Spaces:
Build error
Build error
File size: 5,839 Bytes
28451f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 |
/*
* SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
* SPDX-License-Identifier: Apache-2.0
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
/** @file triangle.cuh
* @author Thomas Müller & Alex Evans, NVIDIA
* @brief CUDA/C++ triangle implementation.
*/
#pragma once
#include <neural-graphics-primitives/common.h>
#include <neural-graphics-primitives/common_device.cuh>
#include <tiny-cuda-nn/common.h>
namespace ngp {
inline NGP_HOST_DEVICE float normdot(const vec3 &a, const vec3 &b) {
float div = length(a) * length(b);
if (div == 0.0f) {
return 1.0f;
}
return dot(a, b) / div;
}
inline NGP_HOST_DEVICE float angle(const vec3 &a, const vec3 &b) {
return acosf(clamp(normdot(a, b), -1.0f, 1.0f));
}
struct Triangle {
NGP_HOST_DEVICE vec3 sample_uniform_position(const vec2& sample) const {
float sqrt_x = sqrt(sample.x);
float factor0 = 1.0f - sqrt_x;
float factor1 = sqrt_x * (1.0f - sample.y);
float factor2 = sqrt_x * sample.y;
return factor0 * a + factor1 * b + factor2 * c;
}
NGP_HOST_DEVICE float surface_area() const {
return 0.5f * length(cross(b - a, c - a));
}
NGP_HOST_DEVICE vec3 normal() const {
return normalize(cross(b - a, c - a));
}
NGP_HOST_DEVICE const vec3 &operator[](uint32_t i) const {
return i == 0 ? a : (i == 1 ? b : c);
}
NGP_HOST_DEVICE float angle_at_vertex(uint32_t i) const {
vec3 v1 = (*this)[i] - (*this)[(i + 1) % 3];
vec3 v2 = (*this)[i] - (*this)[(i + 2) % 3];
return angle(v1, v2);
}
NGP_HOST_DEVICE uint32_t closest_vertex_idx(const vec3 &pos) const {
float mag1 = length2(pos - a);
float mag2 = length2(pos - b);
float mag3 = length2(pos - c);
float minv = min(vec3{ mag1, mag2, mag3 });
if (minv == mag1) {
return 0;
} else if (minv == mag2) {
return 1;
} else {
return 2;
}
}
NGP_HOST_DEVICE float angle_at_pos(const vec3 &pos) const {
return angle_at_vertex(closest_vertex_idx(pos));
}
// based on https://www.iquilezles.org/www/articles/intersectors/intersectors.htm
NGP_HOST_DEVICE float ray_intersect(const vec3 &ro, const vec3 &rd, vec3& n) const {
vec3 v1v0 = b - a;
vec3 v2v0 = c - a;
vec3 rov0 = ro - a;
n = cross(v1v0, v2v0);
vec3 q = cross(rov0, rd);
float d = 1.0f / dot(rd, n);
float u = d * -dot(q, v2v0);
float v = d * dot(q, v1v0);
float t = d * -dot(n, rov0);
if (u < 0.0f || u > 1.0f || v < 0.0f || (u+v) > 1.0f || t < 0.0f) {
t = std::numeric_limits<float>::max();
}
return t;
}
NGP_HOST_DEVICE float ray_intersect(const vec3 &ro, const vec3 &rd) const {
vec3 n;
return ray_intersect(ro, rd, n);
}
// based on https://www.iquilezles.org/www/articles/distfunctions/distfunctions.htm
NGP_HOST_DEVICE float distance_sq(const vec3& pos) const {
vec3 v21 = b - a; vec3 p1 = pos - a;
vec3 v32 = c - b; vec3 p2 = pos - b;
vec3 v13 = a - c; vec3 p3 = pos - c;
vec3 nor = cross(v21, v13);
return
// inside/outside test
(sign(dot(cross(v21, nor), p1)) + sign(dot(cross(v32, nor), p2)) + sign(dot(cross(v13, nor), p3)) < 2.0f)
?
// 3 edges
min(vec3{
length2(v21 * clamp(dot(v21, p1) / length2(v21), 0.0f, 1.0f)-p1),
length2(v32 * clamp(dot(v32, p2) / length2(v32), 0.0f, 1.0f)-p2),
length2(v13 * clamp(dot(v13, p3) / length2(v13), 0.0f, 1.0f)-p3),
})
:
// 1 face
dot(nor, p1) * dot(nor, p1) / length2(nor);
}
NGP_HOST_DEVICE float distance(const vec3& pos) const {
return sqrt(distance_sq(pos));
}
NGP_HOST_DEVICE bool point_in_triangle(const vec3& p) const {
// Move the triangle so that the point becomes the
// triangles origin
vec3 local_a = a - p;
vec3 local_b = b - p;
vec3 local_c = c - p;
// The point should be moved too, so they are both
// relative, but because we don't use p in the
// equation anymore, we don't need it!
// p -= p;
// Compute the normal vectors for triangles:
// u = normal of PBC
// v = normal of PCA
// w = normal of PAB
vec3 u = cross(local_b, local_c);
vec3 v = cross(local_c, local_a);
vec3 w = cross(local_a, local_b);
// Test to see if the normals are facing the same direction.
// If yes, the point is inside, otherwise it isn't.
return dot(u, v) >= 0.0f && dot(u, w) >= 0.0f;
}
NGP_HOST_DEVICE vec3 closest_point_to_line(const vec3& a, const vec3& b, const vec3& c) const {
float t = dot(c - a, b - a) / dot(b - a, b - a);
t = max(min(t, 1.0f), 0.0f);
return a + t * (b - a);
}
NGP_HOST_DEVICE vec3 closest_point(vec3 point) const {
point -= dot(normal(), point - a) * normal();
if (point_in_triangle(point)) {
return point;
}
vec3 c1 = closest_point_to_line(a, b, point);
vec3 c2 = closest_point_to_line(b, c, point);
vec3 c3 = closest_point_to_line(c, a, point);
float mag1 = length2(point - c1);
float mag2 = length2(point - c2);
float mag3 = length2(point - c3);
float min = tcnn::min(vec3{mag1, mag2, mag3});
if (min == mag1) {
return c1;
} else if (min == mag2) {
return c2;
} else {
return c3;
}
}
NGP_HOST_DEVICE vec3 centroid() const {
return (a + b + c) / 3.0f;
}
NGP_HOST_DEVICE float centroid(int axis) const {
return (a[axis] + b[axis] + c[axis]) / 3;
}
NGP_HOST_DEVICE void get_vertices(vec3 v[3]) const {
v[0] = a;
v[1] = b;
v[2] = c;
}
vec3 a, b, c;
};
}
|