 |
+
# Display persistent labels
|
| 198 |
+
if product_scanning_status_global:
|
| 199 |
+
cv2.putText(im0, product_scanning_status_global, (10, 30),
|
| 200 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.9, colors[names.index("scanner")], 2)
|
| 201 |
+
if payment_scanning_status_global:
|
| 202 |
+
cv2.putText(im0, payment_scanning_status_global, (10, 60),
|
| 203 |
+
cv2.FONT_HERSHEY_SIMPLEX, 0.9, colors[names.index("scanner")], 2)
|
| 204 |
+
|
| 205 |
+
# Write frame to video
|
| 206 |
if vid_path != save_path:
|
| 207 |
vid_path = save_path
|
| 208 |
if isinstance(vid_writer, cv2.VideoWriter):
|
|
|
|
| 212 |
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
| 213 |
vid_writer.write(im0)
|
| 214 |
|
| 215 |
+
# Cleanup
|
| 216 |
if isinstance(vid_writer, cv2.VideoWriter):
|
| 217 |
vid_writer.release()
|
| 218 |
|
| 219 |
+
# Convert to H.264
|
| 220 |
output_h264 = str(Path(save_path).with_name(f"{Path(save_path).stem}_h264.mp4"))
|
| 221 |
try:
|
| 222 |
stream = ffmpeg.input(save_path)
|
| 223 |
stream = ffmpeg.output(stream, output_h264, vcodec='libx264', acodec='aac', format='mp4', pix_fmt='yuv420p')
|
| 224 |
+
ffmpeg.run(stream, cmd='/usr/bin/ffmpeg', overwrite_output=True)
|
| 225 |
os.remove(save_path)
|
| 226 |
return output_h264
|
| 227 |
except ffmpeg.Error as e:
|
| 228 |
+
stderr = e.stderr.decode('utf-8') if e.stderr else "Unknown FFmpeg error"
|
| 229 |
+
print(f"FFmpeg error: {stderr}")
|
| 230 |
return save_path
|
| 231 |
|
| 232 |
+
# Gradio interface
|
| 233 |
def gradio_interface(video, conf_thres, iou_thres):
|
| 234 |
weights = "/home/myominhtet/Desktop/deepsortfromscratch/yolov7/best.pt"
|
| 235 |
img_size = 640
|
| 236 |
+
|
| 237 |
+
# Create a stable directory for video files
|
| 238 |
+
stable_dir = "/home/myominhtet/Desktop/deepsortfromscratch/videos"
|
| 239 |
+
os.makedirs(stable_dir, exist_ok=True)
|
| 240 |
+
|
| 241 |
+
# Copy the uploaded video to a stable path
|
| 242 |
+
stable_path = os.path.join(stable_dir, f"input_{Path(video).name}")
|
| 243 |
+
shutil.copy(video, stable_path)
|
| 244 |
+
print(f"Copied video to: {stable_path}")
|
| 245 |
+
|
| 246 |
+
# Verify the copied file
|
| 247 |
+
print(f"Stable path exists: {os.path.exists(stable_path)}")
|
| 248 |
+
print(f"Stable path readable: {os.access(stable_path, os.R_OK)}")
|
| 249 |
+
|
| 250 |
+
video = convert_to_h264(stable_path)
|
| 251 |
output_video = detect_video(video, weights, conf_thres, iou_thres, img_size)
|
| 252 |
+
|
| 253 |
return output_video if output_video else "Error processing video."
|
| 254 |
|
| 255 |
+
# Set up Gradio interface
|
| 256 |
interface = gr.Interface(
|
| 257 |
fn=gradio_interface,
|
| 258 |
inputs=[
|
|
|
|
| 265 |
description="Upload a video to run YOLO detection with custom parameters."
|
| 266 |
)
|
| 267 |
|
| 268 |
+
# Set up FastAPI app
|
| 269 |
app = FastAPI()
|
| 270 |
app = gr.mount_gradio_app(app, interface, path="/")
|
| 271 |
|