# SPDX-FileCopyrightText: Copyright (c) 2025 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: Apache-2.0 # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import torch from hydra.core.config_store import ConfigStore from cosmos_predict1.autoregressive.configs.base.callbacks import BASIC_CALLBACKS, VIDEO_TEACHER_FORCING_CALLBACK from cosmos_predict1.autoregressive.configs.base.dataloader import get_tealrobot_video from cosmos_predict1.autoregressive.configs.base.optim import LambdaLinearLR from cosmos_predict1.autoregressive.configs.experiment.video2video.basic import register_experiments from cosmos_predict1.utils import config, log from cosmos_predict1.utils.lazy_config import LazyCall as L from cosmos_predict1.utils.scheduler import WarmupCosineLR def register_checkpoint(cs): checkpoint_local = config.CheckpointConfig( save_iter=5000, broadcast_via_filesystem=True, ) cs.store(group="checkpoint", package="checkpoint", name="local", node=checkpoint_local) def register_callbacks(cs): cs.store(group="callbacks", package="trainer.callbacks", name="basic", node=BASIC_CALLBACKS) cs.store( group="callbacks", package="trainer.callbacks", name="video_teacher_forcing", node=VIDEO_TEACHER_FORCING_CALLBACK, ) def register_scheduler(cs): cs.store( group="scheduler", package="scheduler", name="warmup_cosine_lr", node=L(WarmupCosineLR)(optimizer=None, warmup_iters=5000, lr_decay_iters="${trainer.max_iter}", min_lr=1e-8), ) cs.store(group="scheduler", package="scheduler", name="lambdalinear", node=LambdaLinearLR) def register_optimizer(cs): cs.store( group="optimizer", package="optimizer", name="fused_adamw", node=L(torch.optim.AdamW)(params=None, lr=1e-3, weight_decay=0.05, fused=True), ) cs.store( group="optimizer", package="optimizer", name="sgd", node=L(torch.optim.SGD)(params=None, lr=5e-6, momentum=0.9), ) def register_training_data(cs): cs.store( group="data_train", package="dataloader_train", name="tealrobot_video_small", node=get_tealrobot_video(num_frames=33, video_size=[384, 640]), ) cs.store(group="data_train", package="dataloader_train", name="tealrobot_video", node=get_tealrobot_video()) def register_configs(): log.info("Registering configs for autoregressive_base") cs = ConfigStore.instance() register_callbacks(cs) register_checkpoint(cs) register_optimizer(cs) register_scheduler(cs) register_training_data(cs) register_experiments(cs)