# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from hydra.core.config_store import ConfigStore from cosmos_predict1.diffusion.networks.general_dit_video_conditioned import VideoExtendGeneralDIT from cosmos_predict1.diffusion.training.modules.edm_sde import EDMSDE from cosmos_predict1.utils.lazy_config import LazyCall as L from cosmos_predict1.utils.lazy_config import LazyDict Cosmos_Predict1_WorldInterpolator_7B: LazyDict = LazyDict( dict( defaults=[ {"override /net": "faditv2_7b"}, {"override /conditioner": "video_cond"}, {"override /tokenizer": "cosmos_diffusion_tokenizer_res720_comp8x8x8_t121_ver092624"}, "_self_", ], model=dict( sde=L(EDMSDE)( p_mean=0.0, p_std=1.0, sigma_max=80, sigma_min=0.0002, ), input_image_key="images_1024", latent_shape=[ 16, 4, 88, 160, ], tokenizer=dict( video_vae=dict( pixel_chunk_duration=9, ) ), vae=dict( # Added VAE field pixel_chunk_duration=9, latent_ch=16, ), adjust_video_noise=True, num_latents_to_drop=1, context_parallel_size=1, conditioner=dict( video_cond_bool=dict( condition_location="first_and_last_1", cfg_unconditional_type="zero_condition_region_condition_mask", apply_corruption_to_condition_region="noise_with_sigma", condition_on_augment_sigma=False, dropout_rate=0.0, first_random_n_num_condition_t_max=2, normalize_condition_latent=False, augment_sigma_sample_p_mean=-3.0, augment_sigma_sample_p_std=2.0, augment_sigma_sample_multiplier=1.0, apply_corruption_to_condition_region_sigma_value=[0.001], ), text=dict( dropout_rate=0.5, ), ), net=L(VideoExtendGeneralDIT)( extra_per_block_abs_pos_emb=True, rope_h_extrapolation_ratio=1.0, rope_w_extrapolation_ratio=1.0, rope_t_extrapolation_ratio=2.0, extra_per_block_abs_pos_emb_type="learnable", ), ), job=dict(group="WorldInterpolator", name="Cosmos_Predict1_WorldInterpolator_7B"), ) ) Cosmos_Predict1_WorldInterpolator_7B_Post_trained: LazyDict = LazyDict( dict( defaults=[ "/experiment/Cosmos_Predict1_WorldInterpolator_7B", ], job=dict( name="Cosmos_Predict1_WorldInterpolator_7B_Post_trained", ), ) ) cs = ConfigStore.instance() for _item in [ Cosmos_Predict1_WorldInterpolator_7B, Cosmos_Predict1_WorldInterpolator_7B_Post_trained, ]: cs.store(group="experiment", package="_global_", name=_item["job"]["name"], node=_item)